Abstract

We present a novel route to directly integrate an array of microlenses at the extremity of an optical fiber bundle. The method is based on photopolymerization at the end of the fiber. The method is based on the control of exposure dose and volume of the deposited droplet of photopolymerizable formulation. Optical properties of the integrated microlenses are discussed on the basis of FDTD calculations.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Lippmann, “Epreuves reversibles donnant la sensation du relief,” J. Phys. Theor. Appl. 7(1), 821–825 (1908).
    [CrossRef]
  2. J. W. Goodman, A. R. Dias, and L. M. Woody, “Fully parallel, high-speed incoherent optical method for performing discrete Fourier transforms,” Opt. Lett. 2(1), 1–3 (1978).
    [CrossRef] [PubMed]
  3. J. D. Rees, “Non-Gaussian imaging properties of GRIN fiber lens arrays,” Appl. Opt. 21(6), 1009–1012 (1982).
    [CrossRef] [PubMed]
  4. Y. Ishihara, and K. Tanigaki, “A high sensitivity IL-CCD image sensor with monolithic resin lens array”, In Proceedings of IEEE IEDM. Tech. Dig. 497–500 (1983).
  5. D. Daly, R. F. Stevens, M. C. Hutley, and N. Davues, “The manufacture of microlenses by melting photoresist,” Meas. Sci. Technol. 1(8), 759–766 (1990).
    [CrossRef]
  6. M. He, X. C. Yuan, N. Q. Ngo, J. Bu, and S. H. Tao, “Low-cost and efficient coupling technique using reflowed sol-gel microlens,” Opt. Express 11(14), 1621–1627 (2003).
    [CrossRef] [PubMed]
  7. H. Y. Lin, Y. H. Ho, J. H. Lee, K. Y. Chen, J. H. Fang, S. C. Hsu, M. K. Wei, H. Y. Lin, J. H. Tsai, and T. C. Wu, “Patterned microlens array for efficiency improvement of small-pixelated organic light-emitting devices,” Opt. Express 16(15), 11044–11051 (2008).
    [CrossRef] [PubMed]
  8. J. Arai, H. Kawai, and F. Okano, “Microlens arrays for integral imaging system,” Appl. Opt. 45(36), 9066–9078 (2006).
    [CrossRef] [PubMed]
  9. A. D. Ducharme, “Microlens diffusers for efficient laser speckle generation,” Opt. Express 15(22), 14573–14579 (2007).
    [CrossRef] [PubMed]
  10. J. W. Pan, C. M. Wang, H. C. Lan, W. S. Sun, and J. Y. Chang, “Homogenized LED-illumination using microlens arrays for a pocket-sized projector,” Opt. Express 15(17), 10483–10491 (2007).
    [CrossRef] [PubMed]
  11. D. Radtke, J. Duparré, U. D. Zeitner, and A. Tünnermann, “Laser lithographic fabrication and characterization of a spherical artificial compound eye,” Opt. Express 15(6), 3067–3077 (2007).
    [CrossRef] [PubMed]
  12. M. J. Aernecke and D. R. Walt, “Optical-fiber arrays for vapor sensing,” Sens. Actuators B 142(2), 464–469 (2009).
    [CrossRef]
  13. V. Guieu, F. Lagugné-Labarthet, L. Servant, D. Talaga, and N. Sojic, “Ultrasharp optical-fiber nanoprobe array for Raman local-enhancement imaging,” Small 4(1), 96–99 (2008).
    [CrossRef]
  14. A. Chovin, P. Garrigue, P. Vinatier, and N. Sojic, “Development of an ordered array of optoelectrochemical individually readable sensors with submicrometer dimensions: application to remote electrochemiluminescence imaging,” Anal. Chem. 76(2), 357–364 (2004).
    [CrossRef] [PubMed]
  15. C. Amatore, A. Chovin, P. Garrigue, L. Servant, N. Sojic, S. Szunerits, and L. Thouin, “Remote fluorescence imaging of dynamic concentration profiles with micrometer resolution using a coherent optical fiber bundle,” Anal. Chem. 76(24), 7202–7210 (2004).
    [CrossRef] [PubMed]
  16. E. P. Chan and A. J. Crosby, “Fabricating microlens arrays by surface wrinkling,” Adv. Mater. 18(24), 3238–3242 (2006).
    [CrossRef]
  17. O. J. Cayre and V. N. Paunov, “Fabrication of microlens arrays by gel trapping of self-assembled particle monolayers at the decane–water interface,” J. Mater. Chem. 14(22), 3300–3302 (2004).
    [CrossRef]
  18. W. R. Cox, T. Chen, and D. J. Hayes, “Micro-optics fabrication by ink-jet printing,” Opt. Photonics News 32–35 (2001).
    [CrossRef]
  19. M. Yaegashi, M. Kinoshita, A. Shishido, and T. Ikeda, “Direct fabrication of microlens arrays with polarization selectivity,” Adv. Mater. 19(6), 801–804 (2007).
    [CrossRef]
  20. H. Ottevaere, B. Volckaerts, J. Lamprecht, J. Schwider, A. Hermanne, I. Veretennicoff, and H. Thienpont, “Two-dimensional plastic microlens arrays by deep lithography with protons: fabrication and characterization,” J. Opt. A, Pure Appl. Opt. 4(4), 354–28 (2002).
    [CrossRef]
  21. J. R. Epstein and D. R. Walt, “Fluorescence-based fibre optic arrays: a universal platform for sensing,” Chem. Soc. Rev. 32(4), 203–214 (2003).
    [CrossRef] [PubMed]
  22. E. W. Adams, J. Ueberfeld, D. M. Ratner, B. R. O’Keefe, D. R. Walt, and P. H. Seeberger, “Encoded fiber optic microsphere arrays for probing protein-carbohydrate interactions,” Angew. Chem. 115(43), 5475–5478 (2003).
    [CrossRef]
  23. D. R. Walt, T. M. Blicharz, R. B. Hayman, D. M. Rissin, M. Bowden, W. L. Siqueira, E. J. Helmerhorst, N. Grand-Pierre, F. G. Oppenheim, J. S. Bhatia, F. F. Little, and J. S. Brody, “Microsensor arrays for saliva diagnostics,” Ann. N. Y. Acad. Sci. 1098(1), 389–400 (2007).
    [CrossRef] [PubMed]
  24. C. N. LaFratta and D. R. Walt, “Very high density sensing arrays,” Chem. Rev. 108(2), 614–637 (2008).
    [CrossRef] [PubMed]
  25. D. R. Walt, “Fibre optic microarrays,” Chem. Soc. Rev. 39(1), 38–50 (2009).
    [CrossRef] [PubMed]
  26. R. Bachelot, C. Ecoffet, D. Deloeil, P. Royer, and D. J. Lougnot, “Integration of micrometer-sized polymer elements at the end of optical fibers by free-radical photopolymerization,” Appl. Opt. 40(32), 5860–5871 (2001).
    [CrossRef]
  27. X. H. Zeng, J. Plain, S. Jradi, P. Renaud-Goud, R. Deturche, P. Royer, and R. Bachelot, “High speed sub-micrometric microscopy using optical polymer microlens,” Chin. Opt. Lett. 7, 901–903 (2009).
    [CrossRef]
  28. D. Chandra, S. Yang, and P. C. Lin, “Strain responsive concave and convex microlens arrays,” Appl. Phys. Lett. 91(25), 251912-1-251912-3 (2007).
    [CrossRef]

2009 (3)

M. J. Aernecke and D. R. Walt, “Optical-fiber arrays for vapor sensing,” Sens. Actuators B 142(2), 464–469 (2009).
[CrossRef]

D. R. Walt, “Fibre optic microarrays,” Chem. Soc. Rev. 39(1), 38–50 (2009).
[CrossRef] [PubMed]

X. H. Zeng, J. Plain, S. Jradi, P. Renaud-Goud, R. Deturche, P. Royer, and R. Bachelot, “High speed sub-micrometric microscopy using optical polymer microlens,” Chin. Opt. Lett. 7, 901–903 (2009).
[CrossRef]

2008 (3)

H. Y. Lin, Y. H. Ho, J. H. Lee, K. Y. Chen, J. H. Fang, S. C. Hsu, M. K. Wei, H. Y. Lin, J. H. Tsai, and T. C. Wu, “Patterned microlens array for efficiency improvement of small-pixelated organic light-emitting devices,” Opt. Express 16(15), 11044–11051 (2008).
[CrossRef] [PubMed]

C. N. LaFratta and D. R. Walt, “Very high density sensing arrays,” Chem. Rev. 108(2), 614–637 (2008).
[CrossRef] [PubMed]

V. Guieu, F. Lagugné-Labarthet, L. Servant, D. Talaga, and N. Sojic, “Ultrasharp optical-fiber nanoprobe array for Raman local-enhancement imaging,” Small 4(1), 96–99 (2008).
[CrossRef]

2007 (6)

M. Yaegashi, M. Kinoshita, A. Shishido, and T. Ikeda, “Direct fabrication of microlens arrays with polarization selectivity,” Adv. Mater. 19(6), 801–804 (2007).
[CrossRef]

D. R. Walt, T. M. Blicharz, R. B. Hayman, D. M. Rissin, M. Bowden, W. L. Siqueira, E. J. Helmerhorst, N. Grand-Pierre, F. G. Oppenheim, J. S. Bhatia, F. F. Little, and J. S. Brody, “Microsensor arrays for saliva diagnostics,” Ann. N. Y. Acad. Sci. 1098(1), 389–400 (2007).
[CrossRef] [PubMed]

D. Chandra, S. Yang, and P. C. Lin, “Strain responsive concave and convex microlens arrays,” Appl. Phys. Lett. 91(25), 251912-1-251912-3 (2007).
[CrossRef]

D. Radtke, J. Duparré, U. D. Zeitner, and A. Tünnermann, “Laser lithographic fabrication and characterization of a spherical artificial compound eye,” Opt. Express 15(6), 3067–3077 (2007).
[CrossRef] [PubMed]

J. W. Pan, C. M. Wang, H. C. Lan, W. S. Sun, and J. Y. Chang, “Homogenized LED-illumination using microlens arrays for a pocket-sized projector,” Opt. Express 15(17), 10483–10491 (2007).
[CrossRef] [PubMed]

A. D. Ducharme, “Microlens diffusers for efficient laser speckle generation,” Opt. Express 15(22), 14573–14579 (2007).
[CrossRef] [PubMed]

2006 (2)

J. Arai, H. Kawai, and F. Okano, “Microlens arrays for integral imaging system,” Appl. Opt. 45(36), 9066–9078 (2006).
[CrossRef] [PubMed]

E. P. Chan and A. J. Crosby, “Fabricating microlens arrays by surface wrinkling,” Adv. Mater. 18(24), 3238–3242 (2006).
[CrossRef]

2004 (3)

O. J. Cayre and V. N. Paunov, “Fabrication of microlens arrays by gel trapping of self-assembled particle monolayers at the decane–water interface,” J. Mater. Chem. 14(22), 3300–3302 (2004).
[CrossRef]

A. Chovin, P. Garrigue, P. Vinatier, and N. Sojic, “Development of an ordered array of optoelectrochemical individually readable sensors with submicrometer dimensions: application to remote electrochemiluminescence imaging,” Anal. Chem. 76(2), 357–364 (2004).
[CrossRef] [PubMed]

C. Amatore, A. Chovin, P. Garrigue, L. Servant, N. Sojic, S. Szunerits, and L. Thouin, “Remote fluorescence imaging of dynamic concentration profiles with micrometer resolution using a coherent optical fiber bundle,” Anal. Chem. 76(24), 7202–7210 (2004).
[CrossRef] [PubMed]

2003 (3)

J. R. Epstein and D. R. Walt, “Fluorescence-based fibre optic arrays: a universal platform for sensing,” Chem. Soc. Rev. 32(4), 203–214 (2003).
[CrossRef] [PubMed]

E. W. Adams, J. Ueberfeld, D. M. Ratner, B. R. O’Keefe, D. R. Walt, and P. H. Seeberger, “Encoded fiber optic microsphere arrays for probing protein-carbohydrate interactions,” Angew. Chem. 115(43), 5475–5478 (2003).
[CrossRef]

M. He, X. C. Yuan, N. Q. Ngo, J. Bu, and S. H. Tao, “Low-cost and efficient coupling technique using reflowed sol-gel microlens,” Opt. Express 11(14), 1621–1627 (2003).
[CrossRef] [PubMed]

2002 (1)

H. Ottevaere, B. Volckaerts, J. Lamprecht, J. Schwider, A. Hermanne, I. Veretennicoff, and H. Thienpont, “Two-dimensional plastic microlens arrays by deep lithography with protons: fabrication and characterization,” J. Opt. A, Pure Appl. Opt. 4(4), 354–28 (2002).
[CrossRef]

2001 (2)

1990 (1)

D. Daly, R. F. Stevens, M. C. Hutley, and N. Davues, “The manufacture of microlenses by melting photoresist,” Meas. Sci. Technol. 1(8), 759–766 (1990).
[CrossRef]

1982 (1)

1978 (1)

1908 (1)

G. Lippmann, “Epreuves reversibles donnant la sensation du relief,” J. Phys. Theor. Appl. 7(1), 821–825 (1908).
[CrossRef]

Adams, E. W.

E. W. Adams, J. Ueberfeld, D. M. Ratner, B. R. O’Keefe, D. R. Walt, and P. H. Seeberger, “Encoded fiber optic microsphere arrays for probing protein-carbohydrate interactions,” Angew. Chem. 115(43), 5475–5478 (2003).
[CrossRef]

Aernecke, M. J.

M. J. Aernecke and D. R. Walt, “Optical-fiber arrays for vapor sensing,” Sens. Actuators B 142(2), 464–469 (2009).
[CrossRef]

Amatore, C.

C. Amatore, A. Chovin, P. Garrigue, L. Servant, N. Sojic, S. Szunerits, and L. Thouin, “Remote fluorescence imaging of dynamic concentration profiles with micrometer resolution using a coherent optical fiber bundle,” Anal. Chem. 76(24), 7202–7210 (2004).
[CrossRef] [PubMed]

Arai, J.

Bachelot, R.

Bhatia, J. S.

D. R. Walt, T. M. Blicharz, R. B. Hayman, D. M. Rissin, M. Bowden, W. L. Siqueira, E. J. Helmerhorst, N. Grand-Pierre, F. G. Oppenheim, J. S. Bhatia, F. F. Little, and J. S. Brody, “Microsensor arrays for saliva diagnostics,” Ann. N. Y. Acad. Sci. 1098(1), 389–400 (2007).
[CrossRef] [PubMed]

Blicharz, T. M.

D. R. Walt, T. M. Blicharz, R. B. Hayman, D. M. Rissin, M. Bowden, W. L. Siqueira, E. J. Helmerhorst, N. Grand-Pierre, F. G. Oppenheim, J. S. Bhatia, F. F. Little, and J. S. Brody, “Microsensor arrays for saliva diagnostics,” Ann. N. Y. Acad. Sci. 1098(1), 389–400 (2007).
[CrossRef] [PubMed]

Bowden, M.

D. R. Walt, T. M. Blicharz, R. B. Hayman, D. M. Rissin, M. Bowden, W. L. Siqueira, E. J. Helmerhorst, N. Grand-Pierre, F. G. Oppenheim, J. S. Bhatia, F. F. Little, and J. S. Brody, “Microsensor arrays for saliva diagnostics,” Ann. N. Y. Acad. Sci. 1098(1), 389–400 (2007).
[CrossRef] [PubMed]

Brody, J. S.

D. R. Walt, T. M. Blicharz, R. B. Hayman, D. M. Rissin, M. Bowden, W. L. Siqueira, E. J. Helmerhorst, N. Grand-Pierre, F. G. Oppenheim, J. S. Bhatia, F. F. Little, and J. S. Brody, “Microsensor arrays for saliva diagnostics,” Ann. N. Y. Acad. Sci. 1098(1), 389–400 (2007).
[CrossRef] [PubMed]

Bu, J.

Cayre, O. J.

O. J. Cayre and V. N. Paunov, “Fabrication of microlens arrays by gel trapping of self-assembled particle monolayers at the decane–water interface,” J. Mater. Chem. 14(22), 3300–3302 (2004).
[CrossRef]

Chan, E. P.

E. P. Chan and A. J. Crosby, “Fabricating microlens arrays by surface wrinkling,” Adv. Mater. 18(24), 3238–3242 (2006).
[CrossRef]

Chandra, D.

D. Chandra, S. Yang, and P. C. Lin, “Strain responsive concave and convex microlens arrays,” Appl. Phys. Lett. 91(25), 251912-1-251912-3 (2007).
[CrossRef]

Chang, J. Y.

Chen, K. Y.

Chen, T.

W. R. Cox, T. Chen, and D. J. Hayes, “Micro-optics fabrication by ink-jet printing,” Opt. Photonics News 32–35 (2001).
[CrossRef]

Chovin, A.

C. Amatore, A. Chovin, P. Garrigue, L. Servant, N. Sojic, S. Szunerits, and L. Thouin, “Remote fluorescence imaging of dynamic concentration profiles with micrometer resolution using a coherent optical fiber bundle,” Anal. Chem. 76(24), 7202–7210 (2004).
[CrossRef] [PubMed]

A. Chovin, P. Garrigue, P. Vinatier, and N. Sojic, “Development of an ordered array of optoelectrochemical individually readable sensors with submicrometer dimensions: application to remote electrochemiluminescence imaging,” Anal. Chem. 76(2), 357–364 (2004).
[CrossRef] [PubMed]

Cox, W. R.

W. R. Cox, T. Chen, and D. J. Hayes, “Micro-optics fabrication by ink-jet printing,” Opt. Photonics News 32–35 (2001).
[CrossRef]

Crosby, A. J.

E. P. Chan and A. J. Crosby, “Fabricating microlens arrays by surface wrinkling,” Adv. Mater. 18(24), 3238–3242 (2006).
[CrossRef]

Daly, D.

D. Daly, R. F. Stevens, M. C. Hutley, and N. Davues, “The manufacture of microlenses by melting photoresist,” Meas. Sci. Technol. 1(8), 759–766 (1990).
[CrossRef]

Davues, N.

D. Daly, R. F. Stevens, M. C. Hutley, and N. Davues, “The manufacture of microlenses by melting photoresist,” Meas. Sci. Technol. 1(8), 759–766 (1990).
[CrossRef]

Deloeil, D.

Deturche, R.

Dias, A. R.

Ducharme, A. D.

Duparré, J.

Ecoffet, C.

Epstein, J. R.

J. R. Epstein and D. R. Walt, “Fluorescence-based fibre optic arrays: a universal platform for sensing,” Chem. Soc. Rev. 32(4), 203–214 (2003).
[CrossRef] [PubMed]

Fang, J. H.

Garrigue, P.

A. Chovin, P. Garrigue, P. Vinatier, and N. Sojic, “Development of an ordered array of optoelectrochemical individually readable sensors with submicrometer dimensions: application to remote electrochemiluminescence imaging,” Anal. Chem. 76(2), 357–364 (2004).
[CrossRef] [PubMed]

C. Amatore, A. Chovin, P. Garrigue, L. Servant, N. Sojic, S. Szunerits, and L. Thouin, “Remote fluorescence imaging of dynamic concentration profiles with micrometer resolution using a coherent optical fiber bundle,” Anal. Chem. 76(24), 7202–7210 (2004).
[CrossRef] [PubMed]

Goodman, J. W.

Grand-Pierre, N.

D. R. Walt, T. M. Blicharz, R. B. Hayman, D. M. Rissin, M. Bowden, W. L. Siqueira, E. J. Helmerhorst, N. Grand-Pierre, F. G. Oppenheim, J. S. Bhatia, F. F. Little, and J. S. Brody, “Microsensor arrays for saliva diagnostics,” Ann. N. Y. Acad. Sci. 1098(1), 389–400 (2007).
[CrossRef] [PubMed]

Guieu, V.

V. Guieu, F. Lagugné-Labarthet, L. Servant, D. Talaga, and N. Sojic, “Ultrasharp optical-fiber nanoprobe array for Raman local-enhancement imaging,” Small 4(1), 96–99 (2008).
[CrossRef]

Hayes, D. J.

W. R. Cox, T. Chen, and D. J. Hayes, “Micro-optics fabrication by ink-jet printing,” Opt. Photonics News 32–35 (2001).
[CrossRef]

Hayman, R. B.

D. R. Walt, T. M. Blicharz, R. B. Hayman, D. M. Rissin, M. Bowden, W. L. Siqueira, E. J. Helmerhorst, N. Grand-Pierre, F. G. Oppenheim, J. S. Bhatia, F. F. Little, and J. S. Brody, “Microsensor arrays for saliva diagnostics,” Ann. N. Y. Acad. Sci. 1098(1), 389–400 (2007).
[CrossRef] [PubMed]

He, M.

Helmerhorst, E. J.

D. R. Walt, T. M. Blicharz, R. B. Hayman, D. M. Rissin, M. Bowden, W. L. Siqueira, E. J. Helmerhorst, N. Grand-Pierre, F. G. Oppenheim, J. S. Bhatia, F. F. Little, and J. S. Brody, “Microsensor arrays for saliva diagnostics,” Ann. N. Y. Acad. Sci. 1098(1), 389–400 (2007).
[CrossRef] [PubMed]

Hermanne, A.

H. Ottevaere, B. Volckaerts, J. Lamprecht, J. Schwider, A. Hermanne, I. Veretennicoff, and H. Thienpont, “Two-dimensional plastic microlens arrays by deep lithography with protons: fabrication and characterization,” J. Opt. A, Pure Appl. Opt. 4(4), 354–28 (2002).
[CrossRef]

Ho, Y. H.

Hsu, S. C.

Hutley, M. C.

D. Daly, R. F. Stevens, M. C. Hutley, and N. Davues, “The manufacture of microlenses by melting photoresist,” Meas. Sci. Technol. 1(8), 759–766 (1990).
[CrossRef]

Ikeda, T.

M. Yaegashi, M. Kinoshita, A. Shishido, and T. Ikeda, “Direct fabrication of microlens arrays with polarization selectivity,” Adv. Mater. 19(6), 801–804 (2007).
[CrossRef]

Jradi, S.

Kawai, H.

Kinoshita, M.

M. Yaegashi, M. Kinoshita, A. Shishido, and T. Ikeda, “Direct fabrication of microlens arrays with polarization selectivity,” Adv. Mater. 19(6), 801–804 (2007).
[CrossRef]

LaFratta, C. N.

C. N. LaFratta and D. R. Walt, “Very high density sensing arrays,” Chem. Rev. 108(2), 614–637 (2008).
[CrossRef] [PubMed]

Lagugné-Labarthet, F.

V. Guieu, F. Lagugné-Labarthet, L. Servant, D. Talaga, and N. Sojic, “Ultrasharp optical-fiber nanoprobe array for Raman local-enhancement imaging,” Small 4(1), 96–99 (2008).
[CrossRef]

Lamprecht, J.

H. Ottevaere, B. Volckaerts, J. Lamprecht, J. Schwider, A. Hermanne, I. Veretennicoff, and H. Thienpont, “Two-dimensional plastic microlens arrays by deep lithography with protons: fabrication and characterization,” J. Opt. A, Pure Appl. Opt. 4(4), 354–28 (2002).
[CrossRef]

Lan, H. C.

Lee, J. H.

Lin, H. Y.

Lin, P. C.

D. Chandra, S. Yang, and P. C. Lin, “Strain responsive concave and convex microlens arrays,” Appl. Phys. Lett. 91(25), 251912-1-251912-3 (2007).
[CrossRef]

Lippmann, G.

G. Lippmann, “Epreuves reversibles donnant la sensation du relief,” J. Phys. Theor. Appl. 7(1), 821–825 (1908).
[CrossRef]

Little, F. F.

D. R. Walt, T. M. Blicharz, R. B. Hayman, D. M. Rissin, M. Bowden, W. L. Siqueira, E. J. Helmerhorst, N. Grand-Pierre, F. G. Oppenheim, J. S. Bhatia, F. F. Little, and J. S. Brody, “Microsensor arrays for saliva diagnostics,” Ann. N. Y. Acad. Sci. 1098(1), 389–400 (2007).
[CrossRef] [PubMed]

Lougnot, D. J.

Ngo, N. Q.

O’Keefe, B. R.

E. W. Adams, J. Ueberfeld, D. M. Ratner, B. R. O’Keefe, D. R. Walt, and P. H. Seeberger, “Encoded fiber optic microsphere arrays for probing protein-carbohydrate interactions,” Angew. Chem. 115(43), 5475–5478 (2003).
[CrossRef]

Okano, F.

Oppenheim, F. G.

D. R. Walt, T. M. Blicharz, R. B. Hayman, D. M. Rissin, M. Bowden, W. L. Siqueira, E. J. Helmerhorst, N. Grand-Pierre, F. G. Oppenheim, J. S. Bhatia, F. F. Little, and J. S. Brody, “Microsensor arrays for saliva diagnostics,” Ann. N. Y. Acad. Sci. 1098(1), 389–400 (2007).
[CrossRef] [PubMed]

Ottevaere, H.

H. Ottevaere, B. Volckaerts, J. Lamprecht, J. Schwider, A. Hermanne, I. Veretennicoff, and H. Thienpont, “Two-dimensional plastic microlens arrays by deep lithography with protons: fabrication and characterization,” J. Opt. A, Pure Appl. Opt. 4(4), 354–28 (2002).
[CrossRef]

Pan, J. W.

Paunov, V. N.

O. J. Cayre and V. N. Paunov, “Fabrication of microlens arrays by gel trapping of self-assembled particle monolayers at the decane–water interface,” J. Mater. Chem. 14(22), 3300–3302 (2004).
[CrossRef]

Plain, J.

Radtke, D.

Ratner, D. M.

E. W. Adams, J. Ueberfeld, D. M. Ratner, B. R. O’Keefe, D. R. Walt, and P. H. Seeberger, “Encoded fiber optic microsphere arrays for probing protein-carbohydrate interactions,” Angew. Chem. 115(43), 5475–5478 (2003).
[CrossRef]

Rees, J. D.

Renaud-Goud, P.

Rissin, D. M.

D. R. Walt, T. M. Blicharz, R. B. Hayman, D. M. Rissin, M. Bowden, W. L. Siqueira, E. J. Helmerhorst, N. Grand-Pierre, F. G. Oppenheim, J. S. Bhatia, F. F. Little, and J. S. Brody, “Microsensor arrays for saliva diagnostics,” Ann. N. Y. Acad. Sci. 1098(1), 389–400 (2007).
[CrossRef] [PubMed]

Royer, P.

Schwider, J.

H. Ottevaere, B. Volckaerts, J. Lamprecht, J. Schwider, A. Hermanne, I. Veretennicoff, and H. Thienpont, “Two-dimensional plastic microlens arrays by deep lithography with protons: fabrication and characterization,” J. Opt. A, Pure Appl. Opt. 4(4), 354–28 (2002).
[CrossRef]

Seeberger, P. H.

E. W. Adams, J. Ueberfeld, D. M. Ratner, B. R. O’Keefe, D. R. Walt, and P. H. Seeberger, “Encoded fiber optic microsphere arrays for probing protein-carbohydrate interactions,” Angew. Chem. 115(43), 5475–5478 (2003).
[CrossRef]

Servant, L.

V. Guieu, F. Lagugné-Labarthet, L. Servant, D. Talaga, and N. Sojic, “Ultrasharp optical-fiber nanoprobe array for Raman local-enhancement imaging,” Small 4(1), 96–99 (2008).
[CrossRef]

C. Amatore, A. Chovin, P. Garrigue, L. Servant, N. Sojic, S. Szunerits, and L. Thouin, “Remote fluorescence imaging of dynamic concentration profiles with micrometer resolution using a coherent optical fiber bundle,” Anal. Chem. 76(24), 7202–7210 (2004).
[CrossRef] [PubMed]

Shishido, A.

M. Yaegashi, M. Kinoshita, A. Shishido, and T. Ikeda, “Direct fabrication of microlens arrays with polarization selectivity,” Adv. Mater. 19(6), 801–804 (2007).
[CrossRef]

Siqueira, W. L.

D. R. Walt, T. M. Blicharz, R. B. Hayman, D. M. Rissin, M. Bowden, W. L. Siqueira, E. J. Helmerhorst, N. Grand-Pierre, F. G. Oppenheim, J. S. Bhatia, F. F. Little, and J. S. Brody, “Microsensor arrays for saliva diagnostics,” Ann. N. Y. Acad. Sci. 1098(1), 389–400 (2007).
[CrossRef] [PubMed]

Sojic, N.

V. Guieu, F. Lagugné-Labarthet, L. Servant, D. Talaga, and N. Sojic, “Ultrasharp optical-fiber nanoprobe array for Raman local-enhancement imaging,” Small 4(1), 96–99 (2008).
[CrossRef]

C. Amatore, A. Chovin, P. Garrigue, L. Servant, N. Sojic, S. Szunerits, and L. Thouin, “Remote fluorescence imaging of dynamic concentration profiles with micrometer resolution using a coherent optical fiber bundle,” Anal. Chem. 76(24), 7202–7210 (2004).
[CrossRef] [PubMed]

A. Chovin, P. Garrigue, P. Vinatier, and N. Sojic, “Development of an ordered array of optoelectrochemical individually readable sensors with submicrometer dimensions: application to remote electrochemiluminescence imaging,” Anal. Chem. 76(2), 357–364 (2004).
[CrossRef] [PubMed]

Stevens, R. F.

D. Daly, R. F. Stevens, M. C. Hutley, and N. Davues, “The manufacture of microlenses by melting photoresist,” Meas. Sci. Technol. 1(8), 759–766 (1990).
[CrossRef]

Sun, W. S.

Szunerits, S.

C. Amatore, A. Chovin, P. Garrigue, L. Servant, N. Sojic, S. Szunerits, and L. Thouin, “Remote fluorescence imaging of dynamic concentration profiles with micrometer resolution using a coherent optical fiber bundle,” Anal. Chem. 76(24), 7202–7210 (2004).
[CrossRef] [PubMed]

Talaga, D.

V. Guieu, F. Lagugné-Labarthet, L. Servant, D. Talaga, and N. Sojic, “Ultrasharp optical-fiber nanoprobe array for Raman local-enhancement imaging,” Small 4(1), 96–99 (2008).
[CrossRef]

Tao, S. H.

Thienpont, H.

H. Ottevaere, B. Volckaerts, J. Lamprecht, J. Schwider, A. Hermanne, I. Veretennicoff, and H. Thienpont, “Two-dimensional plastic microlens arrays by deep lithography with protons: fabrication and characterization,” J. Opt. A, Pure Appl. Opt. 4(4), 354–28 (2002).
[CrossRef]

Thouin, L.

C. Amatore, A. Chovin, P. Garrigue, L. Servant, N. Sojic, S. Szunerits, and L. Thouin, “Remote fluorescence imaging of dynamic concentration profiles with micrometer resolution using a coherent optical fiber bundle,” Anal. Chem. 76(24), 7202–7210 (2004).
[CrossRef] [PubMed]

Tsai, J. H.

Tünnermann, A.

Ueberfeld, J.

E. W. Adams, J. Ueberfeld, D. M. Ratner, B. R. O’Keefe, D. R. Walt, and P. H. Seeberger, “Encoded fiber optic microsphere arrays for probing protein-carbohydrate interactions,” Angew. Chem. 115(43), 5475–5478 (2003).
[CrossRef]

Veretennicoff, I.

H. Ottevaere, B. Volckaerts, J. Lamprecht, J. Schwider, A. Hermanne, I. Veretennicoff, and H. Thienpont, “Two-dimensional plastic microlens arrays by deep lithography with protons: fabrication and characterization,” J. Opt. A, Pure Appl. Opt. 4(4), 354–28 (2002).
[CrossRef]

Vinatier, P.

A. Chovin, P. Garrigue, P. Vinatier, and N. Sojic, “Development of an ordered array of optoelectrochemical individually readable sensors with submicrometer dimensions: application to remote electrochemiluminescence imaging,” Anal. Chem. 76(2), 357–364 (2004).
[CrossRef] [PubMed]

Volckaerts, B.

H. Ottevaere, B. Volckaerts, J. Lamprecht, J. Schwider, A. Hermanne, I. Veretennicoff, and H. Thienpont, “Two-dimensional plastic microlens arrays by deep lithography with protons: fabrication and characterization,” J. Opt. A, Pure Appl. Opt. 4(4), 354–28 (2002).
[CrossRef]

Walt, D. R.

D. R. Walt, “Fibre optic microarrays,” Chem. Soc. Rev. 39(1), 38–50 (2009).
[CrossRef] [PubMed]

M. J. Aernecke and D. R. Walt, “Optical-fiber arrays for vapor sensing,” Sens. Actuators B 142(2), 464–469 (2009).
[CrossRef]

C. N. LaFratta and D. R. Walt, “Very high density sensing arrays,” Chem. Rev. 108(2), 614–637 (2008).
[CrossRef] [PubMed]

D. R. Walt, T. M. Blicharz, R. B. Hayman, D. M. Rissin, M. Bowden, W. L. Siqueira, E. J. Helmerhorst, N. Grand-Pierre, F. G. Oppenheim, J. S. Bhatia, F. F. Little, and J. S. Brody, “Microsensor arrays for saliva diagnostics,” Ann. N. Y. Acad. Sci. 1098(1), 389–400 (2007).
[CrossRef] [PubMed]

J. R. Epstein and D. R. Walt, “Fluorescence-based fibre optic arrays: a universal platform for sensing,” Chem. Soc. Rev. 32(4), 203–214 (2003).
[CrossRef] [PubMed]

E. W. Adams, J. Ueberfeld, D. M. Ratner, B. R. O’Keefe, D. R. Walt, and P. H. Seeberger, “Encoded fiber optic microsphere arrays for probing protein-carbohydrate interactions,” Angew. Chem. 115(43), 5475–5478 (2003).
[CrossRef]

Wang, C. M.

Wei, M. K.

Woody, L. M.

Wu, T. C.

Yaegashi, M.

M. Yaegashi, M. Kinoshita, A. Shishido, and T. Ikeda, “Direct fabrication of microlens arrays with polarization selectivity,” Adv. Mater. 19(6), 801–804 (2007).
[CrossRef]

Yang, S.

D. Chandra, S. Yang, and P. C. Lin, “Strain responsive concave and convex microlens arrays,” Appl. Phys. Lett. 91(25), 251912-1-251912-3 (2007).
[CrossRef]

Yuan, X. C.

Zeitner, U. D.

Zeng, X. H.

Adv. Mater. (2)

E. P. Chan and A. J. Crosby, “Fabricating microlens arrays by surface wrinkling,” Adv. Mater. 18(24), 3238–3242 (2006).
[CrossRef]

M. Yaegashi, M. Kinoshita, A. Shishido, and T. Ikeda, “Direct fabrication of microlens arrays with polarization selectivity,” Adv. Mater. 19(6), 801–804 (2007).
[CrossRef]

Anal. Chem. (2)

A. Chovin, P. Garrigue, P. Vinatier, and N. Sojic, “Development of an ordered array of optoelectrochemical individually readable sensors with submicrometer dimensions: application to remote electrochemiluminescence imaging,” Anal. Chem. 76(2), 357–364 (2004).
[CrossRef] [PubMed]

C. Amatore, A. Chovin, P. Garrigue, L. Servant, N. Sojic, S. Szunerits, and L. Thouin, “Remote fluorescence imaging of dynamic concentration profiles with micrometer resolution using a coherent optical fiber bundle,” Anal. Chem. 76(24), 7202–7210 (2004).
[CrossRef] [PubMed]

Angew. Chem. (1)

E. W. Adams, J. Ueberfeld, D. M. Ratner, B. R. O’Keefe, D. R. Walt, and P. H. Seeberger, “Encoded fiber optic microsphere arrays for probing protein-carbohydrate interactions,” Angew. Chem. 115(43), 5475–5478 (2003).
[CrossRef]

Ann. N. Y. Acad. Sci. (1)

D. R. Walt, T. M. Blicharz, R. B. Hayman, D. M. Rissin, M. Bowden, W. L. Siqueira, E. J. Helmerhorst, N. Grand-Pierre, F. G. Oppenheim, J. S. Bhatia, F. F. Little, and J. S. Brody, “Microsensor arrays for saliva diagnostics,” Ann. N. Y. Acad. Sci. 1098(1), 389–400 (2007).
[CrossRef] [PubMed]

Appl. Opt. (3)

Appl. Phys. Lett. (1)

D. Chandra, S. Yang, and P. C. Lin, “Strain responsive concave and convex microlens arrays,” Appl. Phys. Lett. 91(25), 251912-1-251912-3 (2007).
[CrossRef]

Chem. Rev. (1)

C. N. LaFratta and D. R. Walt, “Very high density sensing arrays,” Chem. Rev. 108(2), 614–637 (2008).
[CrossRef] [PubMed]

Chem. Soc. Rev. (2)

D. R. Walt, “Fibre optic microarrays,” Chem. Soc. Rev. 39(1), 38–50 (2009).
[CrossRef] [PubMed]

J. R. Epstein and D. R. Walt, “Fluorescence-based fibre optic arrays: a universal platform for sensing,” Chem. Soc. Rev. 32(4), 203–214 (2003).
[CrossRef] [PubMed]

Chin. Opt. Lett. (1)

J. Mater. Chem. (1)

O. J. Cayre and V. N. Paunov, “Fabrication of microlens arrays by gel trapping of self-assembled particle monolayers at the decane–water interface,” J. Mater. Chem. 14(22), 3300–3302 (2004).
[CrossRef]

J. Opt. A, Pure Appl. Opt. (1)

H. Ottevaere, B. Volckaerts, J. Lamprecht, J. Schwider, A. Hermanne, I. Veretennicoff, and H. Thienpont, “Two-dimensional plastic microlens arrays by deep lithography with protons: fabrication and characterization,” J. Opt. A, Pure Appl. Opt. 4(4), 354–28 (2002).
[CrossRef]

J. Phys. Theor. Appl. (1)

G. Lippmann, “Epreuves reversibles donnant la sensation du relief,” J. Phys. Theor. Appl. 7(1), 821–825 (1908).
[CrossRef]

Meas. Sci. Technol. (1)

D. Daly, R. F. Stevens, M. C. Hutley, and N. Davues, “The manufacture of microlenses by melting photoresist,” Meas. Sci. Technol. 1(8), 759–766 (1990).
[CrossRef]

Opt. Express (5)

Opt. Lett. (1)

Opt. Photonics News (1)

W. R. Cox, T. Chen, and D. J. Hayes, “Micro-optics fabrication by ink-jet printing,” Opt. Photonics News 32–35 (2001).
[CrossRef]

Sens. Actuators B (1)

M. J. Aernecke and D. R. Walt, “Optical-fiber arrays for vapor sensing,” Sens. Actuators B 142(2), 464–469 (2009).
[CrossRef]

Small (1)

V. Guieu, F. Lagugné-Labarthet, L. Servant, D. Talaga, and N. Sojic, “Ultrasharp optical-fiber nanoprobe array for Raman local-enhancement imaging,” Small 4(1), 96–99 (2008).
[CrossRef]

Other (1)

Y. Ishihara, and K. Tanigaki, “A high sensitivity IL-CCD image sensor with monolithic resin lens array”, In Proceedings of IEEE IEDM. Tech. Dig. 497–500 (1983).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Fabrication process of a polymer microlens array on a fiber with 7×7 cores by a free radical photopolymerization approach. a) Well-cleaved top surface before deposition and a typical light transmission property with an incident intensity of 500nW (inset image); b) Droplet profile deposited on the top surface before irradiation and a typical profile with contact angle of 8.5 ° (inset); c) Polymerization process under laser irradiation (λ=532nm); d) Final structure after unpolymerized formulation removal in ethanol: the inset image on the left showing the optical transmission property while the incident intensity I = 50nW; the inset on the right shows the SEM image of a typical structure of microlens array obtained through this approach.

Fig. 2
Fig. 2

a-c) Measurements of contact angles by optical microscope to control microlens array height h. Using a micropipette, the volume of the droplet is reduced and consequently the contact angle is adjusted to 22.9°, 9.3° and 8.5°, respectively. d-l) SEM images show the MLAs fabricated with different contact angles. d-f) Profiles of microlens arrays with different contact angles correspond to a-c, respectively. Microlens array heights in d-f) are about 15μm, 5μm and 4μm, respectively. Interconnection among lenses and rinse trace at these peripheral bottoms in d) can be observed. g-I) exhibit the planar structure of these microlens arrays. A disconnected lens array structure was displayed both in h) and i). The insets are magnification images of lens arrays at their centers. j-l) are local magnification images showing the individual lens structure.

Fig. 3
Fig. 3

2D-FDTD simulations explaining the polymerization process. a) Design of the structure; b) simulation result without droplet (n air=1); c) simulation result with droplet (n droplet=1.48).

Fig. 4
Fig. 4

a) Experimental setup used for optical characterization of polymer microlens array. b-d) MLA images in transmission recorded with different incident intensities: 50nW, 10nW and 3~4nW were coupled into the multicored fiber, respectively. White-lined scale bars for all images in b-d) represent 30μm.

Fig. 5
Fig. 5

FDTD simulations (2D) of optical transmission for a single line of polymer microlens array. Simulation conditions are λ=532nm, w0=1.3μm, h0=0.5μm and α=0.5. a) Scheme showing the structural design for FDTD simulation. b) Calculated electric field /Ex / for seven polymer microlens, c-d) Calculated electric field /Ex / magnifications for an individual polymer microlens with a coded-color and a contour line, respectively.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

h = α D ( 1 cos θ ) ( 2 sin θ )
Z = F ( x ) = h 0 ( w 0 x w 0 ) α .
{ f = R n 1 N A = sin ( arctan D 2 f ) .

Metrics