Abstract

An electrically tunable-focusing optical zoom system using two composite LC lenses with a large zoom ratio is demonstrated. The optical principle is investigated. To enhance the electrically tunable focusing range of the negative lens power of the LC lens for a large zoom ratio, we adopted two composite LC lenses. Each composite LC lens consists of a sub-LC lens and a planar polymeric lens. The zoom ratio of the optical zooming system reaches ~7.9:1 and the object can be zoomed in or zoomed out continuously at the objective distance of infinity to 10 cm. The potential applications are cell phones, cameras, telescope and pico projectors.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Peng, J. Chen, and S. Zhuang, “Electrowetting-actuated zoom lens with spherical-interface liquid lenses,” J. Opt. Soc. Am. A 25(11), 2644–2650 (2008).
    [CrossRef]
  2. D. Y. Zhang, N. Justus, and Y. H. Lo, “Fluidic adaptive zoom lens with high zoom ratio and widely tunable field of view,” Opt. Commun. 249(1-3), 175–182 (2005).
    [CrossRef]
  3. K. Seidl, J. Knobbe, and H. Grüger, “Design of an all-reflective unobscured optical-power zoom objective,” Appl. Opt. 48(21), 4097–4107 (2009).
    [CrossRef] [PubMed]
  4. D. V. Wick, “Active optical zoom system,” U.S. patent 6,977,777 (2004)
  5. D. V. Wick, T. Martinez, D. M. Payne, W. C. Sweatt, and S. R. Restaino, “Active optical zoom system,” Proc. SPIE 5798, 151–157 (2005).
    [CrossRef]
  6. B. E. Bagwell, D. V. Wick, R. Batchko, J. D. Mansell, T. Martinez, S. Serati, G. Sharp, and J. Schwiegerling, “Liquid crystal based active optics,” Proc. SPIE 6289, 628908, 628908-12 (2006).
    [CrossRef]
  7. T. Martinez, D. V. Wick, D. M. Payne, J. T. Baker, and S. R. Restaino, “Non-mechanical zoom system,” Proc. SPIE 5234, 375–378 (2004).
    [CrossRef]
  8. E. C. Tam, “Smart electro-optical zoom lens,” Opt. Lett. 17(5), 369–371 (1992).
    [CrossRef] [PubMed]
  9. B. Wang, M. Ye, and S. Sato, “Liquid crystal lens with focal length variable from negative to positive values,” IEEE Photon. Technol. Lett. 18(1), 79–81 (2006).
    [CrossRef]
  10. S. Sato, “Liquid-crystal lens-cells with variable focal length,” Jpn. J. Appl. Phys. 18(9), 1679–1684 (1979).
    [CrossRef]
  11. M. Ye, B. Wang, and S. Sato, “Liquid-crystal lens with a focal length that is variable in a wide range,” Appl. Opt. 43(35), 6407–6412 (2004).
    [CrossRef] [PubMed]
  12. A. F. Naumov, M. Y. Loktev, I. R. Guralnik, and G. Vdovin, “Liquid-crystal adaptive lenses with modal control,” Opt. Lett. 23(13), 992–994 (1998).
    [CrossRef]
  13. H. W. Ren, Y. H. Fan, S. Gauza, and S. T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84(23), 4789–4791 (2004).
    [CrossRef]
  14. M. Ye, M. Noguchi, B. Wang, and S. Sato, “Zoom lens system without moving elements realized using liquid crystal lenses,” Electron. Lett. 45(12), 646 (2009).
    [CrossRef]
  15. P. Valley, M. Reza Dodge, J. Schwiegerling, G. Peyman, and N. Peyghambarian, “Nonmechanical bifocal zoom telescope,” Opt. Lett. 35(15), 2582–2584 (2010).
    [CrossRef] [PubMed]
  16. H. C. Lin and Y. H. Lin, “A fast response and large electrically tunable-focusing imaging system based on switching of two modes of a liquid crystal lens,” Appl. Phys. Lett. 97(6), 063505 (2010).
    [CrossRef]
  17. H. C. Lin and Y. H. Lin, “An electrically tunable focusing pico-projector adopting a liquid crystal lens,” Jpn. J. Appl. Phys. 49(10), 102502 (2010).
    [CrossRef]
  18. W. J. Smith, Modern Optical Engineering, 4th Ed. (McGraw-Hill Inc. New York, 2008)
  19. Y. H. Lin, H. Ren, S. Gauza, Y. H. Wu, and S. T. Wu, “Single-substrate IPS-LCD using an anisotropic polymer film,” Proc. SPIE 5936, 59360O, 59360O-7 (2005).
    [CrossRef]
  20. Y. H. Lin, H. Ren, S. Gauza, Y. H. Wu, Y. Zhao, J. Fang, and S. T. Wu, “IPS-LCD using a glass substrate and an anisotropic polymer film,” J. Display Technol. 2(1), 21–25 (2006).
    [CrossRef]
  21. Y. Choi, H. R. Kim, K. H. Lee, Y. M. Lee, and J. H. Kim, “A liquid crystalline polymer microlens array with tunable focal intensity by the polarization control of a liquid crystal layer,” Appl. Phys. Lett. 91(22), 221113 (2007).
    [CrossRef]

2010 (3)

P. Valley, M. Reza Dodge, J. Schwiegerling, G. Peyman, and N. Peyghambarian, “Nonmechanical bifocal zoom telescope,” Opt. Lett. 35(15), 2582–2584 (2010).
[CrossRef] [PubMed]

H. C. Lin and Y. H. Lin, “A fast response and large electrically tunable-focusing imaging system based on switching of two modes of a liquid crystal lens,” Appl. Phys. Lett. 97(6), 063505 (2010).
[CrossRef]

H. C. Lin and Y. H. Lin, “An electrically tunable focusing pico-projector adopting a liquid crystal lens,” Jpn. J. Appl. Phys. 49(10), 102502 (2010).
[CrossRef]

2009 (2)

M. Ye, M. Noguchi, B. Wang, and S. Sato, “Zoom lens system without moving elements realized using liquid crystal lenses,” Electron. Lett. 45(12), 646 (2009).
[CrossRef]

K. Seidl, J. Knobbe, and H. Grüger, “Design of an all-reflective unobscured optical-power zoom objective,” Appl. Opt. 48(21), 4097–4107 (2009).
[CrossRef] [PubMed]

2008 (1)

2007 (1)

Y. Choi, H. R. Kim, K. H. Lee, Y. M. Lee, and J. H. Kim, “A liquid crystalline polymer microlens array with tunable focal intensity by the polarization control of a liquid crystal layer,” Appl. Phys. Lett. 91(22), 221113 (2007).
[CrossRef]

2006 (3)

Y. H. Lin, H. Ren, S. Gauza, Y. H. Wu, Y. Zhao, J. Fang, and S. T. Wu, “IPS-LCD using a glass substrate and an anisotropic polymer film,” J. Display Technol. 2(1), 21–25 (2006).
[CrossRef]

B. E. Bagwell, D. V. Wick, R. Batchko, J. D. Mansell, T. Martinez, S. Serati, G. Sharp, and J. Schwiegerling, “Liquid crystal based active optics,” Proc. SPIE 6289, 628908, 628908-12 (2006).
[CrossRef]

B. Wang, M. Ye, and S. Sato, “Liquid crystal lens with focal length variable from negative to positive values,” IEEE Photon. Technol. Lett. 18(1), 79–81 (2006).
[CrossRef]

2005 (3)

D. Y. Zhang, N. Justus, and Y. H. Lo, “Fluidic adaptive zoom lens with high zoom ratio and widely tunable field of view,” Opt. Commun. 249(1-3), 175–182 (2005).
[CrossRef]

D. V. Wick, T. Martinez, D. M. Payne, W. C. Sweatt, and S. R. Restaino, “Active optical zoom system,” Proc. SPIE 5798, 151–157 (2005).
[CrossRef]

Y. H. Lin, H. Ren, S. Gauza, Y. H. Wu, and S. T. Wu, “Single-substrate IPS-LCD using an anisotropic polymer film,” Proc. SPIE 5936, 59360O, 59360O-7 (2005).
[CrossRef]

2004 (3)

H. W. Ren, Y. H. Fan, S. Gauza, and S. T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84(23), 4789–4791 (2004).
[CrossRef]

M. Ye, B. Wang, and S. Sato, “Liquid-crystal lens with a focal length that is variable in a wide range,” Appl. Opt. 43(35), 6407–6412 (2004).
[CrossRef] [PubMed]

T. Martinez, D. V. Wick, D. M. Payne, J. T. Baker, and S. R. Restaino, “Non-mechanical zoom system,” Proc. SPIE 5234, 375–378 (2004).
[CrossRef]

1998 (1)

1992 (1)

1979 (1)

S. Sato, “Liquid-crystal lens-cells with variable focal length,” Jpn. J. Appl. Phys. 18(9), 1679–1684 (1979).
[CrossRef]

Bagwell, B. E.

B. E. Bagwell, D. V. Wick, R. Batchko, J. D. Mansell, T. Martinez, S. Serati, G. Sharp, and J. Schwiegerling, “Liquid crystal based active optics,” Proc. SPIE 6289, 628908, 628908-12 (2006).
[CrossRef]

Baker, J. T.

T. Martinez, D. V. Wick, D. M. Payne, J. T. Baker, and S. R. Restaino, “Non-mechanical zoom system,” Proc. SPIE 5234, 375–378 (2004).
[CrossRef]

Batchko, R.

B. E. Bagwell, D. V. Wick, R. Batchko, J. D. Mansell, T. Martinez, S. Serati, G. Sharp, and J. Schwiegerling, “Liquid crystal based active optics,” Proc. SPIE 6289, 628908, 628908-12 (2006).
[CrossRef]

Chen, J.

Choi, Y.

Y. Choi, H. R. Kim, K. H. Lee, Y. M. Lee, and J. H. Kim, “A liquid crystalline polymer microlens array with tunable focal intensity by the polarization control of a liquid crystal layer,” Appl. Phys. Lett. 91(22), 221113 (2007).
[CrossRef]

Fan, Y. H.

H. W. Ren, Y. H. Fan, S. Gauza, and S. T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84(23), 4789–4791 (2004).
[CrossRef]

Fang, J.

Gauza, S.

Y. H. Lin, H. Ren, S. Gauza, Y. H. Wu, Y. Zhao, J. Fang, and S. T. Wu, “IPS-LCD using a glass substrate and an anisotropic polymer film,” J. Display Technol. 2(1), 21–25 (2006).
[CrossRef]

Y. H. Lin, H. Ren, S. Gauza, Y. H. Wu, and S. T. Wu, “Single-substrate IPS-LCD using an anisotropic polymer film,” Proc. SPIE 5936, 59360O, 59360O-7 (2005).
[CrossRef]

H. W. Ren, Y. H. Fan, S. Gauza, and S. T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84(23), 4789–4791 (2004).
[CrossRef]

Grüger, H.

Guralnik, I. R.

Justus, N.

D. Y. Zhang, N. Justus, and Y. H. Lo, “Fluidic adaptive zoom lens with high zoom ratio and widely tunable field of view,” Opt. Commun. 249(1-3), 175–182 (2005).
[CrossRef]

Kim, H. R.

Y. Choi, H. R. Kim, K. H. Lee, Y. M. Lee, and J. H. Kim, “A liquid crystalline polymer microlens array with tunable focal intensity by the polarization control of a liquid crystal layer,” Appl. Phys. Lett. 91(22), 221113 (2007).
[CrossRef]

Kim, J. H.

Y. Choi, H. R. Kim, K. H. Lee, Y. M. Lee, and J. H. Kim, “A liquid crystalline polymer microlens array with tunable focal intensity by the polarization control of a liquid crystal layer,” Appl. Phys. Lett. 91(22), 221113 (2007).
[CrossRef]

Knobbe, J.

Lee, K. H.

Y. Choi, H. R. Kim, K. H. Lee, Y. M. Lee, and J. H. Kim, “A liquid crystalline polymer microlens array with tunable focal intensity by the polarization control of a liquid crystal layer,” Appl. Phys. Lett. 91(22), 221113 (2007).
[CrossRef]

Lee, Y. M.

Y. Choi, H. R. Kim, K. H. Lee, Y. M. Lee, and J. H. Kim, “A liquid crystalline polymer microlens array with tunable focal intensity by the polarization control of a liquid crystal layer,” Appl. Phys. Lett. 91(22), 221113 (2007).
[CrossRef]

Lin, H. C.

H. C. Lin and Y. H. Lin, “An electrically tunable focusing pico-projector adopting a liquid crystal lens,” Jpn. J. Appl. Phys. 49(10), 102502 (2010).
[CrossRef]

H. C. Lin and Y. H. Lin, “A fast response and large electrically tunable-focusing imaging system based on switching of two modes of a liquid crystal lens,” Appl. Phys. Lett. 97(6), 063505 (2010).
[CrossRef]

Lin, Y. H.

H. C. Lin and Y. H. Lin, “A fast response and large electrically tunable-focusing imaging system based on switching of two modes of a liquid crystal lens,” Appl. Phys. Lett. 97(6), 063505 (2010).
[CrossRef]

H. C. Lin and Y. H. Lin, “An electrically tunable focusing pico-projector adopting a liquid crystal lens,” Jpn. J. Appl. Phys. 49(10), 102502 (2010).
[CrossRef]

Y. H. Lin, H. Ren, S. Gauza, Y. H. Wu, Y. Zhao, J. Fang, and S. T. Wu, “IPS-LCD using a glass substrate and an anisotropic polymer film,” J. Display Technol. 2(1), 21–25 (2006).
[CrossRef]

Y. H. Lin, H. Ren, S. Gauza, Y. H. Wu, and S. T. Wu, “Single-substrate IPS-LCD using an anisotropic polymer film,” Proc. SPIE 5936, 59360O, 59360O-7 (2005).
[CrossRef]

Lo, Y. H.

D. Y. Zhang, N. Justus, and Y. H. Lo, “Fluidic adaptive zoom lens with high zoom ratio and widely tunable field of view,” Opt. Commun. 249(1-3), 175–182 (2005).
[CrossRef]

Loktev, M. Y.

Mansell, J. D.

B. E. Bagwell, D. V. Wick, R. Batchko, J. D. Mansell, T. Martinez, S. Serati, G. Sharp, and J. Schwiegerling, “Liquid crystal based active optics,” Proc. SPIE 6289, 628908, 628908-12 (2006).
[CrossRef]

Martinez, T.

B. E. Bagwell, D. V. Wick, R. Batchko, J. D. Mansell, T. Martinez, S. Serati, G. Sharp, and J. Schwiegerling, “Liquid crystal based active optics,” Proc. SPIE 6289, 628908, 628908-12 (2006).
[CrossRef]

D. V. Wick, T. Martinez, D. M. Payne, W. C. Sweatt, and S. R. Restaino, “Active optical zoom system,” Proc. SPIE 5798, 151–157 (2005).
[CrossRef]

T. Martinez, D. V. Wick, D. M. Payne, J. T. Baker, and S. R. Restaino, “Non-mechanical zoom system,” Proc. SPIE 5234, 375–378 (2004).
[CrossRef]

Naumov, A. F.

Noguchi, M.

M. Ye, M. Noguchi, B. Wang, and S. Sato, “Zoom lens system without moving elements realized using liquid crystal lenses,” Electron. Lett. 45(12), 646 (2009).
[CrossRef]

Payne, D. M.

D. V. Wick, T. Martinez, D. M. Payne, W. C. Sweatt, and S. R. Restaino, “Active optical zoom system,” Proc. SPIE 5798, 151–157 (2005).
[CrossRef]

T. Martinez, D. V. Wick, D. M. Payne, J. T. Baker, and S. R. Restaino, “Non-mechanical zoom system,” Proc. SPIE 5234, 375–378 (2004).
[CrossRef]

Peng, R.

Peyghambarian, N.

Peyman, G.

Ren, H.

Y. H. Lin, H. Ren, S. Gauza, Y. H. Wu, Y. Zhao, J. Fang, and S. T. Wu, “IPS-LCD using a glass substrate and an anisotropic polymer film,” J. Display Technol. 2(1), 21–25 (2006).
[CrossRef]

Y. H. Lin, H. Ren, S. Gauza, Y. H. Wu, and S. T. Wu, “Single-substrate IPS-LCD using an anisotropic polymer film,” Proc. SPIE 5936, 59360O, 59360O-7 (2005).
[CrossRef]

Ren, H. W.

H. W. Ren, Y. H. Fan, S. Gauza, and S. T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84(23), 4789–4791 (2004).
[CrossRef]

Restaino, S. R.

D. V. Wick, T. Martinez, D. M. Payne, W. C. Sweatt, and S. R. Restaino, “Active optical zoom system,” Proc. SPIE 5798, 151–157 (2005).
[CrossRef]

T. Martinez, D. V. Wick, D. M. Payne, J. T. Baker, and S. R. Restaino, “Non-mechanical zoom system,” Proc. SPIE 5234, 375–378 (2004).
[CrossRef]

Reza Dodge, M.

Sato, S.

M. Ye, M. Noguchi, B. Wang, and S. Sato, “Zoom lens system without moving elements realized using liquid crystal lenses,” Electron. Lett. 45(12), 646 (2009).
[CrossRef]

B. Wang, M. Ye, and S. Sato, “Liquid crystal lens with focal length variable from negative to positive values,” IEEE Photon. Technol. Lett. 18(1), 79–81 (2006).
[CrossRef]

M. Ye, B. Wang, and S. Sato, “Liquid-crystal lens with a focal length that is variable in a wide range,” Appl. Opt. 43(35), 6407–6412 (2004).
[CrossRef] [PubMed]

S. Sato, “Liquid-crystal lens-cells with variable focal length,” Jpn. J. Appl. Phys. 18(9), 1679–1684 (1979).
[CrossRef]

Schwiegerling, J.

P. Valley, M. Reza Dodge, J. Schwiegerling, G. Peyman, and N. Peyghambarian, “Nonmechanical bifocal zoom telescope,” Opt. Lett. 35(15), 2582–2584 (2010).
[CrossRef] [PubMed]

B. E. Bagwell, D. V. Wick, R. Batchko, J. D. Mansell, T. Martinez, S. Serati, G. Sharp, and J. Schwiegerling, “Liquid crystal based active optics,” Proc. SPIE 6289, 628908, 628908-12 (2006).
[CrossRef]

Seidl, K.

Serati, S.

B. E. Bagwell, D. V. Wick, R. Batchko, J. D. Mansell, T. Martinez, S. Serati, G. Sharp, and J. Schwiegerling, “Liquid crystal based active optics,” Proc. SPIE 6289, 628908, 628908-12 (2006).
[CrossRef]

Sharp, G.

B. E. Bagwell, D. V. Wick, R. Batchko, J. D. Mansell, T. Martinez, S. Serati, G. Sharp, and J. Schwiegerling, “Liquid crystal based active optics,” Proc. SPIE 6289, 628908, 628908-12 (2006).
[CrossRef]

Sweatt, W. C.

D. V. Wick, T. Martinez, D. M. Payne, W. C. Sweatt, and S. R. Restaino, “Active optical zoom system,” Proc. SPIE 5798, 151–157 (2005).
[CrossRef]

Tam, E. C.

Valley, P.

Vdovin, G.

Wang, B.

M. Ye, M. Noguchi, B. Wang, and S. Sato, “Zoom lens system without moving elements realized using liquid crystal lenses,” Electron. Lett. 45(12), 646 (2009).
[CrossRef]

B. Wang, M. Ye, and S. Sato, “Liquid crystal lens with focal length variable from negative to positive values,” IEEE Photon. Technol. Lett. 18(1), 79–81 (2006).
[CrossRef]

M. Ye, B. Wang, and S. Sato, “Liquid-crystal lens with a focal length that is variable in a wide range,” Appl. Opt. 43(35), 6407–6412 (2004).
[CrossRef] [PubMed]

Wick, D. V.

B. E. Bagwell, D. V. Wick, R. Batchko, J. D. Mansell, T. Martinez, S. Serati, G. Sharp, and J. Schwiegerling, “Liquid crystal based active optics,” Proc. SPIE 6289, 628908, 628908-12 (2006).
[CrossRef]

D. V. Wick, T. Martinez, D. M. Payne, W. C. Sweatt, and S. R. Restaino, “Active optical zoom system,” Proc. SPIE 5798, 151–157 (2005).
[CrossRef]

T. Martinez, D. V. Wick, D. M. Payne, J. T. Baker, and S. R. Restaino, “Non-mechanical zoom system,” Proc. SPIE 5234, 375–378 (2004).
[CrossRef]

Wu, S. T.

Y. H. Lin, H. Ren, S. Gauza, Y. H. Wu, Y. Zhao, J. Fang, and S. T. Wu, “IPS-LCD using a glass substrate and an anisotropic polymer film,” J. Display Technol. 2(1), 21–25 (2006).
[CrossRef]

Y. H. Lin, H. Ren, S. Gauza, Y. H. Wu, and S. T. Wu, “Single-substrate IPS-LCD using an anisotropic polymer film,” Proc. SPIE 5936, 59360O, 59360O-7 (2005).
[CrossRef]

H. W. Ren, Y. H. Fan, S. Gauza, and S. T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84(23), 4789–4791 (2004).
[CrossRef]

Wu, Y. H.

Y. H. Lin, H. Ren, S. Gauza, Y. H. Wu, Y. Zhao, J. Fang, and S. T. Wu, “IPS-LCD using a glass substrate and an anisotropic polymer film,” J. Display Technol. 2(1), 21–25 (2006).
[CrossRef]

Y. H. Lin, H. Ren, S. Gauza, Y. H. Wu, and S. T. Wu, “Single-substrate IPS-LCD using an anisotropic polymer film,” Proc. SPIE 5936, 59360O, 59360O-7 (2005).
[CrossRef]

Ye, M.

M. Ye, M. Noguchi, B. Wang, and S. Sato, “Zoom lens system without moving elements realized using liquid crystal lenses,” Electron. Lett. 45(12), 646 (2009).
[CrossRef]

B. Wang, M. Ye, and S. Sato, “Liquid crystal lens with focal length variable from negative to positive values,” IEEE Photon. Technol. Lett. 18(1), 79–81 (2006).
[CrossRef]

M. Ye, B. Wang, and S. Sato, “Liquid-crystal lens with a focal length that is variable in a wide range,” Appl. Opt. 43(35), 6407–6412 (2004).
[CrossRef] [PubMed]

Zhang, D. Y.

D. Y. Zhang, N. Justus, and Y. H. Lo, “Fluidic adaptive zoom lens with high zoom ratio and widely tunable field of view,” Opt. Commun. 249(1-3), 175–182 (2005).
[CrossRef]

Zhao, Y.

Zhuang, S.

Appl. Opt. (2)

Appl. Phys. Lett. (3)

H. C. Lin and Y. H. Lin, “A fast response and large electrically tunable-focusing imaging system based on switching of two modes of a liquid crystal lens,” Appl. Phys. Lett. 97(6), 063505 (2010).
[CrossRef]

Y. Choi, H. R. Kim, K. H. Lee, Y. M. Lee, and J. H. Kim, “A liquid crystalline polymer microlens array with tunable focal intensity by the polarization control of a liquid crystal layer,” Appl. Phys. Lett. 91(22), 221113 (2007).
[CrossRef]

H. W. Ren, Y. H. Fan, S. Gauza, and S. T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84(23), 4789–4791 (2004).
[CrossRef]

Electron. Lett. (1)

M. Ye, M. Noguchi, B. Wang, and S. Sato, “Zoom lens system without moving elements realized using liquid crystal lenses,” Electron. Lett. 45(12), 646 (2009).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

B. Wang, M. Ye, and S. Sato, “Liquid crystal lens with focal length variable from negative to positive values,” IEEE Photon. Technol. Lett. 18(1), 79–81 (2006).
[CrossRef]

J. Display Technol. (1)

J. Opt. Soc. Am. A (1)

Jpn. J. Appl. Phys. (2)

H. C. Lin and Y. H. Lin, “An electrically tunable focusing pico-projector adopting a liquid crystal lens,” Jpn. J. Appl. Phys. 49(10), 102502 (2010).
[CrossRef]

S. Sato, “Liquid-crystal lens-cells with variable focal length,” Jpn. J. Appl. Phys. 18(9), 1679–1684 (1979).
[CrossRef]

Opt. Commun. (1)

D. Y. Zhang, N. Justus, and Y. H. Lo, “Fluidic adaptive zoom lens with high zoom ratio and widely tunable field of view,” Opt. Commun. 249(1-3), 175–182 (2005).
[CrossRef]

Opt. Lett. (3)

Proc. SPIE (4)

D. V. Wick, T. Martinez, D. M. Payne, W. C. Sweatt, and S. R. Restaino, “Active optical zoom system,” Proc. SPIE 5798, 151–157 (2005).
[CrossRef]

B. E. Bagwell, D. V. Wick, R. Batchko, J. D. Mansell, T. Martinez, S. Serati, G. Sharp, and J. Schwiegerling, “Liquid crystal based active optics,” Proc. SPIE 6289, 628908, 628908-12 (2006).
[CrossRef]

T. Martinez, D. V. Wick, D. M. Payne, J. T. Baker, and S. R. Restaino, “Non-mechanical zoom system,” Proc. SPIE 5234, 375–378 (2004).
[CrossRef]

Y. H. Lin, H. Ren, S. Gauza, Y. H. Wu, and S. T. Wu, “Single-substrate IPS-LCD using an anisotropic polymer film,” Proc. SPIE 5936, 59360O, 59360O-7 (2005).
[CrossRef]

Other (2)

D. V. Wick, “Active optical zoom system,” U.S. patent 6,977,777 (2004)

W. J. Smith, Modern Optical Engineering, 4th Ed. (McGraw-Hill Inc. New York, 2008)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) The structure of the zoom system and (b) the structure of the composite liquid crystal lenses for the LC object lens and the LC eyepiece lens in (a).

Fig. 2
Fig. 2

Fabrication process of the composite LC lens. (a) Polymerize the isolating layer (b) polymerize the polymeric layer with a curing voltage of 80 Vrms, (c) peel off the bottom substrate, and (d) sandwich the LC between (c) and another glass substrate.

Fig. 3
Fig. 3

(a)The phase profiles of the LC lens at different voltages. (b) The lens power of the composite LC lens as a function of applied voltage V1 when V2 was 40 Vrms (gray triangles) and the lens power of the composite LC lens as a function of applied voltage V2 when V1 was 80 Vrms (black dots). λ = 532 nm.

Fig. 4
Fig. 4

Image performance of the zooming system when the target is at p of 10 cm. (a) Magnification (M)=1, fo=10 cm and fe=∞. (b) M=0.29, fo= −7.4 cm and fe= 14.3 cm (c) M=2.3, fo=6.4 cm and fe= −7.4 cm. The zooming ratio is 7.9:1.

Fig. 5
Fig. 5

The measured magnification as a function of the distance between target and the LC eyepiece lens (or p). The black dots indicate the maximum magnification and the blue triangles indicate the minimum magnification.

Fig. 6
Fig. 6

The zoom ratio as a function of the distance between target and the LC eyepiece lens (or p). The blue dots indicate the experimental results and the gray triangles indicate the simulation results.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

1 p + 1 d f e = 1 f o .
f e + f o × p p f o = d .
M = f o × p ( f o p ) × f e .
M min = f min × p f min × p + f min × d d × p .
M max = f min d f min .
Z R = ( d f min 1 d p ) × ( d f min 1 ) .
1 f c ( V 1 , V 2 ) = 1 f L C ( V 1 , V 2 ) + 1 f p ,
f L C ( V 1 , V 2 ) = π × w 2 4 × λ × Δ δ ( V 1 , V 2 ) .

Metrics