Abstract

In this paper, the complete photonic bandgap (CPBG) of two-dimensional photonic crystals (PCs), which are formed by a square array of solid or hollow dielectric rods connected with dielectric veins, are numerically investigated using the plane wave expansion method. It is clearly demonstrated how the CPBG evolves as the pattern of veins or the type of rods changes. An optimal structure with an ultralarge CPBG is found, whose CPBG reaches Δω = 0.22374 (2πc/a), which is larger than those reported in literatures. The proposed structure seems to have promising applications due to its ultralarge CPBG and large fabrication tolerance.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W.-L. Liu and T.-J. Yuang, “Photonic band gaps in a two dimensional photonic crystal with open veins,” Solid State Commun. 140(3-4), 144–148 (2006).
    [CrossRef]
  2. R.-L. Chern, C.-C. Chang, and R. R. Hwang, “Two classes of photonic crystals with simulationeous band gaps,” Jpn. J. Appl. Phys. 43(No. 6A), 3484–3490 (2004).
    [CrossRef]
  3. M. Woldeyohannes and S. John, “Coherent control of spontaneous emission near a photonic band edge: A qubit for quantum computation,” Phys. Rev. A 60(6), 5046–5068 (1999).
    [CrossRef]
  4. N. Susa, “Large absolute and polarization-independent photonic band gaps for various lattice structures and rod shapes,” J. Appl. Phys. 91(6), 3501–3503 (2002).
    [CrossRef]
  5. Y. Pan and F. Zhuang, “Absolute photonic band gaps in a two dimensional photonic crystal with hollow anisotropic rods,” Solid State Commun. 129(8), 501–506 (2004).
    [CrossRef]
  6. Y.-F. Chau, T.-J. Yang, and W.-D. Lee, “Coupling technique for efficient interfacing between silica waveguides and planar photonic crystal circuits,” Appl. Opt. 43(36), 6656–6663 (2004).
    [CrossRef]
  7. J. D. Joannopoulos, R. D. Mead, and J. N. Winn, Photonic Crystals: Molding the Flow of Light, Princeton U. Press, Princeton, N J, 1995.
  8. V. K. Hsiao and C.-Y. Ko, “Light-controllable photoresponsive liquid-crystal photonic crystal fiber,” Opt. Express 16(17), 12670–12676 (2008).
    [PubMed]
  9. Z. Lu, B. Miao, T. R. Hodson, C. Lin, J. A. Murakowski, and D. W. Prather, “Negative refraction imaging in a hybrid photonic crystal device at near-infrared frequencies,” Opt. Express 15(3), 1286–1291 (2007).
    [CrossRef] [PubMed]
  10. S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415(6872), 621–623 (2002).
    [CrossRef] [PubMed]
  11. A. Faraon, I. Fushman, D. Englund, N. Stoltz, P. Petroff, and J. Vucković, “Dipole induced transparency in waveguide coupled photonic crystal cavities,” Opt. Express 16(16), 12154–12162 (2008).
    [CrossRef] [PubMed]
  12. O. Painter, J. Vučkovič, and A. Scherer, “Defect modes of a two-dimensional photonic crystal in an optically thin dielectric slab,” J. Opt. Soc. Am. B 16(2), 275–285 (1999).
    [CrossRef]
  13. R. Proietti Zaccaria, P. Verma, S. Kawaguchi, S. Shoji, and S. Kawata, “Manipulating full photonic band gaps in two dimensional birefringent photonic crystals,” Opt. Express 16(19), 14812–14820 (2008).
    [CrossRef] [PubMed]
  14. F. Wen, S. David, X. Checoury, M. El Kurdi, and P. Boucaud, “Two-dimensional photonic crystals with large complete photonic band gaps in both TE and TM polarizations,” Opt. Express 16(16), 12278–12289 (2008).
    [CrossRef] [PubMed]
  15. M. Qiu and S. He, “Optimal design of a two-dimensional photonic crystal of square lattice with a large complete two-dimensional bandgap,” J. Opt. Soc. Am. B 17(6), 1027–1030 (2000).
    [CrossRef]
  16. F. Quiñónez, J. W. Menezes, L. Cescato, V. F. Rodriguez-Esquerre, H. Hernandez-Figueroa, and R. D. Mansano, “Band gap of hexagonal 2D photonic crystals with elliptical holes recorded by interference lithography,” Opt. Express 14(11), 4873–4879 (2006).
    [CrossRef] [PubMed]
  17. T. Y. M. Chan, O. Toader, and S. John, “Photonic band-gap formation by optical-phase-mask lithography,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(4 Pt 2), 046610 (2006).
    [CrossRef] [PubMed]

2008 (4)

2007 (1)

2006 (3)

W.-L. Liu and T.-J. Yuang, “Photonic band gaps in a two dimensional photonic crystal with open veins,” Solid State Commun. 140(3-4), 144–148 (2006).
[CrossRef]

F. Quiñónez, J. W. Menezes, L. Cescato, V. F. Rodriguez-Esquerre, H. Hernandez-Figueroa, and R. D. Mansano, “Band gap of hexagonal 2D photonic crystals with elliptical holes recorded by interference lithography,” Opt. Express 14(11), 4873–4879 (2006).
[CrossRef] [PubMed]

T. Y. M. Chan, O. Toader, and S. John, “Photonic band-gap formation by optical-phase-mask lithography,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(4 Pt 2), 046610 (2006).
[CrossRef] [PubMed]

2004 (3)

R.-L. Chern, C.-C. Chang, and R. R. Hwang, “Two classes of photonic crystals with simulationeous band gaps,” Jpn. J. Appl. Phys. 43(No. 6A), 3484–3490 (2004).
[CrossRef]

Y. Pan and F. Zhuang, “Absolute photonic band gaps in a two dimensional photonic crystal with hollow anisotropic rods,” Solid State Commun. 129(8), 501–506 (2004).
[CrossRef]

Y.-F. Chau, T.-J. Yang, and W.-D. Lee, “Coupling technique for efficient interfacing between silica waveguides and planar photonic crystal circuits,” Appl. Opt. 43(36), 6656–6663 (2004).
[CrossRef]

2002 (2)

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415(6872), 621–623 (2002).
[CrossRef] [PubMed]

N. Susa, “Large absolute and polarization-independent photonic band gaps for various lattice structures and rod shapes,” J. Appl. Phys. 91(6), 3501–3503 (2002).
[CrossRef]

2000 (1)

1999 (2)

O. Painter, J. Vučkovič, and A. Scherer, “Defect modes of a two-dimensional photonic crystal in an optically thin dielectric slab,” J. Opt. Soc. Am. B 16(2), 275–285 (1999).
[CrossRef]

M. Woldeyohannes and S. John, “Coherent control of spontaneous emission near a photonic band edge: A qubit for quantum computation,” Phys. Rev. A 60(6), 5046–5068 (1999).
[CrossRef]

Boucaud, P.

Cescato, L.

Chan, T. Y. M.

T. Y. M. Chan, O. Toader, and S. John, “Photonic band-gap formation by optical-phase-mask lithography,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(4 Pt 2), 046610 (2006).
[CrossRef] [PubMed]

Chang, C.-C.

R.-L. Chern, C.-C. Chang, and R. R. Hwang, “Two classes of photonic crystals with simulationeous band gaps,” Jpn. J. Appl. Phys. 43(No. 6A), 3484–3490 (2004).
[CrossRef]

Chau, Y.-F.

Checoury, X.

Chern, R.-L.

R.-L. Chern, C.-C. Chang, and R. R. Hwang, “Two classes of photonic crystals with simulationeous band gaps,” Jpn. J. Appl. Phys. 43(No. 6A), 3484–3490 (2004).
[CrossRef]

David, S.

El Kurdi, M.

Englund, D.

Faraon, A.

Fushman, I.

He, S.

Hernandez-Figueroa, H.

Hodson, T. R.

Hsiao, V. K.

Hwang, R. R.

R.-L. Chern, C.-C. Chang, and R. R. Hwang, “Two classes of photonic crystals with simulationeous band gaps,” Jpn. J. Appl. Phys. 43(No. 6A), 3484–3490 (2004).
[CrossRef]

John, S.

T. Y. M. Chan, O. Toader, and S. John, “Photonic band-gap formation by optical-phase-mask lithography,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(4 Pt 2), 046610 (2006).
[CrossRef] [PubMed]

M. Woldeyohannes and S. John, “Coherent control of spontaneous emission near a photonic band edge: A qubit for quantum computation,” Phys. Rev. A 60(6), 5046–5068 (1999).
[CrossRef]

Kawaguchi, S.

Kawata, S.

Kippenberg, T. J.

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415(6872), 621–623 (2002).
[CrossRef] [PubMed]

Ko, C.-Y.

Lee, W.-D.

Lin, C.

Liu, W.-L.

W.-L. Liu and T.-J. Yuang, “Photonic band gaps in a two dimensional photonic crystal with open veins,” Solid State Commun. 140(3-4), 144–148 (2006).
[CrossRef]

Lu, Z.

Mansano, R. D.

Menezes, J. W.

Miao, B.

Murakowski, J. A.

Painter, O.

Pan, Y.

Y. Pan and F. Zhuang, “Absolute photonic band gaps in a two dimensional photonic crystal with hollow anisotropic rods,” Solid State Commun. 129(8), 501–506 (2004).
[CrossRef]

Petroff, P.

Prather, D. W.

Proietti Zaccaria, R.

Qiu, M.

Quiñónez, F.

Rodriguez-Esquerre, V. F.

Scherer, A.

Shoji, S.

Spillane, S. M.

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415(6872), 621–623 (2002).
[CrossRef] [PubMed]

Stoltz, N.

Susa, N.

N. Susa, “Large absolute and polarization-independent photonic band gaps for various lattice structures and rod shapes,” J. Appl. Phys. 91(6), 3501–3503 (2002).
[CrossRef]

Toader, O.

T. Y. M. Chan, O. Toader, and S. John, “Photonic band-gap formation by optical-phase-mask lithography,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(4 Pt 2), 046610 (2006).
[CrossRef] [PubMed]

Vahala, K. J.

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415(6872), 621–623 (2002).
[CrossRef] [PubMed]

Verma, P.

Vuckovic, J.

Wen, F.

Woldeyohannes, M.

M. Woldeyohannes and S. John, “Coherent control of spontaneous emission near a photonic band edge: A qubit for quantum computation,” Phys. Rev. A 60(6), 5046–5068 (1999).
[CrossRef]

Yang, T.-J.

Yuang, T.-J.

W.-L. Liu and T.-J. Yuang, “Photonic band gaps in a two dimensional photonic crystal with open veins,” Solid State Commun. 140(3-4), 144–148 (2006).
[CrossRef]

Zhuang, F.

Y. Pan and F. Zhuang, “Absolute photonic band gaps in a two dimensional photonic crystal with hollow anisotropic rods,” Solid State Commun. 129(8), 501–506 (2004).
[CrossRef]

Appl. Opt. (1)

J. Appl. Phys. (1)

N. Susa, “Large absolute and polarization-independent photonic band gaps for various lattice structures and rod shapes,” J. Appl. Phys. 91(6), 3501–3503 (2002).
[CrossRef]

J. Opt. Soc. Am. B (2)

Jpn. J. Appl. Phys. (1)

R.-L. Chern, C.-C. Chang, and R. R. Hwang, “Two classes of photonic crystals with simulationeous band gaps,” Jpn. J. Appl. Phys. 43(No. 6A), 3484–3490 (2004).
[CrossRef]

Nature (1)

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415(6872), 621–623 (2002).
[CrossRef] [PubMed]

Opt. Express (6)

Phys. Rev. A (1)

M. Woldeyohannes and S. John, “Coherent control of spontaneous emission near a photonic band edge: A qubit for quantum computation,” Phys. Rev. A 60(6), 5046–5068 (1999).
[CrossRef]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

T. Y. M. Chan, O. Toader, and S. John, “Photonic band-gap formation by optical-phase-mask lithography,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(4 Pt 2), 046610 (2006).
[CrossRef] [PubMed]

Solid State Commun. (2)

W.-L. Liu and T.-J. Yuang, “Photonic band gaps in a two dimensional photonic crystal with open veins,” Solid State Commun. 140(3-4), 144–148 (2006).
[CrossRef]

Y. Pan and F. Zhuang, “Absolute photonic band gaps in a two dimensional photonic crystal with hollow anisotropic rods,” Solid State Commun. 129(8), 501–506 (2004).
[CrossRef]

Other (1)

J. D. Joannopoulos, R. D. Mead, and J. N. Winn, Photonic Crystals: Molding the Flow of Light, Princeton U. Press, Princeton, N J, 1995.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Evolution diagrams of the structure of 2-D PC for enlarging CPBG.

Fig. 2
Fig. 2

(a) and (c): Gap maps for the structures of Figs. 1(a) and (b) as a function of R/a. (b) and (d): Gap maps for the structures of Figs. 1 (b) and (d) as a function of d/a.

Fig. 4
Fig. 4

Gap maps for the structures of Figs. 1(g), (h) and (i) as a function of r’/a.

Fig. 3
Fig. 3

Gap maps obtained from Figs. 1(d), (e) and (f) as a function of r/a.

Fig. 5
Fig. 5

Gap maps for the structures of Figs. 1(g), (h) and (i) as a function of θ.

Metrics