Abstract

Spectrally encoded endoscopy (SEE) uses single optical fiber and miniature diffractive optics to allow imaging through a miniature probe. Utilizing Fourier-domain interferometry, SEE was shown capable of video-rate three-dimensional imaging, albeit at limited depth of field due to the limited spectral resolution of the detection spectrometer. We show that by using dispersion management at the reference arm of the interferometer, the tilt and curvature of the field of view could be adjusted without modifying the endoscopic probe itself. By controlling the group velocity dispersion, this technique is demonstrated useful for imaging specimen regions which reside outside the system's depth of field. This approach could be used to improve usability, functionality and image quality of SEE without affecting probe size and flexibility.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Knittel, L. Schnieder, G. Buess, B. Messerschmidt, and T. Possner, “Endoscope-compatible confocal microscope using a gradient index-lens system,” Opt. Commun. 188(5-6), 267–273 (2001).
    [CrossRef]
  2. Y. S. Sabharwal, A. R. Rouse, L. Donaldson, M. F. Hopkins, and A. F. Gmitro, “Slit-scanning confocal microendoscope for high-resolution in vivo imaging,” Appl. Opt. 38(34), 7133–7144 (1999).
    [CrossRef]
  3. H. Schoffl, S. M. Froschauer, R. Hainisch, D. Hager, R. Schnelzer, O. Kwasny, and G. M. Huemer, “Intraluminal endoscopic evaluation of microvascular anastomosis,” J. Plast. Reconstr. Aesthet. Surg. 61(4), 388–392 (2008).
    [CrossRef]
  4. J. T. Sun, C. H. Shu, B. Appiah, and R. Drezek, “Needle-compatible single fiber bundle image guide reflectance endoscope,” J. Biomed. Opt. 15(4), 040502 (2010).
    [CrossRef] [PubMed]
  5. C. M. Brown, P. G. Reinhall, S. Karasawa, and E. J. Seibel, “Optomechanical design and fabrication of resonant microscanners for a scanning fiber endoscope,” Opt. Eng. 45(4), 043001–043010 (2006).
    [CrossRef]
  6. D. L. Dickensheets and G. S. Kino, “Micromachined scanning confocal optical microscope,” Opt. Lett. 21(10), 764–766 (1996).
    [CrossRef] [PubMed]
  7. C. M. Lee, C. J. Engelbrecht, T. D. Soper, F. Helmchen, and E. J. Seibel, “Scanning fiber endoscopy with highly flexible, 1 mm catheterscopes for wide-field, full-color imaging,” J Biophotonics 3(5-6), 385–407 (2010).
    [CrossRef] [PubMed]
  8. G. J. Tearney, M. Shishkov, and B. E. Bouma, “Spectrally encoded miniature endoscopy,” Opt. Lett. 27(6), 412–414 (2002).
    [CrossRef]
  9. D. Yelin, I. Rizvi, W. M. White, J. T. Motz, T. Hasan, B. E. Bouma, and G. J. Tearney, “Three-dimensional miniature endoscopy,” Nature 443(7113), 765–765 (2006).
    [CrossRef] [PubMed]
  10. D. Yelin, W. M. White, J. T. Motz, S. H. Yun, B. E. Bouma, and G. J. Tearney, “Spectral-domain spectrally-encoded endoscopy,” Opt. Express 15(5), 2432–2444 (2007).
    [CrossRef] [PubMed]
  11. D. Yelin, B. E. Bouma, and G. J. Tearney, “Volumetric sub-surface imaging using spectrally encoded endoscopy,” Opt. Express 16(3), 1748–1757 (2008).
    [CrossRef] [PubMed]
  12. D. Yelin, B. E. Bouma, J. J. Rosowsky, and G. J. Tearney, “Doppler imaging using spectrally-encoded endoscopy,” Opt. Express 16(19), 14836–14844 (2008).
    [CrossRef] [PubMed]
  13. R. Leitgeb, C. Hitzenberger, and A. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express 11(8), 889–894 (2003).
    [CrossRef] [PubMed]
  14. M. Merman, A. Abramov, and D. Yelin, “Theoretical analysis of spectrally encoded endoscopy,” Opt. Express 17(26), 24045–24059 (2009).
    [CrossRef]
  15. G. J. Tearney, B. E. Bouma, and J. G. Fujimoto, “High-speed phase- and group-delay scanning with a grating-based phase control delay line,” Opt. Lett. 22(23), 1811–1813 (1997).
    [CrossRef]
  16. C. H. Brito Cruz, P. C. Becker, R. L. Fork, and C. V. Shank, “Phase correction of femtosecond optical pulses using a combination of prisms and gratings,” Opt. Lett. 13(2), 123–125 (1988).
    [CrossRef] [PubMed]
  17. R. L. Fork, O. E. Martinez, and J. P. Gordon, “Negative dispersion using pairs of prisms,” Opt. Lett. 9(5), 150–152 (1984).
    [CrossRef] [PubMed]
  18. O. E. Martinez, J. P. Gordon, and R. L. Fork, “Negative group-velocity dispersion using refraction,” J. Opt. Soc. Am. A 1(10), 1003–1006 (1984).
    [CrossRef]
  19. E. Treacy, “Optical pulse compression with diffraction gratings,” IEEE J. Quantum Electron. 5(9), 454–458 (1969).
    [CrossRef]
  20. D. Yelin, S. H. Yun, B. E. Bouma, and G. J. Tearney, “Three-dimensional imaging using spectral encoding heterodyne interferometry,” Opt. Lett. 30(14), 1794–1796 (2005).
    [CrossRef] [PubMed]

2010

J. T. Sun, C. H. Shu, B. Appiah, and R. Drezek, “Needle-compatible single fiber bundle image guide reflectance endoscope,” J. Biomed. Opt. 15(4), 040502 (2010).
[CrossRef] [PubMed]

C. M. Lee, C. J. Engelbrecht, T. D. Soper, F. Helmchen, and E. J. Seibel, “Scanning fiber endoscopy with highly flexible, 1 mm catheterscopes for wide-field, full-color imaging,” J Biophotonics 3(5-6), 385–407 (2010).
[CrossRef] [PubMed]

2009

2008

2007

2006

D. Yelin, I. Rizvi, W. M. White, J. T. Motz, T. Hasan, B. E. Bouma, and G. J. Tearney, “Three-dimensional miniature endoscopy,” Nature 443(7113), 765–765 (2006).
[CrossRef] [PubMed]

C. M. Brown, P. G. Reinhall, S. Karasawa, and E. J. Seibel, “Optomechanical design and fabrication of resonant microscanners for a scanning fiber endoscope,” Opt. Eng. 45(4), 043001–043010 (2006).
[CrossRef]

2005

2003

2002

2001

J. Knittel, L. Schnieder, G. Buess, B. Messerschmidt, and T. Possner, “Endoscope-compatible confocal microscope using a gradient index-lens system,” Opt. Commun. 188(5-6), 267–273 (2001).
[CrossRef]

1999

1997

1996

1988

1984

1969

E. Treacy, “Optical pulse compression with diffraction gratings,” IEEE J. Quantum Electron. 5(9), 454–458 (1969).
[CrossRef]

Abramov, A.

Appiah, B.

J. T. Sun, C. H. Shu, B. Appiah, and R. Drezek, “Needle-compatible single fiber bundle image guide reflectance endoscope,” J. Biomed. Opt. 15(4), 040502 (2010).
[CrossRef] [PubMed]

Becker, P. C.

Bouma, B. E.

Brito Cruz, C. H.

Brown, C. M.

C. M. Brown, P. G. Reinhall, S. Karasawa, and E. J. Seibel, “Optomechanical design and fabrication of resonant microscanners for a scanning fiber endoscope,” Opt. Eng. 45(4), 043001–043010 (2006).
[CrossRef]

Buess, G.

J. Knittel, L. Schnieder, G. Buess, B. Messerschmidt, and T. Possner, “Endoscope-compatible confocal microscope using a gradient index-lens system,” Opt. Commun. 188(5-6), 267–273 (2001).
[CrossRef]

Dickensheets, D. L.

Donaldson, L.

Drezek, R.

J. T. Sun, C. H. Shu, B. Appiah, and R. Drezek, “Needle-compatible single fiber bundle image guide reflectance endoscope,” J. Biomed. Opt. 15(4), 040502 (2010).
[CrossRef] [PubMed]

Engelbrecht, C. J.

C. M. Lee, C. J. Engelbrecht, T. D. Soper, F. Helmchen, and E. J. Seibel, “Scanning fiber endoscopy with highly flexible, 1 mm catheterscopes for wide-field, full-color imaging,” J Biophotonics 3(5-6), 385–407 (2010).
[CrossRef] [PubMed]

Fercher, A.

Fork, R. L.

Froschauer, S. M.

H. Schoffl, S. M. Froschauer, R. Hainisch, D. Hager, R. Schnelzer, O. Kwasny, and G. M. Huemer, “Intraluminal endoscopic evaluation of microvascular anastomosis,” J. Plast. Reconstr. Aesthet. Surg. 61(4), 388–392 (2008).
[CrossRef]

Fujimoto, J. G.

Gmitro, A. F.

Gordon, J. P.

Hager, D.

H. Schoffl, S. M. Froschauer, R. Hainisch, D. Hager, R. Schnelzer, O. Kwasny, and G. M. Huemer, “Intraluminal endoscopic evaluation of microvascular anastomosis,” J. Plast. Reconstr. Aesthet. Surg. 61(4), 388–392 (2008).
[CrossRef]

Hainisch, R.

H. Schoffl, S. M. Froschauer, R. Hainisch, D. Hager, R. Schnelzer, O. Kwasny, and G. M. Huemer, “Intraluminal endoscopic evaluation of microvascular anastomosis,” J. Plast. Reconstr. Aesthet. Surg. 61(4), 388–392 (2008).
[CrossRef]

Hasan, T.

D. Yelin, I. Rizvi, W. M. White, J. T. Motz, T. Hasan, B. E. Bouma, and G. J. Tearney, “Three-dimensional miniature endoscopy,” Nature 443(7113), 765–765 (2006).
[CrossRef] [PubMed]

Helmchen, F.

C. M. Lee, C. J. Engelbrecht, T. D. Soper, F. Helmchen, and E. J. Seibel, “Scanning fiber endoscopy with highly flexible, 1 mm catheterscopes for wide-field, full-color imaging,” J Biophotonics 3(5-6), 385–407 (2010).
[CrossRef] [PubMed]

Hitzenberger, C.

Hopkins, M. F.

Huemer, G. M.

H. Schoffl, S. M. Froschauer, R. Hainisch, D. Hager, R. Schnelzer, O. Kwasny, and G. M. Huemer, “Intraluminal endoscopic evaluation of microvascular anastomosis,” J. Plast. Reconstr. Aesthet. Surg. 61(4), 388–392 (2008).
[CrossRef]

Karasawa, S.

C. M. Brown, P. G. Reinhall, S. Karasawa, and E. J. Seibel, “Optomechanical design and fabrication of resonant microscanners for a scanning fiber endoscope,” Opt. Eng. 45(4), 043001–043010 (2006).
[CrossRef]

Kino, G. S.

Knittel, J.

J. Knittel, L. Schnieder, G. Buess, B. Messerschmidt, and T. Possner, “Endoscope-compatible confocal microscope using a gradient index-lens system,” Opt. Commun. 188(5-6), 267–273 (2001).
[CrossRef]

Kwasny, O.

H. Schoffl, S. M. Froschauer, R. Hainisch, D. Hager, R. Schnelzer, O. Kwasny, and G. M. Huemer, “Intraluminal endoscopic evaluation of microvascular anastomosis,” J. Plast. Reconstr. Aesthet. Surg. 61(4), 388–392 (2008).
[CrossRef]

Lee, C. M.

C. M. Lee, C. J. Engelbrecht, T. D. Soper, F. Helmchen, and E. J. Seibel, “Scanning fiber endoscopy with highly flexible, 1 mm catheterscopes for wide-field, full-color imaging,” J Biophotonics 3(5-6), 385–407 (2010).
[CrossRef] [PubMed]

Leitgeb, R.

Martinez, O. E.

Merman, M.

Messerschmidt, B.

J. Knittel, L. Schnieder, G. Buess, B. Messerschmidt, and T. Possner, “Endoscope-compatible confocal microscope using a gradient index-lens system,” Opt. Commun. 188(5-6), 267–273 (2001).
[CrossRef]

Motz, J. T.

D. Yelin, W. M. White, J. T. Motz, S. H. Yun, B. E. Bouma, and G. J. Tearney, “Spectral-domain spectrally-encoded endoscopy,” Opt. Express 15(5), 2432–2444 (2007).
[CrossRef] [PubMed]

D. Yelin, I. Rizvi, W. M. White, J. T. Motz, T. Hasan, B. E. Bouma, and G. J. Tearney, “Three-dimensional miniature endoscopy,” Nature 443(7113), 765–765 (2006).
[CrossRef] [PubMed]

Possner, T.

J. Knittel, L. Schnieder, G. Buess, B. Messerschmidt, and T. Possner, “Endoscope-compatible confocal microscope using a gradient index-lens system,” Opt. Commun. 188(5-6), 267–273 (2001).
[CrossRef]

Reinhall, P. G.

C. M. Brown, P. G. Reinhall, S. Karasawa, and E. J. Seibel, “Optomechanical design and fabrication of resonant microscanners for a scanning fiber endoscope,” Opt. Eng. 45(4), 043001–043010 (2006).
[CrossRef]

Rizvi, I.

D. Yelin, I. Rizvi, W. M. White, J. T. Motz, T. Hasan, B. E. Bouma, and G. J. Tearney, “Three-dimensional miniature endoscopy,” Nature 443(7113), 765–765 (2006).
[CrossRef] [PubMed]

Rosowsky, J. J.

Rouse, A. R.

Sabharwal, Y. S.

Schnelzer, R.

H. Schoffl, S. M. Froschauer, R. Hainisch, D. Hager, R. Schnelzer, O. Kwasny, and G. M. Huemer, “Intraluminal endoscopic evaluation of microvascular anastomosis,” J. Plast. Reconstr. Aesthet. Surg. 61(4), 388–392 (2008).
[CrossRef]

Schnieder, L.

J. Knittel, L. Schnieder, G. Buess, B. Messerschmidt, and T. Possner, “Endoscope-compatible confocal microscope using a gradient index-lens system,” Opt. Commun. 188(5-6), 267–273 (2001).
[CrossRef]

Schoffl, H.

H. Schoffl, S. M. Froschauer, R. Hainisch, D. Hager, R. Schnelzer, O. Kwasny, and G. M. Huemer, “Intraluminal endoscopic evaluation of microvascular anastomosis,” J. Plast. Reconstr. Aesthet. Surg. 61(4), 388–392 (2008).
[CrossRef]

Seibel, E. J.

C. M. Lee, C. J. Engelbrecht, T. D. Soper, F. Helmchen, and E. J. Seibel, “Scanning fiber endoscopy with highly flexible, 1 mm catheterscopes for wide-field, full-color imaging,” J Biophotonics 3(5-6), 385–407 (2010).
[CrossRef] [PubMed]

C. M. Brown, P. G. Reinhall, S. Karasawa, and E. J. Seibel, “Optomechanical design and fabrication of resonant microscanners for a scanning fiber endoscope,” Opt. Eng. 45(4), 043001–043010 (2006).
[CrossRef]

Shank, C. V.

Shishkov, M.

Shu, C. H.

J. T. Sun, C. H. Shu, B. Appiah, and R. Drezek, “Needle-compatible single fiber bundle image guide reflectance endoscope,” J. Biomed. Opt. 15(4), 040502 (2010).
[CrossRef] [PubMed]

Soper, T. D.

C. M. Lee, C. J. Engelbrecht, T. D. Soper, F. Helmchen, and E. J. Seibel, “Scanning fiber endoscopy with highly flexible, 1 mm catheterscopes for wide-field, full-color imaging,” J Biophotonics 3(5-6), 385–407 (2010).
[CrossRef] [PubMed]

Sun, J. T.

J. T. Sun, C. H. Shu, B. Appiah, and R. Drezek, “Needle-compatible single fiber bundle image guide reflectance endoscope,” J. Biomed. Opt. 15(4), 040502 (2010).
[CrossRef] [PubMed]

Tearney, G. J.

Treacy, E.

E. Treacy, “Optical pulse compression with diffraction gratings,” IEEE J. Quantum Electron. 5(9), 454–458 (1969).
[CrossRef]

White, W. M.

D. Yelin, W. M. White, J. T. Motz, S. H. Yun, B. E. Bouma, and G. J. Tearney, “Spectral-domain spectrally-encoded endoscopy,” Opt. Express 15(5), 2432–2444 (2007).
[CrossRef] [PubMed]

D. Yelin, I. Rizvi, W. M. White, J. T. Motz, T. Hasan, B. E. Bouma, and G. J. Tearney, “Three-dimensional miniature endoscopy,” Nature 443(7113), 765–765 (2006).
[CrossRef] [PubMed]

Yelin, D.

Yun, S. H.

Appl. Opt.

IEEE J. Quantum Electron.

E. Treacy, “Optical pulse compression with diffraction gratings,” IEEE J. Quantum Electron. 5(9), 454–458 (1969).
[CrossRef]

J Biophotonics

C. M. Lee, C. J. Engelbrecht, T. D. Soper, F. Helmchen, and E. J. Seibel, “Scanning fiber endoscopy with highly flexible, 1 mm catheterscopes for wide-field, full-color imaging,” J Biophotonics 3(5-6), 385–407 (2010).
[CrossRef] [PubMed]

J. Biomed. Opt.

J. T. Sun, C. H. Shu, B. Appiah, and R. Drezek, “Needle-compatible single fiber bundle image guide reflectance endoscope,” J. Biomed. Opt. 15(4), 040502 (2010).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A

J. Plast. Reconstr. Aesthet. Surg.

H. Schoffl, S. M. Froschauer, R. Hainisch, D. Hager, R. Schnelzer, O. Kwasny, and G. M. Huemer, “Intraluminal endoscopic evaluation of microvascular anastomosis,” J. Plast. Reconstr. Aesthet. Surg. 61(4), 388–392 (2008).
[CrossRef]

Nature

D. Yelin, I. Rizvi, W. M. White, J. T. Motz, T. Hasan, B. E. Bouma, and G. J. Tearney, “Three-dimensional miniature endoscopy,” Nature 443(7113), 765–765 (2006).
[CrossRef] [PubMed]

Opt. Commun.

J. Knittel, L. Schnieder, G. Buess, B. Messerschmidt, and T. Possner, “Endoscope-compatible confocal microscope using a gradient index-lens system,” Opt. Commun. 188(5-6), 267–273 (2001).
[CrossRef]

Opt. Eng.

C. M. Brown, P. G. Reinhall, S. Karasawa, and E. J. Seibel, “Optomechanical design and fabrication of resonant microscanners for a scanning fiber endoscope,” Opt. Eng. 45(4), 043001–043010 (2006).
[CrossRef]

Opt. Express

Opt. Lett.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic illustration of the relative sample and reference optical paths. Here, the reference path length zr is assumed to be equal for all ω’s.

Fig. 2
Fig. 2

A schematic of the Fourier domain spectrally encoded imaging system. The effective cross-sectional imaging range without dispersion difference between the two arms is marked by the color gradient area. Two examples for possible sample orientations are shown: a nearly parallel sample (surface marked by dashed line) and a nearly perpendicular sample (dotted surface). Thick dotted and dashed lines correspond to the surface regions that could be imaged with the uncorrected field of view. PC – polarization controller, G – diffraction grating, ND – neutral density filter.

Fig. 3
Fig. 3

Images of a portion of a resolution target acquired by Fourier-domain spectrally encoded imaging, with the target positioned in parallel to probe axis (a) before and (b) after the addition of 62 cm fiber in the reference arm. Images are presented using a logarithmic look-up table. Scale bars represent 1 mm. Schematic illustrations of the relative positions of the probe, the field of view and the target (represented by straight black line) are shown adjacent to the images.

Fig. 4
Fig. 4

Images of a portion of a resolution target acquired by Fourier-domain spectrally encoded imaging, with the target positioned perpendicular to main optical axis (a) before and (b) after the introduction of negative GVD at the reference arm. Images are presented using a logarithmic look-up table. Scale bars represent 1 mm. Schematic illustrations of the relative positions of the probe, the field of view and the target (represented by straight black line) are shown adjacent to the images.

Fig. 5
Fig. 5

Images of a bovine stapes acquired by Fourier domain spectrally encoded imaging. The reflectivity image is shown (a) without image plane correction and (b) after image plane correction using a negative GVD filter at the reference arm. Scale bars represent 1 mm. FP – foot plate, C - crus, H – head.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

τ ( ω m ) = d φ ( ω ) d ω | ω m = z ( ω m ) c ,
z ( ω m ) = z ( ω 0 ) + d z d ω | ω 0 ( ω m ω 0 ) + 1 2 d 2 z d ω 2 | ω 0 ( ω m ω 0 ) 2 + ...    ,
φ ( ω ) = φ 0 + d φ ( ω ) d ω | ω 0 ( ω ω 0 ) + 1 2 d 2 φ ( ω ) d ω 2 | ω 0 ( ω ω 0 ) 2 + 1 6 d 3 φ ( ω ) d ω 3 | ω 0 ( ω ω 0 ) 3 + ...     .
c d φ d ω | ω 0 + c d 2 φ d ω 2 | ω 0 ( ω m ω 0 ) + c 2 d 3 φ d ω 3 | ω 0 ( ω m ω 0 ) 2 + ... =                                            = z ( ω 0 ) + d z d ω | ω 0 ( ω m ω 0 ) + 1 2 d 2 z d ω 2 | ω 0 ( ω m ω 0 ) 2 + ...    .
z ( ω 0 ) = c d φ ( ω ) d ω | ω 0 ,
d z d ω | ω 0 = c d 2 φ ( ω ) d ω 2 | ω 0 ,
d 2 z d ω 2 | ω 0 = c d 3 φ ( ω ) d ω 3 | ω 0 .
δ x 2 π z 0 G c ω 2 cos θ δ ω ,
d 2 φ ( ω ) d ω 2 | ω 0 = 2 π G z 0 cos θ 0 ω 0 2 tan α   ,
d 2 φ ( ω ) d ω 2 | ω 0 = k ' ' ( ω 0 ) l d ,
d 2 φ G P ( ω ) d ω 2 | ω 0 = 4 π 2 c G 2 b ω 0 3 cos 3 θ

Metrics