Abstract

We propose coupled cavities to realize a strong enhancement of the Raman scattering. Five sub cavities are embedded in the photonic crystals. Simulations through finite-difference time-domain (FDTD) method demonstrate that one cavity, which is used to propagate the pump beam at the optical-communication wavelength, has a Q factor as high as 1.254 × 108 and modal volume as small as 0.03μm3 (0.3192(λ/n)3). These parameters result in ultra-small threshold lasing power ~17.7nW and 2.58nW for Stokes and anti-Stokes respectively. The cavities are designed to support the required Stokes and anti-Stokes modal spacing in silicon. The proposed structure has the potential for sensor devices, especially for biological and medical diagnoses.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
    [CrossRef] [PubMed]
  2. J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonics crystals: putting a new twist on light,” Nature 386(6621), 143–149 (1997).
    [CrossRef]
  3. S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415(6872), 621–623 (2002).
    [CrossRef] [PubMed]
  4. T. J. Kippenberg’s PhD thesis, “Nonlinear Optics in Ultra-high-Q Whispering Gallery Mode Micro-cavities” (California Institute of Technology, May 2004), http://www.mpq.mpg.de/k-lab/publications/TJKippenbergThesis.pdf .
  5. X. Yang and C. W. Wong, “Design of photonic band gap nanocavities for stimulated Raman amplification and lasing in monolithic silicon,” Opt. Express 13(12), 4723–4730 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-12-4723 .
    [CrossRef] [PubMed]
  6. Q. Quan, P. B. Deotare, and M. Lončar, “Photonic Crystal Nanobeam Cavity Strongly Coupled to the Feeding Waveguide,” Appl. Phys. Lett. 96(20), 203102 (2010).
    [CrossRef]
  7. Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
    [CrossRef] [PubMed]
  8. M. Krause, H. Renner, and E. Brinkmeyer, “Analysis of Raman lasing characteristics in silicon-on-insulator waveguides,” Opt. Express 12(23), 5703–5710 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-23-5703 .
    [CrossRef] [PubMed]
  9. V. E. Perlin and H. G. Winful, “Stimulated Raman Scattering in nonlinear periodic structures,” Phys. Rev. A 64(4), 043804 (2001).
    [CrossRef]
  10. X. D. Yang and C. W. Wong, “Coupled-mode theory for stimulated Raman scattering in high-Q/V(m) silicon photonic band gap defect cavity lasers,” Opt. Express 15(8), 4763–4780 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-8-4763 .
    [CrossRef] [PubMed]
  11. C. E. B. A. H. Stein’s PhD thesis, “Stimulated Raman Scattering in Silicon Coupled Photonic Crystal Microcavity Arrays” (Universität Karlsruhe, May 2006), http://www.stanford.edu/group/nqp/jv_files/thesis/Benedikt-Thesis-RamanLaserPC-Design.pdf .
  12. http://www.rsoftdesign.com/ .
  13. N. C. Panoiu, M. Bahl, and R. M. Osgood., “All-optical tunability of a nonlinear photonic crystal channel drop filter,” Opt. Express 12(8), 1605–1610 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-8-1605 .
    [CrossRef] [PubMed]
  14. C. G. Bostan, R. M. de Ridder, V. J. Gadgil, L. Kuipers, and A. Driessen, “Line-Defect Waveguides in Hexagon-Hole type Photonic Crystal Slabs: Design and Fabrication using Focused Ion Beam Technology,” in Proceedings of Symposium IEEE/LEOS Benelux Chapter (Enschede 2003) pp. 253–256.
  15. T. Xu, S. Yang, S. V. Nair, and H. E. Ruda, “Nanowire-array based photonics crystal cavity by finite-difference time domain calculations,” Phys. Rev. B 75(12), 125104 (2007).
    [CrossRef]
  16. S. Assefa, P. T. Rakich, P. Bienstman, S. G. Johnson, G. S. Petrich, J. D. Joannopoulos, L. A. Kolodziejski, E. P. Ippen, and H. I. Smith, “Guiding 1.5 μm light in photonic crystals based on dielectric rods,” Appl. Phys. Lett. 85(25), 6110–6112 (2004).
    [CrossRef]
  17. M. Tokushima, H. Yamada, and Y. Arakawa, “1.5 μm-wavelength light guiding in waveguides in square-lattice-of-rod photonic crystal slab,” Appl. Phys. Lett. 84(21), 4298–4300 (2004).
    [CrossRef]
  18. E. Schonbrun, M. Tinker, W. Park, and J. B. Lee, “Negative refraction in a Si-polymer photonic crystal membrane,” IEEE Photon. Technol. Lett. 17(6), 1196–1198 (2005).
    [CrossRef]
  19. W. Y. Chiu, T. W. Huang, Y. H. Wu, Y. J. Chan, C. H. Hou, H. T. Chien, and C. C. Chen, “A photonic crystal ring resonator formed by SOI nano-rods,” Opt. Express 15(23), 15500–15506 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-23-15500 .
    [CrossRef] [PubMed]
  20. R. B. Wehrspohn, H. S. kitzerow, and K. Busch, Nanophotonic Materials: Photonic Crystals, Plasmonics, and Metamaterials (Wiley-VCH, 2008).
  21. Z. Ouyang, X. Luo, J. C. Wang, C. P. Liu, and C. J. Wu, “A combined cavity for high sensitivity THz signal detection,” Proc. SPIE 6840, 684008, 684008-8 (2007).
    [CrossRef]
  22. Y. Wu, X. Yang, and P. T. Leung, “Theory of microcavity-enhanced Raman gain,” Opt. Lett. 24(5), 345–347 (1999).
    [CrossRef]
  23. B. Min, T. J. Kippenberg, and K. J. Vahala, “Compact, fiber-compatible, cascaded Raman laser,” Opt. Lett. 28(17), 1507–1509 (2003).
    [CrossRef] [PubMed]
  24. H. B. Lin and A. J. Campillo, “cw nonlinear optics in droplet microcavities diplaying enhanced gain,” Phys. Rev. Lett. 73(18), 2440–2443 (1994).
    [CrossRef] [PubMed]
  25. H. B. Lin and A. J. Campillo, “Microcavity enhanced Raman gain,” Opt. Commun. 133(1–6), 287–292 (1997).
    [CrossRef]
  26. A. B. Matsko, A. A. Savchenkov, R. J. Letargat, V. S. Ilchenko, and L. Maleki, “On cavity modification of stimulated Raman scattering,” J. Opt. B Quantum Semiclassical Opt. 5(3), 272–278 (2003).
    [CrossRef]
  27. R. Claps, V. Raghunathan, D. Dimitropoulos, and B. Jalali, “Anti-Stokes Raman conversion in silicon waveguides,” Opt. Express 11(22), 2862–2872 (2003), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-11-22-2862 .
    [CrossRef] [PubMed]
  28. V. M. N. Passaro, F. Dell’Olio, B. Casamassima, and F. De Leonardis, “Guided-Wave Optical Biosensors,” Sensors (Basel Switzerland) 7(4), 508–536 (2007).
    [CrossRef]
  29. A. Downes and A. Elfick, “Raman Spectroscopy and Related Techniques in Biomedicine,” Sensors (Basel Switzerland) 10(3), 1871–1889 (2010).
    [CrossRef]
  30. C. L. Evans and X. S. Xie, “Coherent anti-stokes Raman scattering microscopy: chemical imaging for biology and medicine,” Annu Rev Anal Chem (Palo Alto Calif) 1(1), 883–909 (2008).
    [CrossRef]

2010 (2)

Q. Quan, P. B. Deotare, and M. Lončar, “Photonic Crystal Nanobeam Cavity Strongly Coupled to the Feeding Waveguide,” Appl. Phys. Lett. 96(20), 203102 (2010).
[CrossRef]

A. Downes and A. Elfick, “Raman Spectroscopy and Related Techniques in Biomedicine,” Sensors (Basel Switzerland) 10(3), 1871–1889 (2010).
[CrossRef]

2008 (1)

C. L. Evans and X. S. Xie, “Coherent anti-stokes Raman scattering microscopy: chemical imaging for biology and medicine,” Annu Rev Anal Chem (Palo Alto Calif) 1(1), 883–909 (2008).
[CrossRef]

2007 (5)

Z. Ouyang, X. Luo, J. C. Wang, C. P. Liu, and C. J. Wu, “A combined cavity for high sensitivity THz signal detection,” Proc. SPIE 6840, 684008, 684008-8 (2007).
[CrossRef]

V. M. N. Passaro, F. Dell’Olio, B. Casamassima, and F. De Leonardis, “Guided-Wave Optical Biosensors,” Sensors (Basel Switzerland) 7(4), 508–536 (2007).
[CrossRef]

T. Xu, S. Yang, S. V. Nair, and H. E. Ruda, “Nanowire-array based photonics crystal cavity by finite-difference time domain calculations,” Phys. Rev. B 75(12), 125104 (2007).
[CrossRef]

X. D. Yang and C. W. Wong, “Coupled-mode theory for stimulated Raman scattering in high-Q/V(m) silicon photonic band gap defect cavity lasers,” Opt. Express 15(8), 4763–4780 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-8-4763 .
[CrossRef] [PubMed]

W. Y. Chiu, T. W. Huang, Y. H. Wu, Y. J. Chan, C. H. Hou, H. T. Chien, and C. C. Chen, “A photonic crystal ring resonator formed by SOI nano-rods,” Opt. Express 15(23), 15500–15506 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-23-15500 .
[CrossRef] [PubMed]

2005 (2)

2004 (5)

S. Assefa, P. T. Rakich, P. Bienstman, S. G. Johnson, G. S. Petrich, J. D. Joannopoulos, L. A. Kolodziejski, E. P. Ippen, and H. I. Smith, “Guiding 1.5 μm light in photonic crystals based on dielectric rods,” Appl. Phys. Lett. 85(25), 6110–6112 (2004).
[CrossRef]

M. Tokushima, H. Yamada, and Y. Arakawa, “1.5 μm-wavelength light guiding in waveguides in square-lattice-of-rod photonic crystal slab,” Appl. Phys. Lett. 84(21), 4298–4300 (2004).
[CrossRef]

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[CrossRef] [PubMed]

N. C. Panoiu, M. Bahl, and R. M. Osgood., “All-optical tunability of a nonlinear photonic crystal channel drop filter,” Opt. Express 12(8), 1605–1610 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-8-1605 .
[CrossRef] [PubMed]

M. Krause, H. Renner, and E. Brinkmeyer, “Analysis of Raman lasing characteristics in silicon-on-insulator waveguides,” Opt. Express 12(23), 5703–5710 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-23-5703 .
[CrossRef] [PubMed]

2003 (4)

A. B. Matsko, A. A. Savchenkov, R. J. Letargat, V. S. Ilchenko, and L. Maleki, “On cavity modification of stimulated Raman scattering,” J. Opt. B Quantum Semiclassical Opt. 5(3), 272–278 (2003).
[CrossRef]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[CrossRef] [PubMed]

B. Min, T. J. Kippenberg, and K. J. Vahala, “Compact, fiber-compatible, cascaded Raman laser,” Opt. Lett. 28(17), 1507–1509 (2003).
[CrossRef] [PubMed]

R. Claps, V. Raghunathan, D. Dimitropoulos, and B. Jalali, “Anti-Stokes Raman conversion in silicon waveguides,” Opt. Express 11(22), 2862–2872 (2003), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-11-22-2862 .
[CrossRef] [PubMed]

2002 (1)

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415(6872), 621–623 (2002).
[CrossRef] [PubMed]

2001 (1)

V. E. Perlin and H. G. Winful, “Stimulated Raman Scattering in nonlinear periodic structures,” Phys. Rev. A 64(4), 043804 (2001).
[CrossRef]

1999 (1)

1997 (2)

H. B. Lin and A. J. Campillo, “Microcavity enhanced Raman gain,” Opt. Commun. 133(1–6), 287–292 (1997).
[CrossRef]

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonics crystals: putting a new twist on light,” Nature 386(6621), 143–149 (1997).
[CrossRef]

1994 (1)

H. B. Lin and A. J. Campillo, “cw nonlinear optics in droplet microcavities diplaying enhanced gain,” Phys. Rev. Lett. 73(18), 2440–2443 (1994).
[CrossRef] [PubMed]

Akahane, Y.

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[CrossRef] [PubMed]

Almeida, V. R.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[CrossRef] [PubMed]

Arakawa, Y.

M. Tokushima, H. Yamada, and Y. Arakawa, “1.5 μm-wavelength light guiding in waveguides in square-lattice-of-rod photonic crystal slab,” Appl. Phys. Lett. 84(21), 4298–4300 (2004).
[CrossRef]

Asano, T.

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[CrossRef] [PubMed]

Assefa, S.

S. Assefa, P. T. Rakich, P. Bienstman, S. G. Johnson, G. S. Petrich, J. D. Joannopoulos, L. A. Kolodziejski, E. P. Ippen, and H. I. Smith, “Guiding 1.5 μm light in photonic crystals based on dielectric rods,” Appl. Phys. Lett. 85(25), 6110–6112 (2004).
[CrossRef]

Bahl, M.

Barrios, C. A.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[CrossRef] [PubMed]

Bienstman, P.

S. Assefa, P. T. Rakich, P. Bienstman, S. G. Johnson, G. S. Petrich, J. D. Joannopoulos, L. A. Kolodziejski, E. P. Ippen, and H. I. Smith, “Guiding 1.5 μm light in photonic crystals based on dielectric rods,” Appl. Phys. Lett. 85(25), 6110–6112 (2004).
[CrossRef]

Brinkmeyer, E.

Campillo, A. J.

H. B. Lin and A. J. Campillo, “Microcavity enhanced Raman gain,” Opt. Commun. 133(1–6), 287–292 (1997).
[CrossRef]

H. B. Lin and A. J. Campillo, “cw nonlinear optics in droplet microcavities diplaying enhanced gain,” Phys. Rev. Lett. 73(18), 2440–2443 (1994).
[CrossRef] [PubMed]

Casamassima, B.

V. M. N. Passaro, F. Dell’Olio, B. Casamassima, and F. De Leonardis, “Guided-Wave Optical Biosensors,” Sensors (Basel Switzerland) 7(4), 508–536 (2007).
[CrossRef]

Chan, Y. J.

Chen, C. C.

Chien, H. T.

Chiu, W. Y.

Claps, R.

De Leonardis, F.

V. M. N. Passaro, F. Dell’Olio, B. Casamassima, and F. De Leonardis, “Guided-Wave Optical Biosensors,” Sensors (Basel Switzerland) 7(4), 508–536 (2007).
[CrossRef]

Dell’Olio, F.

V. M. N. Passaro, F. Dell’Olio, B. Casamassima, and F. De Leonardis, “Guided-Wave Optical Biosensors,” Sensors (Basel Switzerland) 7(4), 508–536 (2007).
[CrossRef]

Deotare, P. B.

Q. Quan, P. B. Deotare, and M. Lončar, “Photonic Crystal Nanobeam Cavity Strongly Coupled to the Feeding Waveguide,” Appl. Phys. Lett. 96(20), 203102 (2010).
[CrossRef]

Dimitropoulos, D.

Downes, A.

A. Downes and A. Elfick, “Raman Spectroscopy and Related Techniques in Biomedicine,” Sensors (Basel Switzerland) 10(3), 1871–1889 (2010).
[CrossRef]

Elfick, A.

A. Downes and A. Elfick, “Raman Spectroscopy and Related Techniques in Biomedicine,” Sensors (Basel Switzerland) 10(3), 1871–1889 (2010).
[CrossRef]

Evans, C. L.

C. L. Evans and X. S. Xie, “Coherent anti-stokes Raman scattering microscopy: chemical imaging for biology and medicine,” Annu Rev Anal Chem (Palo Alto Calif) 1(1), 883–909 (2008).
[CrossRef]

Fan, S.

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonics crystals: putting a new twist on light,” Nature 386(6621), 143–149 (1997).
[CrossRef]

Hou, C. H.

Huang, T. W.

Ilchenko, V. S.

A. B. Matsko, A. A. Savchenkov, R. J. Letargat, V. S. Ilchenko, and L. Maleki, “On cavity modification of stimulated Raman scattering,” J. Opt. B Quantum Semiclassical Opt. 5(3), 272–278 (2003).
[CrossRef]

Ippen, E. P.

S. Assefa, P. T. Rakich, P. Bienstman, S. G. Johnson, G. S. Petrich, J. D. Joannopoulos, L. A. Kolodziejski, E. P. Ippen, and H. I. Smith, “Guiding 1.5 μm light in photonic crystals based on dielectric rods,” Appl. Phys. Lett. 85(25), 6110–6112 (2004).
[CrossRef]

Jalali, B.

Joannopoulos, J. D.

S. Assefa, P. T. Rakich, P. Bienstman, S. G. Johnson, G. S. Petrich, J. D. Joannopoulos, L. A. Kolodziejski, E. P. Ippen, and H. I. Smith, “Guiding 1.5 μm light in photonic crystals based on dielectric rods,” Appl. Phys. Lett. 85(25), 6110–6112 (2004).
[CrossRef]

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonics crystals: putting a new twist on light,” Nature 386(6621), 143–149 (1997).
[CrossRef]

Johnson, S. G.

S. Assefa, P. T. Rakich, P. Bienstman, S. G. Johnson, G. S. Petrich, J. D. Joannopoulos, L. A. Kolodziejski, E. P. Ippen, and H. I. Smith, “Guiding 1.5 μm light in photonic crystals based on dielectric rods,” Appl. Phys. Lett. 85(25), 6110–6112 (2004).
[CrossRef]

Kippenberg, T. J.

B. Min, T. J. Kippenberg, and K. J. Vahala, “Compact, fiber-compatible, cascaded Raman laser,” Opt. Lett. 28(17), 1507–1509 (2003).
[CrossRef] [PubMed]

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415(6872), 621–623 (2002).
[CrossRef] [PubMed]

Kolodziejski, L. A.

S. Assefa, P. T. Rakich, P. Bienstman, S. G. Johnson, G. S. Petrich, J. D. Joannopoulos, L. A. Kolodziejski, E. P. Ippen, and H. I. Smith, “Guiding 1.5 μm light in photonic crystals based on dielectric rods,” Appl. Phys. Lett. 85(25), 6110–6112 (2004).
[CrossRef]

Krause, M.

Lee, J. B.

E. Schonbrun, M. Tinker, W. Park, and J. B. Lee, “Negative refraction in a Si-polymer photonic crystal membrane,” IEEE Photon. Technol. Lett. 17(6), 1196–1198 (2005).
[CrossRef]

Letargat, R. J.

A. B. Matsko, A. A. Savchenkov, R. J. Letargat, V. S. Ilchenko, and L. Maleki, “On cavity modification of stimulated Raman scattering,” J. Opt. B Quantum Semiclassical Opt. 5(3), 272–278 (2003).
[CrossRef]

Leung, P. T.

Lin, H. B.

H. B. Lin and A. J. Campillo, “Microcavity enhanced Raman gain,” Opt. Commun. 133(1–6), 287–292 (1997).
[CrossRef]

H. B. Lin and A. J. Campillo, “cw nonlinear optics in droplet microcavities diplaying enhanced gain,” Phys. Rev. Lett. 73(18), 2440–2443 (1994).
[CrossRef] [PubMed]

Lipson, M.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[CrossRef] [PubMed]

Liu, C. P.

Z. Ouyang, X. Luo, J. C. Wang, C. P. Liu, and C. J. Wu, “A combined cavity for high sensitivity THz signal detection,” Proc. SPIE 6840, 684008, 684008-8 (2007).
[CrossRef]

Loncar, M.

Q. Quan, P. B. Deotare, and M. Lončar, “Photonic Crystal Nanobeam Cavity Strongly Coupled to the Feeding Waveguide,” Appl. Phys. Lett. 96(20), 203102 (2010).
[CrossRef]

Luo, X.

Z. Ouyang, X. Luo, J. C. Wang, C. P. Liu, and C. J. Wu, “A combined cavity for high sensitivity THz signal detection,” Proc. SPIE 6840, 684008, 684008-8 (2007).
[CrossRef]

Maleki, L.

A. B. Matsko, A. A. Savchenkov, R. J. Letargat, V. S. Ilchenko, and L. Maleki, “On cavity modification of stimulated Raman scattering,” J. Opt. B Quantum Semiclassical Opt. 5(3), 272–278 (2003).
[CrossRef]

Matsko, A. B.

A. B. Matsko, A. A. Savchenkov, R. J. Letargat, V. S. Ilchenko, and L. Maleki, “On cavity modification of stimulated Raman scattering,” J. Opt. B Quantum Semiclassical Opt. 5(3), 272–278 (2003).
[CrossRef]

Min, B.

Nair, S. V.

T. Xu, S. Yang, S. V. Nair, and H. E. Ruda, “Nanowire-array based photonics crystal cavity by finite-difference time domain calculations,” Phys. Rev. B 75(12), 125104 (2007).
[CrossRef]

Noda, S.

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[CrossRef] [PubMed]

Osgood, R. M.

Ouyang, Z.

Z. Ouyang, X. Luo, J. C. Wang, C. P. Liu, and C. J. Wu, “A combined cavity for high sensitivity THz signal detection,” Proc. SPIE 6840, 684008, 684008-8 (2007).
[CrossRef]

Panepucci, R. R.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[CrossRef] [PubMed]

Panoiu, N. C.

Park, W.

E. Schonbrun, M. Tinker, W. Park, and J. B. Lee, “Negative refraction in a Si-polymer photonic crystal membrane,” IEEE Photon. Technol. Lett. 17(6), 1196–1198 (2005).
[CrossRef]

Passaro, V. M. N.

V. M. N. Passaro, F. Dell’Olio, B. Casamassima, and F. De Leonardis, “Guided-Wave Optical Biosensors,” Sensors (Basel Switzerland) 7(4), 508–536 (2007).
[CrossRef]

Perlin, V. E.

V. E. Perlin and H. G. Winful, “Stimulated Raman Scattering in nonlinear periodic structures,” Phys. Rev. A 64(4), 043804 (2001).
[CrossRef]

Petrich, G. S.

S. Assefa, P. T. Rakich, P. Bienstman, S. G. Johnson, G. S. Petrich, J. D. Joannopoulos, L. A. Kolodziejski, E. P. Ippen, and H. I. Smith, “Guiding 1.5 μm light in photonic crystals based on dielectric rods,” Appl. Phys. Lett. 85(25), 6110–6112 (2004).
[CrossRef]

Quan, Q.

Q. Quan, P. B. Deotare, and M. Lončar, “Photonic Crystal Nanobeam Cavity Strongly Coupled to the Feeding Waveguide,” Appl. Phys. Lett. 96(20), 203102 (2010).
[CrossRef]

Raghunathan, V.

Rakich, P. T.

S. Assefa, P. T. Rakich, P. Bienstman, S. G. Johnson, G. S. Petrich, J. D. Joannopoulos, L. A. Kolodziejski, E. P. Ippen, and H. I. Smith, “Guiding 1.5 μm light in photonic crystals based on dielectric rods,” Appl. Phys. Lett. 85(25), 6110–6112 (2004).
[CrossRef]

Renner, H.

Ruda, H. E.

T. Xu, S. Yang, S. V. Nair, and H. E. Ruda, “Nanowire-array based photonics crystal cavity by finite-difference time domain calculations,” Phys. Rev. B 75(12), 125104 (2007).
[CrossRef]

Savchenkov, A. A.

A. B. Matsko, A. A. Savchenkov, R. J. Letargat, V. S. Ilchenko, and L. Maleki, “On cavity modification of stimulated Raman scattering,” J. Opt. B Quantum Semiclassical Opt. 5(3), 272–278 (2003).
[CrossRef]

Schonbrun, E.

E. Schonbrun, M. Tinker, W. Park, and J. B. Lee, “Negative refraction in a Si-polymer photonic crystal membrane,” IEEE Photon. Technol. Lett. 17(6), 1196–1198 (2005).
[CrossRef]

Smith, H. I.

S. Assefa, P. T. Rakich, P. Bienstman, S. G. Johnson, G. S. Petrich, J. D. Joannopoulos, L. A. Kolodziejski, E. P. Ippen, and H. I. Smith, “Guiding 1.5 μm light in photonic crystals based on dielectric rods,” Appl. Phys. Lett. 85(25), 6110–6112 (2004).
[CrossRef]

Song, B. S.

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[CrossRef] [PubMed]

Spillane, S. M.

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415(6872), 621–623 (2002).
[CrossRef] [PubMed]

Tinker, M.

E. Schonbrun, M. Tinker, W. Park, and J. B. Lee, “Negative refraction in a Si-polymer photonic crystal membrane,” IEEE Photon. Technol. Lett. 17(6), 1196–1198 (2005).
[CrossRef]

Tokushima, M.

M. Tokushima, H. Yamada, and Y. Arakawa, “1.5 μm-wavelength light guiding in waveguides in square-lattice-of-rod photonic crystal slab,” Appl. Phys. Lett. 84(21), 4298–4300 (2004).
[CrossRef]

Vahala, K. J.

B. Min, T. J. Kippenberg, and K. J. Vahala, “Compact, fiber-compatible, cascaded Raman laser,” Opt. Lett. 28(17), 1507–1509 (2003).
[CrossRef] [PubMed]

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415(6872), 621–623 (2002).
[CrossRef] [PubMed]

Villeneuve, P. R.

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonics crystals: putting a new twist on light,” Nature 386(6621), 143–149 (1997).
[CrossRef]

Wang, J. C.

Z. Ouyang, X. Luo, J. C. Wang, C. P. Liu, and C. J. Wu, “A combined cavity for high sensitivity THz signal detection,” Proc. SPIE 6840, 684008, 684008-8 (2007).
[CrossRef]

Winful, H. G.

V. E. Perlin and H. G. Winful, “Stimulated Raman Scattering in nonlinear periodic structures,” Phys. Rev. A 64(4), 043804 (2001).
[CrossRef]

Wong, C. W.

Wu, C. J.

Z. Ouyang, X. Luo, J. C. Wang, C. P. Liu, and C. J. Wu, “A combined cavity for high sensitivity THz signal detection,” Proc. SPIE 6840, 684008, 684008-8 (2007).
[CrossRef]

Wu, Y.

Wu, Y. H.

Xie, X. S.

C. L. Evans and X. S. Xie, “Coherent anti-stokes Raman scattering microscopy: chemical imaging for biology and medicine,” Annu Rev Anal Chem (Palo Alto Calif) 1(1), 883–909 (2008).
[CrossRef]

Xu, T.

T. Xu, S. Yang, S. V. Nair, and H. E. Ruda, “Nanowire-array based photonics crystal cavity by finite-difference time domain calculations,” Phys. Rev. B 75(12), 125104 (2007).
[CrossRef]

Yamada, H.

M. Tokushima, H. Yamada, and Y. Arakawa, “1.5 μm-wavelength light guiding in waveguides in square-lattice-of-rod photonic crystal slab,” Appl. Phys. Lett. 84(21), 4298–4300 (2004).
[CrossRef]

Yang, S.

T. Xu, S. Yang, S. V. Nair, and H. E. Ruda, “Nanowire-array based photonics crystal cavity by finite-difference time domain calculations,” Phys. Rev. B 75(12), 125104 (2007).
[CrossRef]

Yang, X.

Yang, X. D.

Annu Rev Anal Chem (Palo Alto Calif) (1)

C. L. Evans and X. S. Xie, “Coherent anti-stokes Raman scattering microscopy: chemical imaging for biology and medicine,” Annu Rev Anal Chem (Palo Alto Calif) 1(1), 883–909 (2008).
[CrossRef]

Appl. Phys. Lett. (3)

Q. Quan, P. B. Deotare, and M. Lončar, “Photonic Crystal Nanobeam Cavity Strongly Coupled to the Feeding Waveguide,” Appl. Phys. Lett. 96(20), 203102 (2010).
[CrossRef]

S. Assefa, P. T. Rakich, P. Bienstman, S. G. Johnson, G. S. Petrich, J. D. Joannopoulos, L. A. Kolodziejski, E. P. Ippen, and H. I. Smith, “Guiding 1.5 μm light in photonic crystals based on dielectric rods,” Appl. Phys. Lett. 85(25), 6110–6112 (2004).
[CrossRef]

M. Tokushima, H. Yamada, and Y. Arakawa, “1.5 μm-wavelength light guiding in waveguides in square-lattice-of-rod photonic crystal slab,” Appl. Phys. Lett. 84(21), 4298–4300 (2004).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

E. Schonbrun, M. Tinker, W. Park, and J. B. Lee, “Negative refraction in a Si-polymer photonic crystal membrane,” IEEE Photon. Technol. Lett. 17(6), 1196–1198 (2005).
[CrossRef]

J. Opt. B Quantum Semiclassical Opt. (1)

A. B. Matsko, A. A. Savchenkov, R. J. Letargat, V. S. Ilchenko, and L. Maleki, “On cavity modification of stimulated Raman scattering,” J. Opt. B Quantum Semiclassical Opt. 5(3), 272–278 (2003).
[CrossRef]

Nature (4)

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[CrossRef] [PubMed]

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[CrossRef] [PubMed]

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonics crystals: putting a new twist on light,” Nature 386(6621), 143–149 (1997).
[CrossRef]

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415(6872), 621–623 (2002).
[CrossRef] [PubMed]

Opt. Commun. (1)

H. B. Lin and A. J. Campillo, “Microcavity enhanced Raman gain,” Opt. Commun. 133(1–6), 287–292 (1997).
[CrossRef]

Opt. Express (6)

R. Claps, V. Raghunathan, D. Dimitropoulos, and B. Jalali, “Anti-Stokes Raman conversion in silicon waveguides,” Opt. Express 11(22), 2862–2872 (2003), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-11-22-2862 .
[CrossRef] [PubMed]

N. C. Panoiu, M. Bahl, and R. M. Osgood., “All-optical tunability of a nonlinear photonic crystal channel drop filter,” Opt. Express 12(8), 1605–1610 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-8-1605 .
[CrossRef] [PubMed]

M. Krause, H. Renner, and E. Brinkmeyer, “Analysis of Raman lasing characteristics in silicon-on-insulator waveguides,” Opt. Express 12(23), 5703–5710 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-23-5703 .
[CrossRef] [PubMed]

X. Yang and C. W. Wong, “Design of photonic band gap nanocavities for stimulated Raman amplification and lasing in monolithic silicon,” Opt. Express 13(12), 4723–4730 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-12-4723 .
[CrossRef] [PubMed]

X. D. Yang and C. W. Wong, “Coupled-mode theory for stimulated Raman scattering in high-Q/V(m) silicon photonic band gap defect cavity lasers,” Opt. Express 15(8), 4763–4780 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-8-4763 .
[CrossRef] [PubMed]

W. Y. Chiu, T. W. Huang, Y. H. Wu, Y. J. Chan, C. H. Hou, H. T. Chien, and C. C. Chen, “A photonic crystal ring resonator formed by SOI nano-rods,” Opt. Express 15(23), 15500–15506 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-23-15500 .
[CrossRef] [PubMed]

Opt. Lett. (2)

Phys. Rev. A (1)

V. E. Perlin and H. G. Winful, “Stimulated Raman Scattering in nonlinear periodic structures,” Phys. Rev. A 64(4), 043804 (2001).
[CrossRef]

Phys. Rev. B (1)

T. Xu, S. Yang, S. V. Nair, and H. E. Ruda, “Nanowire-array based photonics crystal cavity by finite-difference time domain calculations,” Phys. Rev. B 75(12), 125104 (2007).
[CrossRef]

Phys. Rev. Lett. (1)

H. B. Lin and A. J. Campillo, “cw nonlinear optics in droplet microcavities diplaying enhanced gain,” Phys. Rev. Lett. 73(18), 2440–2443 (1994).
[CrossRef] [PubMed]

Proc. SPIE (1)

Z. Ouyang, X. Luo, J. C. Wang, C. P. Liu, and C. J. Wu, “A combined cavity for high sensitivity THz signal detection,” Proc. SPIE 6840, 684008, 684008-8 (2007).
[CrossRef]

Sensors (Basel Switzerland) (2)

V. M. N. Passaro, F. Dell’Olio, B. Casamassima, and F. De Leonardis, “Guided-Wave Optical Biosensors,” Sensors (Basel Switzerland) 7(4), 508–536 (2007).
[CrossRef]

A. Downes and A. Elfick, “Raman Spectroscopy and Related Techniques in Biomedicine,” Sensors (Basel Switzerland) 10(3), 1871–1889 (2010).
[CrossRef]

Other (5)

C. E. B. A. H. Stein’s PhD thesis, “Stimulated Raman Scattering in Silicon Coupled Photonic Crystal Microcavity Arrays” (Universität Karlsruhe, May 2006), http://www.stanford.edu/group/nqp/jv_files/thesis/Benedikt-Thesis-RamanLaserPC-Design.pdf .

http://www.rsoftdesign.com/ .

R. B. Wehrspohn, H. S. kitzerow, and K. Busch, Nanophotonic Materials: Photonic Crystals, Plasmonics, and Metamaterials (Wiley-VCH, 2008).

C. G. Bostan, R. M. de Ridder, V. J. Gadgil, L. Kuipers, and A. Driessen, “Line-Defect Waveguides in Hexagon-Hole type Photonic Crystal Slabs: Design and Fabrication using Focused Ion Beam Technology,” in Proceedings of Symposium IEEE/LEOS Benelux Chapter (Enschede 2003) pp. 253–256.

T. J. Kippenberg’s PhD thesis, “Nonlinear Optics in Ultra-high-Q Whispering Gallery Mode Micro-cavities” (California Institute of Technology, May 2004), http://www.mpq.mpg.de/k-lab/publications/TJKippenbergThesis.pdf .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of the PC coupled cavities for Raman lasing in silicon. Ports A and B are for the pump, and C and D for Raman scattering waves (output); the cavities marked with yellow and green denote VC-1 and VC-2 , respectively. The waveguide cavity is marked with purple.

Fig. 2
Fig. 2

(a) Resonant frequencies of the pump, and Stokes modes within the photonic band gap for Design (I). (b) Q and modal volume for pump as a function of the radius of R3 , while fixing l1 = l2 = 3a, and R1 = R2 = 0.2a.

Fig. 3
Fig. 3

The electric field profiles of pump mode and Stokes mode: (a) and (b) for Design (I); (c) and (d) for Design II. The dot cavity and the waveguide cavity share the same resonant wavelength of the pump in (a); (c) describes the worst coupling between the dot and the waveguide cavities. (b) and (d) demonstrate the Stokes modes that are localized in VC-1 and VC-2 . The modal overlap ξ of (a) and (b) is much smaller than that of (c) and (d). Note that the simulation shown here was performed with Rsoft’s component design suit: Fullwave [12], using the definitions given by Eq. (2).

Fig. 4
Fig. 4

The normalized resonant frequencies of the pump, Stokes and anti-Stokes modes for Design III. These are within the photonic band gap. The Stokes mode is localized in VC-1 , while the anti-Stokes mode is in VC-2 . There exists one extra mode in VC-1 , however only Stokes mode will be excited when the pump wavelength is fixed, according to Eq. (6).

Fig. 5
Fig. 5

The electric field profiles of Stokes mode (a) and anti-Stokes mode (b) for Design IV.

Tables (2)

Tables Icon

Table 1 Design summary of PC coupled cavities for Raman lasing (Stokes) in silicon

Tables Icon

Table 2 Design summary of photonic crystal coupled cavities for Raman lasing (Stokes and anti-Stokes) in silicon

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

P t h = π 2 n S n p ξ g S λ S λ p V m Q S Q p
E p , S ( r , t ) = P p , S G p , S ( r ) T p , S ( t )
G p , S ( r ) = g ^ ( r ) e i k p , S ( r r 0 )
g ^ ( r ) = g ^ ( x x ^ , y 0 y ^ , z z ^ ) = e ( x x 0 ) 2 a 1 2 e ( y y 0 ) 2 b 1 2 y ^
T p , S ( t ) = e ω p , S t
Δ f = f p f S = 15.6 T H z

Metrics