Abstract

We propose coupled cavities to realize a strong enhancement of the Raman scattering. Five sub cavities are embedded in the photonic crystals. Simulations through finite-difference time-domain (FDTD) method demonstrate that one cavity, which is used to propagate the pump beam at the optical-communication wavelength, has a Q factor as high as 1.254 × 108 and modal volume as small as 0.03μm3 (0.3192(λ/n)3). These parameters result in ultra-small threshold lasing power ~17.7nW and 2.58nW for Stokes and anti-Stokes respectively. The cavities are designed to support the required Stokes and anti-Stokes modal spacing in silicon. The proposed structure has the potential for sensor devices, especially for biological and medical diagnoses.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
    [CrossRef] [PubMed]
  2. J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonics crystals: putting a new twist on light,” Nature 386(6621), 143–149 (1997).
    [CrossRef]
  3. S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415(6872), 621–623 (2002).
    [CrossRef] [PubMed]
  4. T. J. Kippenberg’s PhD thesis, “Nonlinear Optics in Ultra-high-Q Whispering Gallery Mode Micro-cavities” (California Institute of Technology, May 2004), http://www.mpq.mpg.de/k-lab/publications/TJKippenbergThesis.pdf .
  5. X. Yang and C. W. Wong, “Design of photonic band gap nanocavities for stimulated Raman amplification and lasing in monolithic silicon,” Opt. Express 13(12), 4723–4730 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-12-4723 .
    [CrossRef] [PubMed]
  6. Q. Quan, P. B. Deotare, and M. Lončar, “Photonic Crystal Nanobeam Cavity Strongly Coupled to the Feeding Waveguide,” Appl. Phys. Lett. 96(20), 203102 (2010).
    [CrossRef]
  7. Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
    [CrossRef] [PubMed]
  8. M. Krause, H. Renner, and E. Brinkmeyer, “Analysis of Raman lasing characteristics in silicon-on-insulator waveguides,” Opt. Express 12(23), 5703–5710 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-23-5703 .
    [CrossRef] [PubMed]
  9. V. E. Perlin and H. G. Winful, “Stimulated Raman Scattering in nonlinear periodic structures,” Phys. Rev. A 64(4), 043804 (2001).
    [CrossRef]
  10. X. D. Yang and C. W. Wong, “Coupled-mode theory for stimulated Raman scattering in high-Q/V(m) silicon photonic band gap defect cavity lasers,” Opt. Express 15(8), 4763–4780 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-8-4763 .
    [CrossRef] [PubMed]
  11. C. E. B. A. H. Stein’s PhD thesis, “Stimulated Raman Scattering in Silicon Coupled Photonic Crystal Microcavity Arrays” (Universität Karlsruhe, May 2006), http://www.stanford.edu/group/nqp/jv_files/thesis/Benedikt-Thesis-RamanLaserPC-Design.pdf .
  12. http://www.rsoftdesign.com/ .
  13. N. C. Panoiu, M. Bahl, and R. M. Osgood., “All-optical tunability of a nonlinear photonic crystal channel drop filter,” Opt. Express 12(8), 1605–1610 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-8-1605 .
    [CrossRef] [PubMed]
  14. C. G. Bostan, R. M. de Ridder, V. J. Gadgil, L. Kuipers, and A. Driessen, “Line-Defect Waveguides in Hexagon-Hole type Photonic Crystal Slabs: Design and Fabrication using Focused Ion Beam Technology,” in Proceedings of Symposium IEEE/LEOS Benelux Chapter (Enschede 2003) pp. 253–256.
  15. T. Xu, S. Yang, S. V. Nair, and H. E. Ruda, “Nanowire-array based photonics crystal cavity by finite-difference time domain calculations,” Phys. Rev. B 75(12), 125104 (2007).
    [CrossRef]
  16. S. Assefa, P. T. Rakich, P. Bienstman, S. G. Johnson, G. S. Petrich, J. D. Joannopoulos, L. A. Kolodziejski, E. P. Ippen, and H. I. Smith, “Guiding 1.5 μm light in photonic crystals based on dielectric rods,” Appl. Phys. Lett. 85(25), 6110–6112 (2004).
    [CrossRef]
  17. M. Tokushima, H. Yamada, and Y. Arakawa, “1.5 μm-wavelength light guiding in waveguides in square-lattice-of-rod photonic crystal slab,” Appl. Phys. Lett. 84(21), 4298–4300 (2004).
    [CrossRef]
  18. E. Schonbrun, M. Tinker, W. Park, and J. B. Lee, “Negative refraction in a Si-polymer photonic crystal membrane,” IEEE Photon. Technol. Lett. 17(6), 1196–1198 (2005).
    [CrossRef]
  19. W. Y. Chiu, T. W. Huang, Y. H. Wu, Y. J. Chan, C. H. Hou, H. T. Chien, and C. C. Chen, “A photonic crystal ring resonator formed by SOI nano-rods,” Opt. Express 15(23), 15500–15506 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-23-15500 .
    [CrossRef] [PubMed]
  20. R. B. Wehrspohn, H. S. kitzerow, and K. Busch, Nanophotonic Materials: Photonic Crystals, Plasmonics, and Metamaterials (Wiley-VCH, 2008).
  21. Z. Ouyang, X. Luo, J. C. Wang, C. P. Liu, and C. J. Wu, “A combined cavity for high sensitivity THz signal detection,” Proc. SPIE 6840, 684008, 684008-8 (2007).
    [CrossRef]
  22. Y. Wu, X. Yang, and P. T. Leung, “Theory of microcavity-enhanced Raman gain,” Opt. Lett. 24(5), 345–347 (1999).
    [CrossRef]
  23. B. Min, T. J. Kippenberg, and K. J. Vahala, “Compact, fiber-compatible, cascaded Raman laser,” Opt. Lett. 28(17), 1507–1509 (2003).
    [CrossRef] [PubMed]
  24. H. B. Lin and A. J. Campillo, “cw nonlinear optics in droplet microcavities diplaying enhanced gain,” Phys. Rev. Lett. 73(18), 2440–2443 (1994).
    [CrossRef] [PubMed]
  25. H. B. Lin and A. J. Campillo, “Microcavity enhanced Raman gain,” Opt. Commun. 133(1–6), 287–292 (1997).
    [CrossRef]
  26. A. B. Matsko, A. A. Savchenkov, R. J. Letargat, V. S. Ilchenko, and L. Maleki, “On cavity modification of stimulated Raman scattering,” J. Opt. B Quantum Semiclassical Opt. 5(3), 272–278 (2003).
    [CrossRef]
  27. R. Claps, V. Raghunathan, D. Dimitropoulos, and B. Jalali, “Anti-Stokes Raman conversion in silicon waveguides,” Opt. Express 11(22), 2862–2872 (2003), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-11-22-2862 .
    [CrossRef] [PubMed]
  28. V. M. N. Passaro, F. Dell’Olio, B. Casamassima, and F. De Leonardis, “Guided-Wave Optical Biosensors,” Sensors (Basel Switzerland) 7(4), 508–536 (2007).
    [CrossRef]
  29. A. Downes and A. Elfick, “Raman Spectroscopy and Related Techniques in Biomedicine,” Sensors (Basel Switzerland) 10(3), 1871–1889 (2010).
    [CrossRef]
  30. C. L. Evans and X. S. Xie, “Coherent anti-stokes Raman scattering microscopy: chemical imaging for biology and medicine,” Annu Rev Anal Chem (Palo Alto Calif) 1(1), 883–909 (2008).
    [CrossRef]

2010 (2)

Q. Quan, P. B. Deotare, and M. Lončar, “Photonic Crystal Nanobeam Cavity Strongly Coupled to the Feeding Waveguide,” Appl. Phys. Lett. 96(20), 203102 (2010).
[CrossRef]

A. Downes and A. Elfick, “Raman Spectroscopy and Related Techniques in Biomedicine,” Sensors (Basel Switzerland) 10(3), 1871–1889 (2010).
[CrossRef]

2008 (1)

C. L. Evans and X. S. Xie, “Coherent anti-stokes Raman scattering microscopy: chemical imaging for biology and medicine,” Annu Rev Anal Chem (Palo Alto Calif) 1(1), 883–909 (2008).
[CrossRef]

2007 (5)

V. M. N. Passaro, F. Dell’Olio, B. Casamassima, and F. De Leonardis, “Guided-Wave Optical Biosensors,” Sensors (Basel Switzerland) 7(4), 508–536 (2007).
[CrossRef]

X. D. Yang and C. W. Wong, “Coupled-mode theory for stimulated Raman scattering in high-Q/V(m) silicon photonic band gap defect cavity lasers,” Opt. Express 15(8), 4763–4780 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-8-4763 .
[CrossRef] [PubMed]

T. Xu, S. Yang, S. V. Nair, and H. E. Ruda, “Nanowire-array based photonics crystal cavity by finite-difference time domain calculations,” Phys. Rev. B 75(12), 125104 (2007).
[CrossRef]

W. Y. Chiu, T. W. Huang, Y. H. Wu, Y. J. Chan, C. H. Hou, H. T. Chien, and C. C. Chen, “A photonic crystal ring resonator formed by SOI nano-rods,” Opt. Express 15(23), 15500–15506 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-23-15500 .
[CrossRef] [PubMed]

Z. Ouyang, X. Luo, J. C. Wang, C. P. Liu, and C. J. Wu, “A combined cavity for high sensitivity THz signal detection,” Proc. SPIE 6840, 684008, 684008-8 (2007).
[CrossRef]

2005 (2)

2004 (5)

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[CrossRef] [PubMed]

M. Krause, H. Renner, and E. Brinkmeyer, “Analysis of Raman lasing characteristics in silicon-on-insulator waveguides,” Opt. Express 12(23), 5703–5710 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-23-5703 .
[CrossRef] [PubMed]

S. Assefa, P. T. Rakich, P. Bienstman, S. G. Johnson, G. S. Petrich, J. D. Joannopoulos, L. A. Kolodziejski, E. P. Ippen, and H. I. Smith, “Guiding 1.5 μm light in photonic crystals based on dielectric rods,” Appl. Phys. Lett. 85(25), 6110–6112 (2004).
[CrossRef]

M. Tokushima, H. Yamada, and Y. Arakawa, “1.5 μm-wavelength light guiding in waveguides in square-lattice-of-rod photonic crystal slab,” Appl. Phys. Lett. 84(21), 4298–4300 (2004).
[CrossRef]

N. C. Panoiu, M. Bahl, and R. M. Osgood., “All-optical tunability of a nonlinear photonic crystal channel drop filter,” Opt. Express 12(8), 1605–1610 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-8-1605 .
[CrossRef] [PubMed]

2003 (4)

B. Min, T. J. Kippenberg, and K. J. Vahala, “Compact, fiber-compatible, cascaded Raman laser,” Opt. Lett. 28(17), 1507–1509 (2003).
[CrossRef] [PubMed]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[CrossRef] [PubMed]

A. B. Matsko, A. A. Savchenkov, R. J. Letargat, V. S. Ilchenko, and L. Maleki, “On cavity modification of stimulated Raman scattering,” J. Opt. B Quantum Semiclassical Opt. 5(3), 272–278 (2003).
[CrossRef]

R. Claps, V. Raghunathan, D. Dimitropoulos, and B. Jalali, “Anti-Stokes Raman conversion in silicon waveguides,” Opt. Express 11(22), 2862–2872 (2003), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-11-22-2862 .
[CrossRef] [PubMed]

2002 (1)

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415(6872), 621–623 (2002).
[CrossRef] [PubMed]

2001 (1)

V. E. Perlin and H. G. Winful, “Stimulated Raman Scattering in nonlinear periodic structures,” Phys. Rev. A 64(4), 043804 (2001).
[CrossRef]

1999 (1)

1997 (2)

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonics crystals: putting a new twist on light,” Nature 386(6621), 143–149 (1997).
[CrossRef]

H. B. Lin and A. J. Campillo, “Microcavity enhanced Raman gain,” Opt. Commun. 133(1–6), 287–292 (1997).
[CrossRef]

1994 (1)

H. B. Lin and A. J. Campillo, “cw nonlinear optics in droplet microcavities diplaying enhanced gain,” Phys. Rev. Lett. 73(18), 2440–2443 (1994).
[CrossRef] [PubMed]

Akahane, Y.

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[CrossRef] [PubMed]

Almeida, V. R.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[CrossRef] [PubMed]

Arakawa, Y.

M. Tokushima, H. Yamada, and Y. Arakawa, “1.5 μm-wavelength light guiding in waveguides in square-lattice-of-rod photonic crystal slab,” Appl. Phys. Lett. 84(21), 4298–4300 (2004).
[CrossRef]

Asano, T.

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[CrossRef] [PubMed]

Assefa, S.

S. Assefa, P. T. Rakich, P. Bienstman, S. G. Johnson, G. S. Petrich, J. D. Joannopoulos, L. A. Kolodziejski, E. P. Ippen, and H. I. Smith, “Guiding 1.5 μm light in photonic crystals based on dielectric rods,” Appl. Phys. Lett. 85(25), 6110–6112 (2004).
[CrossRef]

Bahl, M.

Barrios, C. A.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[CrossRef] [PubMed]

Bienstman, P.

S. Assefa, P. T. Rakich, P. Bienstman, S. G. Johnson, G. S. Petrich, J. D. Joannopoulos, L. A. Kolodziejski, E. P. Ippen, and H. I. Smith, “Guiding 1.5 μm light in photonic crystals based on dielectric rods,” Appl. Phys. Lett. 85(25), 6110–6112 (2004).
[CrossRef]

Brinkmeyer, E.

Campillo, A. J.

H. B. Lin and A. J. Campillo, “Microcavity enhanced Raman gain,” Opt. Commun. 133(1–6), 287–292 (1997).
[CrossRef]

H. B. Lin and A. J. Campillo, “cw nonlinear optics in droplet microcavities diplaying enhanced gain,” Phys. Rev. Lett. 73(18), 2440–2443 (1994).
[CrossRef] [PubMed]

Casamassima, B.

V. M. N. Passaro, F. Dell’Olio, B. Casamassima, and F. De Leonardis, “Guided-Wave Optical Biosensors,” Sensors (Basel Switzerland) 7(4), 508–536 (2007).
[CrossRef]

Chan, Y. J.

Chen, C. C.

Chien, H. T.

Chiu, W. Y.

Claps, R.

De Leonardis, F.

V. M. N. Passaro, F. Dell’Olio, B. Casamassima, and F. De Leonardis, “Guided-Wave Optical Biosensors,” Sensors (Basel Switzerland) 7(4), 508–536 (2007).
[CrossRef]

Dell’Olio, F.

V. M. N. Passaro, F. Dell’Olio, B. Casamassima, and F. De Leonardis, “Guided-Wave Optical Biosensors,” Sensors (Basel Switzerland) 7(4), 508–536 (2007).
[CrossRef]

Deotare, P. B.

Q. Quan, P. B. Deotare, and M. Lončar, “Photonic Crystal Nanobeam Cavity Strongly Coupled to the Feeding Waveguide,” Appl. Phys. Lett. 96(20), 203102 (2010).
[CrossRef]

Dimitropoulos, D.

Downes, A.

A. Downes and A. Elfick, “Raman Spectroscopy and Related Techniques in Biomedicine,” Sensors (Basel Switzerland) 10(3), 1871–1889 (2010).
[CrossRef]

Elfick, A.

A. Downes and A. Elfick, “Raman Spectroscopy and Related Techniques in Biomedicine,” Sensors (Basel Switzerland) 10(3), 1871–1889 (2010).
[CrossRef]

Evans, C. L.

C. L. Evans and X. S. Xie, “Coherent anti-stokes Raman scattering microscopy: chemical imaging for biology and medicine,” Annu Rev Anal Chem (Palo Alto Calif) 1(1), 883–909 (2008).
[CrossRef]

Fan, S.

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonics crystals: putting a new twist on light,” Nature 386(6621), 143–149 (1997).
[CrossRef]

Hou, C. H.

Huang, T. W.

Ilchenko, V. S.

A. B. Matsko, A. A. Savchenkov, R. J. Letargat, V. S. Ilchenko, and L. Maleki, “On cavity modification of stimulated Raman scattering,” J. Opt. B Quantum Semiclassical Opt. 5(3), 272–278 (2003).
[CrossRef]

Ippen, E. P.

S. Assefa, P. T. Rakich, P. Bienstman, S. G. Johnson, G. S. Petrich, J. D. Joannopoulos, L. A. Kolodziejski, E. P. Ippen, and H. I. Smith, “Guiding 1.5 μm light in photonic crystals based on dielectric rods,” Appl. Phys. Lett. 85(25), 6110–6112 (2004).
[CrossRef]

Jalali, B.

Joannopoulos, J. D.

S. Assefa, P. T. Rakich, P. Bienstman, S. G. Johnson, G. S. Petrich, J. D. Joannopoulos, L. A. Kolodziejski, E. P. Ippen, and H. I. Smith, “Guiding 1.5 μm light in photonic crystals based on dielectric rods,” Appl. Phys. Lett. 85(25), 6110–6112 (2004).
[CrossRef]

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonics crystals: putting a new twist on light,” Nature 386(6621), 143–149 (1997).
[CrossRef]

Johnson, S. G.

S. Assefa, P. T. Rakich, P. Bienstman, S. G. Johnson, G. S. Petrich, J. D. Joannopoulos, L. A. Kolodziejski, E. P. Ippen, and H. I. Smith, “Guiding 1.5 μm light in photonic crystals based on dielectric rods,” Appl. Phys. Lett. 85(25), 6110–6112 (2004).
[CrossRef]

Kippenberg, T. J.

B. Min, T. J. Kippenberg, and K. J. Vahala, “Compact, fiber-compatible, cascaded Raman laser,” Opt. Lett. 28(17), 1507–1509 (2003).
[CrossRef] [PubMed]

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415(6872), 621–623 (2002).
[CrossRef] [PubMed]

Kolodziejski, L. A.

S. Assefa, P. T. Rakich, P. Bienstman, S. G. Johnson, G. S. Petrich, J. D. Joannopoulos, L. A. Kolodziejski, E. P. Ippen, and H. I. Smith, “Guiding 1.5 μm light in photonic crystals based on dielectric rods,” Appl. Phys. Lett. 85(25), 6110–6112 (2004).
[CrossRef]

Krause, M.

Lee, J. B.

E. Schonbrun, M. Tinker, W. Park, and J. B. Lee, “Negative refraction in a Si-polymer photonic crystal membrane,” IEEE Photon. Technol. Lett. 17(6), 1196–1198 (2005).
[CrossRef]

Letargat, R. J.

A. B. Matsko, A. A. Savchenkov, R. J. Letargat, V. S. Ilchenko, and L. Maleki, “On cavity modification of stimulated Raman scattering,” J. Opt. B Quantum Semiclassical Opt. 5(3), 272–278 (2003).
[CrossRef]

Leung, P. T.

Lin, H. B.

H. B. Lin and A. J. Campillo, “Microcavity enhanced Raman gain,” Opt. Commun. 133(1–6), 287–292 (1997).
[CrossRef]

H. B. Lin and A. J. Campillo, “cw nonlinear optics in droplet microcavities diplaying enhanced gain,” Phys. Rev. Lett. 73(18), 2440–2443 (1994).
[CrossRef] [PubMed]

Lipson, M.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[CrossRef] [PubMed]

Liu, C. P.

Z. Ouyang, X. Luo, J. C. Wang, C. P. Liu, and C. J. Wu, “A combined cavity for high sensitivity THz signal detection,” Proc. SPIE 6840, 684008, 684008-8 (2007).
[CrossRef]

Loncar, M.

Q. Quan, P. B. Deotare, and M. Lončar, “Photonic Crystal Nanobeam Cavity Strongly Coupled to the Feeding Waveguide,” Appl. Phys. Lett. 96(20), 203102 (2010).
[CrossRef]

Luo, X.

Z. Ouyang, X. Luo, J. C. Wang, C. P. Liu, and C. J. Wu, “A combined cavity for high sensitivity THz signal detection,” Proc. SPIE 6840, 684008, 684008-8 (2007).
[CrossRef]

Maleki, L.

A. B. Matsko, A. A. Savchenkov, R. J. Letargat, V. S. Ilchenko, and L. Maleki, “On cavity modification of stimulated Raman scattering,” J. Opt. B Quantum Semiclassical Opt. 5(3), 272–278 (2003).
[CrossRef]

Matsko, A. B.

A. B. Matsko, A. A. Savchenkov, R. J. Letargat, V. S. Ilchenko, and L. Maleki, “On cavity modification of stimulated Raman scattering,” J. Opt. B Quantum Semiclassical Opt. 5(3), 272–278 (2003).
[CrossRef]

Min, B.

Nair, S. V.

T. Xu, S. Yang, S. V. Nair, and H. E. Ruda, “Nanowire-array based photonics crystal cavity by finite-difference time domain calculations,” Phys. Rev. B 75(12), 125104 (2007).
[CrossRef]

Noda, S.

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[CrossRef] [PubMed]

Osgood, R. M.

Ouyang, Z.

Z. Ouyang, X. Luo, J. C. Wang, C. P. Liu, and C. J. Wu, “A combined cavity for high sensitivity THz signal detection,” Proc. SPIE 6840, 684008, 684008-8 (2007).
[CrossRef]

Panepucci, R. R.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[CrossRef] [PubMed]

Panoiu, N. C.

Park, W.

E. Schonbrun, M. Tinker, W. Park, and J. B. Lee, “Negative refraction in a Si-polymer photonic crystal membrane,” IEEE Photon. Technol. Lett. 17(6), 1196–1198 (2005).
[CrossRef]

Passaro, V. M. N.

V. M. N. Passaro, F. Dell’Olio, B. Casamassima, and F. De Leonardis, “Guided-Wave Optical Biosensors,” Sensors (Basel Switzerland) 7(4), 508–536 (2007).
[CrossRef]

Perlin, V. E.

V. E. Perlin and H. G. Winful, “Stimulated Raman Scattering in nonlinear periodic structures,” Phys. Rev. A 64(4), 043804 (2001).
[CrossRef]

Petrich, G. S.

S. Assefa, P. T. Rakich, P. Bienstman, S. G. Johnson, G. S. Petrich, J. D. Joannopoulos, L. A. Kolodziejski, E. P. Ippen, and H. I. Smith, “Guiding 1.5 μm light in photonic crystals based on dielectric rods,” Appl. Phys. Lett. 85(25), 6110–6112 (2004).
[CrossRef]

Quan, Q.

Q. Quan, P. B. Deotare, and M. Lončar, “Photonic Crystal Nanobeam Cavity Strongly Coupled to the Feeding Waveguide,” Appl. Phys. Lett. 96(20), 203102 (2010).
[CrossRef]

Raghunathan, V.

Rakich, P. T.

S. Assefa, P. T. Rakich, P. Bienstman, S. G. Johnson, G. S. Petrich, J. D. Joannopoulos, L. A. Kolodziejski, E. P. Ippen, and H. I. Smith, “Guiding 1.5 μm light in photonic crystals based on dielectric rods,” Appl. Phys. Lett. 85(25), 6110–6112 (2004).
[CrossRef]

Renner, H.

Ruda, H. E.

T. Xu, S. Yang, S. V. Nair, and H. E. Ruda, “Nanowire-array based photonics crystal cavity by finite-difference time domain calculations,” Phys. Rev. B 75(12), 125104 (2007).
[CrossRef]

Savchenkov, A. A.

A. B. Matsko, A. A. Savchenkov, R. J. Letargat, V. S. Ilchenko, and L. Maleki, “On cavity modification of stimulated Raman scattering,” J. Opt. B Quantum Semiclassical Opt. 5(3), 272–278 (2003).
[CrossRef]

Schonbrun, E.

E. Schonbrun, M. Tinker, W. Park, and J. B. Lee, “Negative refraction in a Si-polymer photonic crystal membrane,” IEEE Photon. Technol. Lett. 17(6), 1196–1198 (2005).
[CrossRef]

Smith, H. I.

S. Assefa, P. T. Rakich, P. Bienstman, S. G. Johnson, G. S. Petrich, J. D. Joannopoulos, L. A. Kolodziejski, E. P. Ippen, and H. I. Smith, “Guiding 1.5 μm light in photonic crystals based on dielectric rods,” Appl. Phys. Lett. 85(25), 6110–6112 (2004).
[CrossRef]

Song, B. S.

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[CrossRef] [PubMed]

Spillane, S. M.

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415(6872), 621–623 (2002).
[CrossRef] [PubMed]

Tinker, M.

E. Schonbrun, M. Tinker, W. Park, and J. B. Lee, “Negative refraction in a Si-polymer photonic crystal membrane,” IEEE Photon. Technol. Lett. 17(6), 1196–1198 (2005).
[CrossRef]

Tokushima, M.

M. Tokushima, H. Yamada, and Y. Arakawa, “1.5 μm-wavelength light guiding in waveguides in square-lattice-of-rod photonic crystal slab,” Appl. Phys. Lett. 84(21), 4298–4300 (2004).
[CrossRef]

Vahala, K. J.

B. Min, T. J. Kippenberg, and K. J. Vahala, “Compact, fiber-compatible, cascaded Raman laser,” Opt. Lett. 28(17), 1507–1509 (2003).
[CrossRef] [PubMed]

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415(6872), 621–623 (2002).
[CrossRef] [PubMed]

Villeneuve, P. R.

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonics crystals: putting a new twist on light,” Nature 386(6621), 143–149 (1997).
[CrossRef]

Wang, J. C.

Z. Ouyang, X. Luo, J. C. Wang, C. P. Liu, and C. J. Wu, “A combined cavity for high sensitivity THz signal detection,” Proc. SPIE 6840, 684008, 684008-8 (2007).
[CrossRef]

Winful, H. G.

V. E. Perlin and H. G. Winful, “Stimulated Raman Scattering in nonlinear periodic structures,” Phys. Rev. A 64(4), 043804 (2001).
[CrossRef]

Wong, C. W.

Wu, C. J.

Z. Ouyang, X. Luo, J. C. Wang, C. P. Liu, and C. J. Wu, “A combined cavity for high sensitivity THz signal detection,” Proc. SPIE 6840, 684008, 684008-8 (2007).
[CrossRef]

Wu, Y.

Wu, Y. H.

Xie, X. S.

C. L. Evans and X. S. Xie, “Coherent anti-stokes Raman scattering microscopy: chemical imaging for biology and medicine,” Annu Rev Anal Chem (Palo Alto Calif) 1(1), 883–909 (2008).
[CrossRef]

Xu, T.

T. Xu, S. Yang, S. V. Nair, and H. E. Ruda, “Nanowire-array based photonics crystal cavity by finite-difference time domain calculations,” Phys. Rev. B 75(12), 125104 (2007).
[CrossRef]

Yamada, H.

M. Tokushima, H. Yamada, and Y. Arakawa, “1.5 μm-wavelength light guiding in waveguides in square-lattice-of-rod photonic crystal slab,” Appl. Phys. Lett. 84(21), 4298–4300 (2004).
[CrossRef]

Yang, S.

T. Xu, S. Yang, S. V. Nair, and H. E. Ruda, “Nanowire-array based photonics crystal cavity by finite-difference time domain calculations,” Phys. Rev. B 75(12), 125104 (2007).
[CrossRef]

Yang, X.

Yang, X. D.

Annu Rev Anal Chem (Palo Alto Calif) (1)

C. L. Evans and X. S. Xie, “Coherent anti-stokes Raman scattering microscopy: chemical imaging for biology and medicine,” Annu Rev Anal Chem (Palo Alto Calif) 1(1), 883–909 (2008).
[CrossRef]

Appl. Phys. Lett. (3)

Q. Quan, P. B. Deotare, and M. Lončar, “Photonic Crystal Nanobeam Cavity Strongly Coupled to the Feeding Waveguide,” Appl. Phys. Lett. 96(20), 203102 (2010).
[CrossRef]

S. Assefa, P. T. Rakich, P. Bienstman, S. G. Johnson, G. S. Petrich, J. D. Joannopoulos, L. A. Kolodziejski, E. P. Ippen, and H. I. Smith, “Guiding 1.5 μm light in photonic crystals based on dielectric rods,” Appl. Phys. Lett. 85(25), 6110–6112 (2004).
[CrossRef]

M. Tokushima, H. Yamada, and Y. Arakawa, “1.5 μm-wavelength light guiding in waveguides in square-lattice-of-rod photonic crystal slab,” Appl. Phys. Lett. 84(21), 4298–4300 (2004).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

E. Schonbrun, M. Tinker, W. Park, and J. B. Lee, “Negative refraction in a Si-polymer photonic crystal membrane,” IEEE Photon. Technol. Lett. 17(6), 1196–1198 (2005).
[CrossRef]

J. Opt. B Quantum Semiclassical Opt. (1)

A. B. Matsko, A. A. Savchenkov, R. J. Letargat, V. S. Ilchenko, and L. Maleki, “On cavity modification of stimulated Raman scattering,” J. Opt. B Quantum Semiclassical Opt. 5(3), 272–278 (2003).
[CrossRef]

Nature (4)

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[CrossRef] [PubMed]

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[CrossRef] [PubMed]

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonics crystals: putting a new twist on light,” Nature 386(6621), 143–149 (1997).
[CrossRef]

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415(6872), 621–623 (2002).
[CrossRef] [PubMed]

Opt. Commun. (1)

H. B. Lin and A. J. Campillo, “Microcavity enhanced Raman gain,” Opt. Commun. 133(1–6), 287–292 (1997).
[CrossRef]

Opt. Express (6)

R. Claps, V. Raghunathan, D. Dimitropoulos, and B. Jalali, “Anti-Stokes Raman conversion in silicon waveguides,” Opt. Express 11(22), 2862–2872 (2003), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-11-22-2862 .
[CrossRef] [PubMed]

X. Yang and C. W. Wong, “Design of photonic band gap nanocavities for stimulated Raman amplification and lasing in monolithic silicon,” Opt. Express 13(12), 4723–4730 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-12-4723 .
[CrossRef] [PubMed]

M. Krause, H. Renner, and E. Brinkmeyer, “Analysis of Raman lasing characteristics in silicon-on-insulator waveguides,” Opt. Express 12(23), 5703–5710 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-23-5703 .
[CrossRef] [PubMed]

W. Y. Chiu, T. W. Huang, Y. H. Wu, Y. J. Chan, C. H. Hou, H. T. Chien, and C. C. Chen, “A photonic crystal ring resonator formed by SOI nano-rods,” Opt. Express 15(23), 15500–15506 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-23-15500 .
[CrossRef] [PubMed]

X. D. Yang and C. W. Wong, “Coupled-mode theory for stimulated Raman scattering in high-Q/V(m) silicon photonic band gap defect cavity lasers,” Opt. Express 15(8), 4763–4780 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-8-4763 .
[CrossRef] [PubMed]

N. C. Panoiu, M. Bahl, and R. M. Osgood., “All-optical tunability of a nonlinear photonic crystal channel drop filter,” Opt. Express 12(8), 1605–1610 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-8-1605 .
[CrossRef] [PubMed]

Opt. Lett. (2)

Phys. Rev. A (1)

V. E. Perlin and H. G. Winful, “Stimulated Raman Scattering in nonlinear periodic structures,” Phys. Rev. A 64(4), 043804 (2001).
[CrossRef]

Phys. Rev. B (1)

T. Xu, S. Yang, S. V. Nair, and H. E. Ruda, “Nanowire-array based photonics crystal cavity by finite-difference time domain calculations,” Phys. Rev. B 75(12), 125104 (2007).
[CrossRef]

Phys. Rev. Lett. (1)

H. B. Lin and A. J. Campillo, “cw nonlinear optics in droplet microcavities diplaying enhanced gain,” Phys. Rev. Lett. 73(18), 2440–2443 (1994).
[CrossRef] [PubMed]

Proc. SPIE (1)

Z. Ouyang, X. Luo, J. C. Wang, C. P. Liu, and C. J. Wu, “A combined cavity for high sensitivity THz signal detection,” Proc. SPIE 6840, 684008, 684008-8 (2007).
[CrossRef]

Sensors (Basel Switzerland) (2)

V. M. N. Passaro, F. Dell’Olio, B. Casamassima, and F. De Leonardis, “Guided-Wave Optical Biosensors,” Sensors (Basel Switzerland) 7(4), 508–536 (2007).
[CrossRef]

A. Downes and A. Elfick, “Raman Spectroscopy and Related Techniques in Biomedicine,” Sensors (Basel Switzerland) 10(3), 1871–1889 (2010).
[CrossRef]

Other (5)

T. J. Kippenberg’s PhD thesis, “Nonlinear Optics in Ultra-high-Q Whispering Gallery Mode Micro-cavities” (California Institute of Technology, May 2004), http://www.mpq.mpg.de/k-lab/publications/TJKippenbergThesis.pdf .

C. G. Bostan, R. M. de Ridder, V. J. Gadgil, L. Kuipers, and A. Driessen, “Line-Defect Waveguides in Hexagon-Hole type Photonic Crystal Slabs: Design and Fabrication using Focused Ion Beam Technology,” in Proceedings of Symposium IEEE/LEOS Benelux Chapter (Enschede 2003) pp. 253–256.

C. E. B. A. H. Stein’s PhD thesis, “Stimulated Raman Scattering in Silicon Coupled Photonic Crystal Microcavity Arrays” (Universität Karlsruhe, May 2006), http://www.stanford.edu/group/nqp/jv_files/thesis/Benedikt-Thesis-RamanLaserPC-Design.pdf .

http://www.rsoftdesign.com/ .

R. B. Wehrspohn, H. S. kitzerow, and K. Busch, Nanophotonic Materials: Photonic Crystals, Plasmonics, and Metamaterials (Wiley-VCH, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of the PC coupled cavities for Raman lasing in silicon. Ports A and B are for the pump, and C and D for Raman scattering waves (output); the cavities marked with yellow and green denote VC-1 and VC-2 , respectively. The waveguide cavity is marked with purple.

Fig. 2
Fig. 2

(a) Resonant frequencies of the pump, and Stokes modes within the photonic band gap for Design (I). (b) Q and modal volume for pump as a function of the radius of R3 , while fixing l1 = l2 = 3a, and R1 = R2 = 0.2a.

Fig. 3
Fig. 3

The electric field profiles of pump mode and Stokes mode: (a) and (b) for Design (I); (c) and (d) for Design II. The dot cavity and the waveguide cavity share the same resonant wavelength of the pump in (a); (c) describes the worst coupling between the dot and the waveguide cavities. (b) and (d) demonstrate the Stokes modes that are localized in VC-1 and VC-2 . The modal overlap ξ of (a) and (b) is much smaller than that of (c) and (d). Note that the simulation shown here was performed with Rsoft’s component design suit: Fullwave [12], using the definitions given by Eq. (2).

Fig. 4
Fig. 4

The normalized resonant frequencies of the pump, Stokes and anti-Stokes modes for Design III. These are within the photonic band gap. The Stokes mode is localized in VC-1 , while the anti-Stokes mode is in VC-2 . There exists one extra mode in VC-1 , however only Stokes mode will be excited when the pump wavelength is fixed, according to Eq. (6).

Fig. 5
Fig. 5

The electric field profiles of Stokes mode (a) and anti-Stokes mode (b) for Design IV.

Tables (2)

Tables Icon

Table 1 Design summary of PC coupled cavities for Raman lasing (Stokes) in silicon

Tables Icon

Table 2 Design summary of photonic crystal coupled cavities for Raman lasing (Stokes and anti-Stokes) in silicon

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

P t h = π 2 n S n p ξ g S λ S λ p V m Q S Q p
E p , S ( r , t ) = P p , S G p , S ( r ) T p , S ( t )
G p , S ( r ) = g ^ ( r ) e i k p , S ( r r 0 )
g ^ ( r ) = g ^ ( x x ^ , y 0 y ^ , z z ^ ) = e ( x x 0 ) 2 a 1 2 e ( y y 0 ) 2 b 1 2 y ^
T p , S ( t ) = e ω p , S t
Δ f = f p f S = 15.6 T H z

Metrics