Abstract

We preserve optical nonlinear properties of single-walled carbon nanotubes (SWNTs) within SiO2-host employing aerosol deposition (AD) that guarantees the formation of dense ceramic thick films at room temperature without combustion and solubility limitation of the SWNTs. The intact nonlinearity is verified with transmittance check, Raman spectrometry and electron microscopes. As a saturable absorption device, the SiO2-SWNT composite film successfully mode-locks fiber lasers inducing high-quality output pulses with the measured pulse duration and repetition rate of 890 fs and 9.52 MHz, respectively. After experiencing the intracavity power higher than 20 dBm, the hosted SWNTs are survived to function as the pulse formers.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol. 3(12), 738–742 (2008).
    [CrossRef] [PubMed]
  2. S. Tatsuura, M. Furuki, Y. Sato, I. Iwasa, M. Tian, and H. Mitsu, “Semiconductor carbon nanotubes a ultrafast switching materials for optical telecommunications,” Adv. Mater. 15(6), 534–537 (2003).
    [CrossRef]
  3. S. Y. Set, H. Yaguchi, Y. Tanaka, and M. Jablonski, “Ultrafast fiber pulsed lasers incorporating carbon nanotubes,” IEEE J. Sel. Top. Quantum Electron. 10(1), 137–146 (2004).
    [CrossRef]
  4. T. R. Schibli, K. Minoshima, H. Kataura, E. Itoga, N. Minami, S. Kazaoui, K. Miyashita, M. Tokumoto, and Y. Sakakibara, “Ultrashort pulse-generation by saturable absorber mirrors based on polymer-embedded carbon nanotubes,” Opt. Express 13(20), 8025–8031 (2005).
    [CrossRef] [PubMed]
  5. Y. W. Song, S. Yamashita, and S. Maruyama, “Single-walled carbon nanotubes for high-energy optical pulse formation,” Appl. Phys. Lett. 92(2), 021115 (2008).
    [CrossRef]
  6. Z. Xia, L. Riester, W. A. Curtin, H. Li, B. W. Sheldon, J. Liang, B. Chang, and J. M. Xu, “Direct observation of toughening mechanisms in carbon nanotube ceramic matrix composites,” Acta Mater. 52(4), 931–944 (2004).
    [CrossRef]
  7. R. Andrews and M. C. Weisenberger, “Carbon nanotube polymer composites,” Curr. Opin. Solid. St. M. 8(1), 31–37 (2004).
    [CrossRef]
  8. H. G. Chae, M. L. Minus, A. Rasheed, and S. Kumar, “Stabilization and carbonization of gel spun polyacrylonitrile/single wall carbon nanotube composite fibers,” Polymer (Guildf.) 48(13), 3781–3789 (2007).
    [CrossRef]
  9. Y. W. Song, K. H. Fong, S. Y. Set, K. Kikuchi, and S. Yamashita, “Carbon nanotube-incorporated sol–gel glass for high-speed modulation of intracavity absorption of fiber lasers,” Opt. Commun. 283(19), 3740–3742 (2010).
    [CrossRef]
  10. V. V. Ravi Kanth Kumar, A. K. George, W. H. Reeves, J. C. Knight, and P. St J. Russell, “Extruded soft glass photonic crystal fiber for ultrabroad supercontinuum generation,” Opt. Express 10, 1520–1525 (2002).
  11. V. G. Gavalas, R. Andrews, D. Bhattacharyya, and L. G. Bachas, “Carbon nanotube sol-gel composite materials,” Nano Lett. 1(12), 719–721 (2001).
    [CrossRef]
  12. A. G. Rozhin, Y. Sakakibara, S. Namiki, M. Tokumoto, H. Kataura, and Y. Achiba, “Sub-200-fs pulsed erbiumdoped fiber laser using a carbon nanotube-polyvinylalcohol mode locker,” Appl. Phys. Lett. 88(5), 051118 (2006).
    [CrossRef]
  13. N. R. Pradhan and G. S. Iannacchione, “Relaxation dynamics of glass transition in PMMA+SWCNT composites by temperature-modulated DSC,” J. Phys. D Appl. Phys. 43(10), 105401 (2010).
    [CrossRef]
  14. J. Akedo, “Room temperature impact consolidation (RTIC) of fine ceramic powder by aerosol deposition method and applications to microdevices,” J. Therm. Spray Tech. 17(2), 181–198 (2008).
    [CrossRef]
  15. S. M. Nam, N. Mori, H. Kakemoto, S. Wada, J. Akedo, and T. Tsurumi, “Alumina thick films as integral substrates using aAerosol deposition method,” Jpn. J. Appl. Phys. 43(No. 8A), 5414–5418 (2004).
    [CrossRef]

2010

Y. W. Song, K. H. Fong, S. Y. Set, K. Kikuchi, and S. Yamashita, “Carbon nanotube-incorporated sol–gel glass for high-speed modulation of intracavity absorption of fiber lasers,” Opt. Commun. 283(19), 3740–3742 (2010).
[CrossRef]

N. R. Pradhan and G. S. Iannacchione, “Relaxation dynamics of glass transition in PMMA+SWCNT composites by temperature-modulated DSC,” J. Phys. D Appl. Phys. 43(10), 105401 (2010).
[CrossRef]

2008

J. Akedo, “Room temperature impact consolidation (RTIC) of fine ceramic powder by aerosol deposition method and applications to microdevices,” J. Therm. Spray Tech. 17(2), 181–198 (2008).
[CrossRef]

Y. W. Song, S. Yamashita, and S. Maruyama, “Single-walled carbon nanotubes for high-energy optical pulse formation,” Appl. Phys. Lett. 92(2), 021115 (2008).
[CrossRef]

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol. 3(12), 738–742 (2008).
[CrossRef] [PubMed]

2007

H. G. Chae, M. L. Minus, A. Rasheed, and S. Kumar, “Stabilization and carbonization of gel spun polyacrylonitrile/single wall carbon nanotube composite fibers,” Polymer (Guildf.) 48(13), 3781–3789 (2007).
[CrossRef]

2006

A. G. Rozhin, Y. Sakakibara, S. Namiki, M. Tokumoto, H. Kataura, and Y. Achiba, “Sub-200-fs pulsed erbiumdoped fiber laser using a carbon nanotube-polyvinylalcohol mode locker,” Appl. Phys. Lett. 88(5), 051118 (2006).
[CrossRef]

2005

2004

S. Y. Set, H. Yaguchi, Y. Tanaka, and M. Jablonski, “Ultrafast fiber pulsed lasers incorporating carbon nanotubes,” IEEE J. Sel. Top. Quantum Electron. 10(1), 137–146 (2004).
[CrossRef]

Z. Xia, L. Riester, W. A. Curtin, H. Li, B. W. Sheldon, J. Liang, B. Chang, and J. M. Xu, “Direct observation of toughening mechanisms in carbon nanotube ceramic matrix composites,” Acta Mater. 52(4), 931–944 (2004).
[CrossRef]

R. Andrews and M. C. Weisenberger, “Carbon nanotube polymer composites,” Curr. Opin. Solid. St. M. 8(1), 31–37 (2004).
[CrossRef]

S. M. Nam, N. Mori, H. Kakemoto, S. Wada, J. Akedo, and T. Tsurumi, “Alumina thick films as integral substrates using aAerosol deposition method,” Jpn. J. Appl. Phys. 43(No. 8A), 5414–5418 (2004).
[CrossRef]

2003

S. Tatsuura, M. Furuki, Y. Sato, I. Iwasa, M. Tian, and H. Mitsu, “Semiconductor carbon nanotubes a ultrafast switching materials for optical telecommunications,” Adv. Mater. 15(6), 534–537 (2003).
[CrossRef]

2002

2001

V. G. Gavalas, R. Andrews, D. Bhattacharyya, and L. G. Bachas, “Carbon nanotube sol-gel composite materials,” Nano Lett. 1(12), 719–721 (2001).
[CrossRef]

Achiba, Y.

A. G. Rozhin, Y. Sakakibara, S. Namiki, M. Tokumoto, H. Kataura, and Y. Achiba, “Sub-200-fs pulsed erbiumdoped fiber laser using a carbon nanotube-polyvinylalcohol mode locker,” Appl. Phys. Lett. 88(5), 051118 (2006).
[CrossRef]

Akedo, J.

J. Akedo, “Room temperature impact consolidation (RTIC) of fine ceramic powder by aerosol deposition method and applications to microdevices,” J. Therm. Spray Tech. 17(2), 181–198 (2008).
[CrossRef]

S. M. Nam, N. Mori, H. Kakemoto, S. Wada, J. Akedo, and T. Tsurumi, “Alumina thick films as integral substrates using aAerosol deposition method,” Jpn. J. Appl. Phys. 43(No. 8A), 5414–5418 (2004).
[CrossRef]

Andrews, R.

R. Andrews and M. C. Weisenberger, “Carbon nanotube polymer composites,” Curr. Opin. Solid. St. M. 8(1), 31–37 (2004).
[CrossRef]

V. G. Gavalas, R. Andrews, D. Bhattacharyya, and L. G. Bachas, “Carbon nanotube sol-gel composite materials,” Nano Lett. 1(12), 719–721 (2001).
[CrossRef]

Bachas, L. G.

V. G. Gavalas, R. Andrews, D. Bhattacharyya, and L. G. Bachas, “Carbon nanotube sol-gel composite materials,” Nano Lett. 1(12), 719–721 (2001).
[CrossRef]

Bhattacharyya, D.

V. G. Gavalas, R. Andrews, D. Bhattacharyya, and L. G. Bachas, “Carbon nanotube sol-gel composite materials,” Nano Lett. 1(12), 719–721 (2001).
[CrossRef]

Chae, H. G.

H. G. Chae, M. L. Minus, A. Rasheed, and S. Kumar, “Stabilization and carbonization of gel spun polyacrylonitrile/single wall carbon nanotube composite fibers,” Polymer (Guildf.) 48(13), 3781–3789 (2007).
[CrossRef]

Chang, B.

Z. Xia, L. Riester, W. A. Curtin, H. Li, B. W. Sheldon, J. Liang, B. Chang, and J. M. Xu, “Direct observation of toughening mechanisms in carbon nanotube ceramic matrix composites,” Acta Mater. 52(4), 931–944 (2004).
[CrossRef]

Curtin, W. A.

Z. Xia, L. Riester, W. A. Curtin, H. Li, B. W. Sheldon, J. Liang, B. Chang, and J. M. Xu, “Direct observation of toughening mechanisms in carbon nanotube ceramic matrix composites,” Acta Mater. 52(4), 931–944 (2004).
[CrossRef]

Ferrari, A. C.

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol. 3(12), 738–742 (2008).
[CrossRef] [PubMed]

Fong, K. H.

Y. W. Song, K. H. Fong, S. Y. Set, K. Kikuchi, and S. Yamashita, “Carbon nanotube-incorporated sol–gel glass for high-speed modulation of intracavity absorption of fiber lasers,” Opt. Commun. 283(19), 3740–3742 (2010).
[CrossRef]

Furuki, M.

S. Tatsuura, M. Furuki, Y. Sato, I. Iwasa, M. Tian, and H. Mitsu, “Semiconductor carbon nanotubes a ultrafast switching materials for optical telecommunications,” Adv. Mater. 15(6), 534–537 (2003).
[CrossRef]

Gavalas, V. G.

V. G. Gavalas, R. Andrews, D. Bhattacharyya, and L. G. Bachas, “Carbon nanotube sol-gel composite materials,” Nano Lett. 1(12), 719–721 (2001).
[CrossRef]

George, A. K.

Hennrich, F.

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol. 3(12), 738–742 (2008).
[CrossRef] [PubMed]

Iannacchione, G. S.

N. R. Pradhan and G. S. Iannacchione, “Relaxation dynamics of glass transition in PMMA+SWCNT composites by temperature-modulated DSC,” J. Phys. D Appl. Phys. 43(10), 105401 (2010).
[CrossRef]

Itoga, E.

Iwasa, I.

S. Tatsuura, M. Furuki, Y. Sato, I. Iwasa, M. Tian, and H. Mitsu, “Semiconductor carbon nanotubes a ultrafast switching materials for optical telecommunications,” Adv. Mater. 15(6), 534–537 (2003).
[CrossRef]

Jablonski, M.

S. Y. Set, H. Yaguchi, Y. Tanaka, and M. Jablonski, “Ultrafast fiber pulsed lasers incorporating carbon nanotubes,” IEEE J. Sel. Top. Quantum Electron. 10(1), 137–146 (2004).
[CrossRef]

Kakemoto, H.

S. M. Nam, N. Mori, H. Kakemoto, S. Wada, J. Akedo, and T. Tsurumi, “Alumina thick films as integral substrates using aAerosol deposition method,” Jpn. J. Appl. Phys. 43(No. 8A), 5414–5418 (2004).
[CrossRef]

Kataura, H.

A. G. Rozhin, Y. Sakakibara, S. Namiki, M. Tokumoto, H. Kataura, and Y. Achiba, “Sub-200-fs pulsed erbiumdoped fiber laser using a carbon nanotube-polyvinylalcohol mode locker,” Appl. Phys. Lett. 88(5), 051118 (2006).
[CrossRef]

T. R. Schibli, K. Minoshima, H. Kataura, E. Itoga, N. Minami, S. Kazaoui, K. Miyashita, M. Tokumoto, and Y. Sakakibara, “Ultrashort pulse-generation by saturable absorber mirrors based on polymer-embedded carbon nanotubes,” Opt. Express 13(20), 8025–8031 (2005).
[CrossRef] [PubMed]

Kazaoui, S.

Kikuchi, K.

Y. W. Song, K. H. Fong, S. Y. Set, K. Kikuchi, and S. Yamashita, “Carbon nanotube-incorporated sol–gel glass for high-speed modulation of intracavity absorption of fiber lasers,” Opt. Commun. 283(19), 3740–3742 (2010).
[CrossRef]

Knight, J. C.

Kumar, S.

H. G. Chae, M. L. Minus, A. Rasheed, and S. Kumar, “Stabilization and carbonization of gel spun polyacrylonitrile/single wall carbon nanotube composite fibers,” Polymer (Guildf.) 48(13), 3781–3789 (2007).
[CrossRef]

Li, H.

Z. Xia, L. Riester, W. A. Curtin, H. Li, B. W. Sheldon, J. Liang, B. Chang, and J. M. Xu, “Direct observation of toughening mechanisms in carbon nanotube ceramic matrix composites,” Acta Mater. 52(4), 931–944 (2004).
[CrossRef]

Liang, J.

Z. Xia, L. Riester, W. A. Curtin, H. Li, B. W. Sheldon, J. Liang, B. Chang, and J. M. Xu, “Direct observation of toughening mechanisms in carbon nanotube ceramic matrix composites,” Acta Mater. 52(4), 931–944 (2004).
[CrossRef]

Maruyama, S.

Y. W. Song, S. Yamashita, and S. Maruyama, “Single-walled carbon nanotubes for high-energy optical pulse formation,” Appl. Phys. Lett. 92(2), 021115 (2008).
[CrossRef]

Milne, W. I.

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol. 3(12), 738–742 (2008).
[CrossRef] [PubMed]

Minami, N.

Minoshima, K.

Minus, M. L.

H. G. Chae, M. L. Minus, A. Rasheed, and S. Kumar, “Stabilization and carbonization of gel spun polyacrylonitrile/single wall carbon nanotube composite fibers,” Polymer (Guildf.) 48(13), 3781–3789 (2007).
[CrossRef]

Mitsu, H.

S. Tatsuura, M. Furuki, Y. Sato, I. Iwasa, M. Tian, and H. Mitsu, “Semiconductor carbon nanotubes a ultrafast switching materials for optical telecommunications,” Adv. Mater. 15(6), 534–537 (2003).
[CrossRef]

Miyashita, K.

Mori, N.

S. M. Nam, N. Mori, H. Kakemoto, S. Wada, J. Akedo, and T. Tsurumi, “Alumina thick films as integral substrates using aAerosol deposition method,” Jpn. J. Appl. Phys. 43(No. 8A), 5414–5418 (2004).
[CrossRef]

Nam, S. M.

S. M. Nam, N. Mori, H. Kakemoto, S. Wada, J. Akedo, and T. Tsurumi, “Alumina thick films as integral substrates using aAerosol deposition method,” Jpn. J. Appl. Phys. 43(No. 8A), 5414–5418 (2004).
[CrossRef]

Namiki, S.

A. G. Rozhin, Y. Sakakibara, S. Namiki, M. Tokumoto, H. Kataura, and Y. Achiba, “Sub-200-fs pulsed erbiumdoped fiber laser using a carbon nanotube-polyvinylalcohol mode locker,” Appl. Phys. Lett. 88(5), 051118 (2006).
[CrossRef]

Pradhan, N. R.

N. R. Pradhan and G. S. Iannacchione, “Relaxation dynamics of glass transition in PMMA+SWCNT composites by temperature-modulated DSC,” J. Phys. D Appl. Phys. 43(10), 105401 (2010).
[CrossRef]

Rasheed, A.

H. G. Chae, M. L. Minus, A. Rasheed, and S. Kumar, “Stabilization and carbonization of gel spun polyacrylonitrile/single wall carbon nanotube composite fibers,” Polymer (Guildf.) 48(13), 3781–3789 (2007).
[CrossRef]

Ravi Kanth Kumar, V. V.

Reeves, W. H.

Riester, L.

Z. Xia, L. Riester, W. A. Curtin, H. Li, B. W. Sheldon, J. Liang, B. Chang, and J. M. Xu, “Direct observation of toughening mechanisms in carbon nanotube ceramic matrix composites,” Acta Mater. 52(4), 931–944 (2004).
[CrossRef]

Rozhin, A. G.

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol. 3(12), 738–742 (2008).
[CrossRef] [PubMed]

A. G. Rozhin, Y. Sakakibara, S. Namiki, M. Tokumoto, H. Kataura, and Y. Achiba, “Sub-200-fs pulsed erbiumdoped fiber laser using a carbon nanotube-polyvinylalcohol mode locker,” Appl. Phys. Lett. 88(5), 051118 (2006).
[CrossRef]

Russell, P. St J.

Sakakibara, Y.

A. G. Rozhin, Y. Sakakibara, S. Namiki, M. Tokumoto, H. Kataura, and Y. Achiba, “Sub-200-fs pulsed erbiumdoped fiber laser using a carbon nanotube-polyvinylalcohol mode locker,” Appl. Phys. Lett. 88(5), 051118 (2006).
[CrossRef]

T. R. Schibli, K. Minoshima, H. Kataura, E. Itoga, N. Minami, S. Kazaoui, K. Miyashita, M. Tokumoto, and Y. Sakakibara, “Ultrashort pulse-generation by saturable absorber mirrors based on polymer-embedded carbon nanotubes,” Opt. Express 13(20), 8025–8031 (2005).
[CrossRef] [PubMed]

Sato, Y.

S. Tatsuura, M. Furuki, Y. Sato, I. Iwasa, M. Tian, and H. Mitsu, “Semiconductor carbon nanotubes a ultrafast switching materials for optical telecommunications,” Adv. Mater. 15(6), 534–537 (2003).
[CrossRef]

Scardaci, V.

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol. 3(12), 738–742 (2008).
[CrossRef] [PubMed]

Schibli, T. R.

Set, S. Y.

Y. W. Song, K. H. Fong, S. Y. Set, K. Kikuchi, and S. Yamashita, “Carbon nanotube-incorporated sol–gel glass for high-speed modulation of intracavity absorption of fiber lasers,” Opt. Commun. 283(19), 3740–3742 (2010).
[CrossRef]

S. Y. Set, H. Yaguchi, Y. Tanaka, and M. Jablonski, “Ultrafast fiber pulsed lasers incorporating carbon nanotubes,” IEEE J. Sel. Top. Quantum Electron. 10(1), 137–146 (2004).
[CrossRef]

Sheldon, B. W.

Z. Xia, L. Riester, W. A. Curtin, H. Li, B. W. Sheldon, J. Liang, B. Chang, and J. M. Xu, “Direct observation of toughening mechanisms in carbon nanotube ceramic matrix composites,” Acta Mater. 52(4), 931–944 (2004).
[CrossRef]

Song, Y. W.

Y. W. Song, K. H. Fong, S. Y. Set, K. Kikuchi, and S. Yamashita, “Carbon nanotube-incorporated sol–gel glass for high-speed modulation of intracavity absorption of fiber lasers,” Opt. Commun. 283(19), 3740–3742 (2010).
[CrossRef]

Y. W. Song, S. Yamashita, and S. Maruyama, “Single-walled carbon nanotubes for high-energy optical pulse formation,” Appl. Phys. Lett. 92(2), 021115 (2008).
[CrossRef]

Sun, Z.

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol. 3(12), 738–742 (2008).
[CrossRef] [PubMed]

Tanaka, Y.

S. Y. Set, H. Yaguchi, Y. Tanaka, and M. Jablonski, “Ultrafast fiber pulsed lasers incorporating carbon nanotubes,” IEEE J. Sel. Top. Quantum Electron. 10(1), 137–146 (2004).
[CrossRef]

Tatsuura, S.

S. Tatsuura, M. Furuki, Y. Sato, I. Iwasa, M. Tian, and H. Mitsu, “Semiconductor carbon nanotubes a ultrafast switching materials for optical telecommunications,” Adv. Mater. 15(6), 534–537 (2003).
[CrossRef]

Tian, M.

S. Tatsuura, M. Furuki, Y. Sato, I. Iwasa, M. Tian, and H. Mitsu, “Semiconductor carbon nanotubes a ultrafast switching materials for optical telecommunications,” Adv. Mater. 15(6), 534–537 (2003).
[CrossRef]

Tokumoto, M.

A. G. Rozhin, Y. Sakakibara, S. Namiki, M. Tokumoto, H. Kataura, and Y. Achiba, “Sub-200-fs pulsed erbiumdoped fiber laser using a carbon nanotube-polyvinylalcohol mode locker,” Appl. Phys. Lett. 88(5), 051118 (2006).
[CrossRef]

T. R. Schibli, K. Minoshima, H. Kataura, E. Itoga, N. Minami, S. Kazaoui, K. Miyashita, M. Tokumoto, and Y. Sakakibara, “Ultrashort pulse-generation by saturable absorber mirrors based on polymer-embedded carbon nanotubes,” Opt. Express 13(20), 8025–8031 (2005).
[CrossRef] [PubMed]

Tsurumi, T.

S. M. Nam, N. Mori, H. Kakemoto, S. Wada, J. Akedo, and T. Tsurumi, “Alumina thick films as integral substrates using aAerosol deposition method,” Jpn. J. Appl. Phys. 43(No. 8A), 5414–5418 (2004).
[CrossRef]

Wada, S.

S. M. Nam, N. Mori, H. Kakemoto, S. Wada, J. Akedo, and T. Tsurumi, “Alumina thick films as integral substrates using aAerosol deposition method,” Jpn. J. Appl. Phys. 43(No. 8A), 5414–5418 (2004).
[CrossRef]

Wang, F.

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol. 3(12), 738–742 (2008).
[CrossRef] [PubMed]

Weisenberger, M. C.

R. Andrews and M. C. Weisenberger, “Carbon nanotube polymer composites,” Curr. Opin. Solid. St. M. 8(1), 31–37 (2004).
[CrossRef]

White, I. H.

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol. 3(12), 738–742 (2008).
[CrossRef] [PubMed]

Xia, Z.

Z. Xia, L. Riester, W. A. Curtin, H. Li, B. W. Sheldon, J. Liang, B. Chang, and J. M. Xu, “Direct observation of toughening mechanisms in carbon nanotube ceramic matrix composites,” Acta Mater. 52(4), 931–944 (2004).
[CrossRef]

Xu, J. M.

Z. Xia, L. Riester, W. A. Curtin, H. Li, B. W. Sheldon, J. Liang, B. Chang, and J. M. Xu, “Direct observation of toughening mechanisms in carbon nanotube ceramic matrix composites,” Acta Mater. 52(4), 931–944 (2004).
[CrossRef]

Yaguchi, H.

S. Y. Set, H. Yaguchi, Y. Tanaka, and M. Jablonski, “Ultrafast fiber pulsed lasers incorporating carbon nanotubes,” IEEE J. Sel. Top. Quantum Electron. 10(1), 137–146 (2004).
[CrossRef]

Yamashita, S.

Y. W. Song, K. H. Fong, S. Y. Set, K. Kikuchi, and S. Yamashita, “Carbon nanotube-incorporated sol–gel glass for high-speed modulation of intracavity absorption of fiber lasers,” Opt. Commun. 283(19), 3740–3742 (2010).
[CrossRef]

Y. W. Song, S. Yamashita, and S. Maruyama, “Single-walled carbon nanotubes for high-energy optical pulse formation,” Appl. Phys. Lett. 92(2), 021115 (2008).
[CrossRef]

Acta Mater.

Z. Xia, L. Riester, W. A. Curtin, H. Li, B. W. Sheldon, J. Liang, B. Chang, and J. M. Xu, “Direct observation of toughening mechanisms in carbon nanotube ceramic matrix composites,” Acta Mater. 52(4), 931–944 (2004).
[CrossRef]

Adv. Mater.

S. Tatsuura, M. Furuki, Y. Sato, I. Iwasa, M. Tian, and H. Mitsu, “Semiconductor carbon nanotubes a ultrafast switching materials for optical telecommunications,” Adv. Mater. 15(6), 534–537 (2003).
[CrossRef]

Appl. Phys. Lett.

Y. W. Song, S. Yamashita, and S. Maruyama, “Single-walled carbon nanotubes for high-energy optical pulse formation,” Appl. Phys. Lett. 92(2), 021115 (2008).
[CrossRef]

A. G. Rozhin, Y. Sakakibara, S. Namiki, M. Tokumoto, H. Kataura, and Y. Achiba, “Sub-200-fs pulsed erbiumdoped fiber laser using a carbon nanotube-polyvinylalcohol mode locker,” Appl. Phys. Lett. 88(5), 051118 (2006).
[CrossRef]

Curr. Opin. Solid. St. M.

R. Andrews and M. C. Weisenberger, “Carbon nanotube polymer composites,” Curr. Opin. Solid. St. M. 8(1), 31–37 (2004).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

S. Y. Set, H. Yaguchi, Y. Tanaka, and M. Jablonski, “Ultrafast fiber pulsed lasers incorporating carbon nanotubes,” IEEE J. Sel. Top. Quantum Electron. 10(1), 137–146 (2004).
[CrossRef]

J. Phys. D Appl. Phys.

N. R. Pradhan and G. S. Iannacchione, “Relaxation dynamics of glass transition in PMMA+SWCNT composites by temperature-modulated DSC,” J. Phys. D Appl. Phys. 43(10), 105401 (2010).
[CrossRef]

J. Therm. Spray Tech.

J. Akedo, “Room temperature impact consolidation (RTIC) of fine ceramic powder by aerosol deposition method and applications to microdevices,” J. Therm. Spray Tech. 17(2), 181–198 (2008).
[CrossRef]

Jpn. J. Appl. Phys.

S. M. Nam, N. Mori, H. Kakemoto, S. Wada, J. Akedo, and T. Tsurumi, “Alumina thick films as integral substrates using aAerosol deposition method,” Jpn. J. Appl. Phys. 43(No. 8A), 5414–5418 (2004).
[CrossRef]

Nano Lett.

V. G. Gavalas, R. Andrews, D. Bhattacharyya, and L. G. Bachas, “Carbon nanotube sol-gel composite materials,” Nano Lett. 1(12), 719–721 (2001).
[CrossRef]

Nat. Nanotechnol.

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol. 3(12), 738–742 (2008).
[CrossRef] [PubMed]

Opt. Commun.

Y. W. Song, K. H. Fong, S. Y. Set, K. Kikuchi, and S. Yamashita, “Carbon nanotube-incorporated sol–gel glass for high-speed modulation of intracavity absorption of fiber lasers,” Opt. Commun. 283(19), 3740–3742 (2010).
[CrossRef]

Opt. Express

Polymer (Guildf.)

H. G. Chae, M. L. Minus, A. Rasheed, and S. Kumar, “Stabilization and carbonization of gel spun polyacrylonitrile/single wall carbon nanotube composite fibers,” Polymer (Guildf.) 48(13), 3781–3789 (2007).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

The schematic of ultrafast pulsation of a fiber laser with the SWNTs embedded into SiO2 host by AD process at room-temperature. The passive mode-locking can be guaranteed by the preserved nonlinearity of SWNTs even within the ceramic host.

Fig. 2
Fig. 2

A deposited SiO2-SWNT composite film on the end facet of an optical fiber by the AD process. (a) A photograph of the deposited film on the ferrule. (b) Scanning electron microscope image of the film. A densified ceramic-SWNT composite formed at room temperature can be seen. Inset shows a zoomed-in structure of the composite identifying the SWNT morphologies in the host.

Fig. 3
Fig. 3

(a) A Raman spectrum of the deposited SiO2-SWNT composite film on a glass substrate. A characteristic RBM peak of the SWNT was detected in the film. (b) A transmission curve of the composite film describing the preserved nonlinear absorption peak of SWNTs. The curve was compared with that of the sprayed SWNTs.

Fig. 4
Fig. 4

(a) Fiber ring laser setup and the composite-based mode-locker assembly. (b) The measured optical spectrum from the output port. The center wave length and the 3-dB spectral width are 1599.2 nm and 3.31 nm, respectively.

Fig. 5
Fig. 5

(a) The output pulse train measured by the oscilloscope. (b) The autocorrelation trace of an individual output pulse ensuring the successful femtosecond pulse formation.

Metrics