Abstract

THz emission from an unbiased graphite flake after optical sub-ps pulse inter-band excitation is measured using a novel micro-machined photoconductive probe-tip. Oscillatory behavior of the measured THz near-field emission is shown to originate from electromagnetic eigenmode resonances of the laterally limited graphite flake. The excitation efficiency of the lowest order eigenmode resonances strongly dependents on optical pump location. From this data a radial symmetric charge carrier translocation at the pump location is revealed as the dominating THz surface-wave emission effect. Measurements show good agreement with numerical field simulations of the eigenmode center frequencies and the spectral response expected for THz emission through basal plane oriented radial current surge excitation.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Rana, “Graphene terahertz plasmon oscillators,” IEEE Trans. NanoTechnol. 7(1), 91–99 (2008).
    [CrossRef]
  2. V. Ryzhii, V. Mitin, M. Ryzhii, N. Ryabova, and T. Otsuji, “Device model for graphene nanoribbon phototransistor,” Appl. Phys. Exp. 1, 063002 (2008).
    [CrossRef]
  3. N. L. Rangel and J. M. Seminario, “Graphene terahertz generators for molecular circuits and sensors,” J. Phys. Chem. A 112(51), 13699–13705 (2008).
    [CrossRef] [PubMed]
  4. V. Y. Aleshkin, A. A. Dubinov, and V. Ryzhii, “Terahertz laser based on optically pumped graphene: model and feasibility of realization,” JETP Lett. 89(2), 63–67 (2009).
    [CrossRef]
  5. M. Wächter, M. Nagel, and H. Kurz, “Tapered photoconductive terahertz field probe tip with subwavelength spatial resolution,” Appl. Phys. Lett. 95(4), 041112 (2009).
    [CrossRef]
  6. M. Awad, M. Nagel, and H. Kurz, “Tapered Sommerfeld wire terahertz near-field imaging,” Appl. Phys. Lett. 94(5), 051107 (2009).
    [CrossRef]
  7. J. M. Dawlaty, S. Shivaraman, M. Chandrashekhar, F. Rana, and M. G. Spencer, “Measurement of ultrafast carrier dynamics in epitaxial graphene,” Appl. Phys. Lett. 92(4), 042116 (2008).
    [CrossRef]
  8. R. W. Newson, J. Dean, B. Schmidt, and H. M. van Driel, “Ultrafast carrier kinetics in exfoliated graphene and thin graphite films,” Opt. Express 17(4), 2326–2333 (2009), http://www.opticsinfobase.org/abstract.cfm?URI=oe-17-4-2326 .
    [CrossRef] [PubMed]
  9. M. Breusing, C. Ropers, and T. Elsaesser, “Ultrafast carrier dynamics in graphite,” Phys. Rev. Lett. 102(8), 086809 (2009).
    [CrossRef] [PubMed]
  10. P. A. George, J. Strait, J. Dawlaty, S. Shivaraman, M. Chandrashekhar, F. Rana, and M. G. Spencer, “Ultrafast optical-pump terahertz-probe spectroscopy of the carrier relaxation and recombination dynamics in epitaxial graphene,” Nano Lett. 8(12), 4248–4251 (2008).
    [CrossRef]
  11. T. Kampfrath, L. Perfetti, F. Schapper, C. Frischkorn, and M. Wolf, “Strongly coupled optical phonons in the ultrafast dynamics of the electronic energy and current relaxation in graphite,” Phys. Rev. Lett. 95(18), 187403 (2005).
    [CrossRef] [PubMed]
  12. H. Karasawa, T. Komori, T. Watanabe, A. Satou, H. Fukidome, M. Suemitsu, V. Ryzhii, and T. Otsuji, “Observation of amplified stimulated terahertz emission from optically pumped heteroepitaxial graphene-on-silicon materials,” J. Infrared Millim. Terahz. Waves (2010), doi:.
  13. G. M. Mikheev, R. G. Zonov, A. N. Obraztsov, and Yu. P. Svirko, “Giant optical rectification effect in nanocarbon films,” Appl. Phys. Lett. 84(24), 4854 (2004).
    [CrossRef]
  14. J. M. Torres, “Nanosecond optical rectification and photon drag effect in nanocarbon thin films and wires,” J. Nanoelectron. Optoelectron. 4(2), 247–251 (2009).
    [CrossRef]
  15. G. Ramakrishnan, R. Chakkittakandy, and P. C. M. Planken, “Terahertz generation from graphite,” Opt. Express 17(18), 16092–16099 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-18-16092 .
    [CrossRef] [PubMed]
  16. D. Sun, C. Divin, J. Rioux, J. E. Sipe, C. Berger, W. A. de Heer, P. N. First, and T. B. Norris, “Coherent control of ballistic photocurrents in multilayer epitaxial graphene using quantum interference,” Nano Lett. 10(4), 1293–1296 (2010).
    [CrossRef] [PubMed]
  17. F. Carbone, P. Baum, P. Rudolf, and A. H. Zewail, “Structural preablation dynamics of graphite observed by ultrafast electron crystallography,” Phys. Rev. Lett. 100(3), 035501 (2008).
    [CrossRef] [PubMed]
  18. F. Carbone, “The interplay between structure and orbitals in the chemical bonding of graphite,” Chem. Phys. Lett. 496(4-6), 291–295 (2010).
    [CrossRef]
  19. J. Shan, and T. F. Heinz, in Ultrafast Dynamical Processes in Semiconductors, Topics in Applied Physics, K.-T. Tsen, ed., (Springer, 2004), Vol. 92, pp. 1–59.
  20. M. Awad, M. Nagel, H. Kurz, J. Herfort, and K. Ploog, “Characterization of low temperature GaAs antenna array terahertz emitters,” Appl. Phys. Lett. 91(18), 181124 (2007).
    [CrossRef]
  21. L. G. Johnson and G. Dresselhaus, “Optical properties of graphite,” Phys. Rev. B 7(6), 2275–2285 (1973).
    [CrossRef]

2010

H. Karasawa, T. Komori, T. Watanabe, A. Satou, H. Fukidome, M. Suemitsu, V. Ryzhii, and T. Otsuji, “Observation of amplified stimulated terahertz emission from optically pumped heteroepitaxial graphene-on-silicon materials,” J. Infrared Millim. Terahz. Waves (2010), doi:.

D. Sun, C. Divin, J. Rioux, J. E. Sipe, C. Berger, W. A. de Heer, P. N. First, and T. B. Norris, “Coherent control of ballistic photocurrents in multilayer epitaxial graphene using quantum interference,” Nano Lett. 10(4), 1293–1296 (2010).
[CrossRef] [PubMed]

F. Carbone, “The interplay between structure and orbitals in the chemical bonding of graphite,” Chem. Phys. Lett. 496(4-6), 291–295 (2010).
[CrossRef]

2009

R. W. Newson, J. Dean, B. Schmidt, and H. M. van Driel, “Ultrafast carrier kinetics in exfoliated graphene and thin graphite films,” Opt. Express 17(4), 2326–2333 (2009), http://www.opticsinfobase.org/abstract.cfm?URI=oe-17-4-2326 .
[CrossRef] [PubMed]

G. Ramakrishnan, R. Chakkittakandy, and P. C. M. Planken, “Terahertz generation from graphite,” Opt. Express 17(18), 16092–16099 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-18-16092 .
[CrossRef] [PubMed]

V. Y. Aleshkin, A. A. Dubinov, and V. Ryzhii, “Terahertz laser based on optically pumped graphene: model and feasibility of realization,” JETP Lett. 89(2), 63–67 (2009).
[CrossRef]

M. Wächter, M. Nagel, and H. Kurz, “Tapered photoconductive terahertz field probe tip with subwavelength spatial resolution,” Appl. Phys. Lett. 95(4), 041112 (2009).
[CrossRef]

M. Awad, M. Nagel, and H. Kurz, “Tapered Sommerfeld wire terahertz near-field imaging,” Appl. Phys. Lett. 94(5), 051107 (2009).
[CrossRef]

M. Breusing, C. Ropers, and T. Elsaesser, “Ultrafast carrier dynamics in graphite,” Phys. Rev. Lett. 102(8), 086809 (2009).
[CrossRef] [PubMed]

J. M. Torres, “Nanosecond optical rectification and photon drag effect in nanocarbon thin films and wires,” J. Nanoelectron. Optoelectron. 4(2), 247–251 (2009).
[CrossRef]

2008

P. A. George, J. Strait, J. Dawlaty, S. Shivaraman, M. Chandrashekhar, F. Rana, and M. G. Spencer, “Ultrafast optical-pump terahertz-probe spectroscopy of the carrier relaxation and recombination dynamics in epitaxial graphene,” Nano Lett. 8(12), 4248–4251 (2008).
[CrossRef]

F. Rana, “Graphene terahertz plasmon oscillators,” IEEE Trans. NanoTechnol. 7(1), 91–99 (2008).
[CrossRef]

V. Ryzhii, V. Mitin, M. Ryzhii, N. Ryabova, and T. Otsuji, “Device model for graphene nanoribbon phototransistor,” Appl. Phys. Exp. 1, 063002 (2008).
[CrossRef]

N. L. Rangel and J. M. Seminario, “Graphene terahertz generators for molecular circuits and sensors,” J. Phys. Chem. A 112(51), 13699–13705 (2008).
[CrossRef] [PubMed]

J. M. Dawlaty, S. Shivaraman, M. Chandrashekhar, F. Rana, and M. G. Spencer, “Measurement of ultrafast carrier dynamics in epitaxial graphene,” Appl. Phys. Lett. 92(4), 042116 (2008).
[CrossRef]

F. Carbone, P. Baum, P. Rudolf, and A. H. Zewail, “Structural preablation dynamics of graphite observed by ultrafast electron crystallography,” Phys. Rev. Lett. 100(3), 035501 (2008).
[CrossRef] [PubMed]

2007

M. Awad, M. Nagel, H. Kurz, J. Herfort, and K. Ploog, “Characterization of low temperature GaAs antenna array terahertz emitters,” Appl. Phys. Lett. 91(18), 181124 (2007).
[CrossRef]

2005

T. Kampfrath, L. Perfetti, F. Schapper, C. Frischkorn, and M. Wolf, “Strongly coupled optical phonons in the ultrafast dynamics of the electronic energy and current relaxation in graphite,” Phys. Rev. Lett. 95(18), 187403 (2005).
[CrossRef] [PubMed]

2004

G. M. Mikheev, R. G. Zonov, A. N. Obraztsov, and Yu. P. Svirko, “Giant optical rectification effect in nanocarbon films,” Appl. Phys. Lett. 84(24), 4854 (2004).
[CrossRef]

1973

L. G. Johnson and G. Dresselhaus, “Optical properties of graphite,” Phys. Rev. B 7(6), 2275–2285 (1973).
[CrossRef]

Aleshkin, V. Y.

V. Y. Aleshkin, A. A. Dubinov, and V. Ryzhii, “Terahertz laser based on optically pumped graphene: model and feasibility of realization,” JETP Lett. 89(2), 63–67 (2009).
[CrossRef]

Awad, M.

M. Awad, M. Nagel, and H. Kurz, “Tapered Sommerfeld wire terahertz near-field imaging,” Appl. Phys. Lett. 94(5), 051107 (2009).
[CrossRef]

M. Awad, M. Nagel, H. Kurz, J. Herfort, and K. Ploog, “Characterization of low temperature GaAs antenna array terahertz emitters,” Appl. Phys. Lett. 91(18), 181124 (2007).
[CrossRef]

Baum, P.

F. Carbone, P. Baum, P. Rudolf, and A. H. Zewail, “Structural preablation dynamics of graphite observed by ultrafast electron crystallography,” Phys. Rev. Lett. 100(3), 035501 (2008).
[CrossRef] [PubMed]

Berger, C.

D. Sun, C. Divin, J. Rioux, J. E. Sipe, C. Berger, W. A. de Heer, P. N. First, and T. B. Norris, “Coherent control of ballistic photocurrents in multilayer epitaxial graphene using quantum interference,” Nano Lett. 10(4), 1293–1296 (2010).
[CrossRef] [PubMed]

Breusing, M.

M. Breusing, C. Ropers, and T. Elsaesser, “Ultrafast carrier dynamics in graphite,” Phys. Rev. Lett. 102(8), 086809 (2009).
[CrossRef] [PubMed]

Carbone, F.

F. Carbone, “The interplay between structure and orbitals in the chemical bonding of graphite,” Chem. Phys. Lett. 496(4-6), 291–295 (2010).
[CrossRef]

F. Carbone, P. Baum, P. Rudolf, and A. H. Zewail, “Structural preablation dynamics of graphite observed by ultrafast electron crystallography,” Phys. Rev. Lett. 100(3), 035501 (2008).
[CrossRef] [PubMed]

Chakkittakandy, R.

Chandrashekhar, M.

J. M. Dawlaty, S. Shivaraman, M. Chandrashekhar, F. Rana, and M. G. Spencer, “Measurement of ultrafast carrier dynamics in epitaxial graphene,” Appl. Phys. Lett. 92(4), 042116 (2008).
[CrossRef]

P. A. George, J. Strait, J. Dawlaty, S. Shivaraman, M. Chandrashekhar, F. Rana, and M. G. Spencer, “Ultrafast optical-pump terahertz-probe spectroscopy of the carrier relaxation and recombination dynamics in epitaxial graphene,” Nano Lett. 8(12), 4248–4251 (2008).
[CrossRef]

Dawlaty, J.

P. A. George, J. Strait, J. Dawlaty, S. Shivaraman, M. Chandrashekhar, F. Rana, and M. G. Spencer, “Ultrafast optical-pump terahertz-probe spectroscopy of the carrier relaxation and recombination dynamics in epitaxial graphene,” Nano Lett. 8(12), 4248–4251 (2008).
[CrossRef]

Dawlaty, J. M.

J. M. Dawlaty, S. Shivaraman, M. Chandrashekhar, F. Rana, and M. G. Spencer, “Measurement of ultrafast carrier dynamics in epitaxial graphene,” Appl. Phys. Lett. 92(4), 042116 (2008).
[CrossRef]

de Heer, W. A.

D. Sun, C. Divin, J. Rioux, J. E. Sipe, C. Berger, W. A. de Heer, P. N. First, and T. B. Norris, “Coherent control of ballistic photocurrents in multilayer epitaxial graphene using quantum interference,” Nano Lett. 10(4), 1293–1296 (2010).
[CrossRef] [PubMed]

Dean, J.

Divin, C.

D. Sun, C. Divin, J. Rioux, J. E. Sipe, C. Berger, W. A. de Heer, P. N. First, and T. B. Norris, “Coherent control of ballistic photocurrents in multilayer epitaxial graphene using quantum interference,” Nano Lett. 10(4), 1293–1296 (2010).
[CrossRef] [PubMed]

Dresselhaus, G.

L. G. Johnson and G. Dresselhaus, “Optical properties of graphite,” Phys. Rev. B 7(6), 2275–2285 (1973).
[CrossRef]

Dubinov, A. A.

V. Y. Aleshkin, A. A. Dubinov, and V. Ryzhii, “Terahertz laser based on optically pumped graphene: model and feasibility of realization,” JETP Lett. 89(2), 63–67 (2009).
[CrossRef]

Elsaesser, T.

M. Breusing, C. Ropers, and T. Elsaesser, “Ultrafast carrier dynamics in graphite,” Phys. Rev. Lett. 102(8), 086809 (2009).
[CrossRef] [PubMed]

First, P. N.

D. Sun, C. Divin, J. Rioux, J. E. Sipe, C. Berger, W. A. de Heer, P. N. First, and T. B. Norris, “Coherent control of ballistic photocurrents in multilayer epitaxial graphene using quantum interference,” Nano Lett. 10(4), 1293–1296 (2010).
[CrossRef] [PubMed]

Frischkorn, C.

T. Kampfrath, L. Perfetti, F. Schapper, C. Frischkorn, and M. Wolf, “Strongly coupled optical phonons in the ultrafast dynamics of the electronic energy and current relaxation in graphite,” Phys. Rev. Lett. 95(18), 187403 (2005).
[CrossRef] [PubMed]

Fukidome, H.

H. Karasawa, T. Komori, T. Watanabe, A. Satou, H. Fukidome, M. Suemitsu, V. Ryzhii, and T. Otsuji, “Observation of amplified stimulated terahertz emission from optically pumped heteroepitaxial graphene-on-silicon materials,” J. Infrared Millim. Terahz. Waves (2010), doi:.

George, P. A.

P. A. George, J. Strait, J. Dawlaty, S. Shivaraman, M. Chandrashekhar, F. Rana, and M. G. Spencer, “Ultrafast optical-pump terahertz-probe spectroscopy of the carrier relaxation and recombination dynamics in epitaxial graphene,” Nano Lett. 8(12), 4248–4251 (2008).
[CrossRef]

Herfort, J.

M. Awad, M. Nagel, H. Kurz, J. Herfort, and K. Ploog, “Characterization of low temperature GaAs antenna array terahertz emitters,” Appl. Phys. Lett. 91(18), 181124 (2007).
[CrossRef]

Johnson, L. G.

L. G. Johnson and G. Dresselhaus, “Optical properties of graphite,” Phys. Rev. B 7(6), 2275–2285 (1973).
[CrossRef]

Kampfrath, T.

T. Kampfrath, L. Perfetti, F. Schapper, C. Frischkorn, and M. Wolf, “Strongly coupled optical phonons in the ultrafast dynamics of the electronic energy and current relaxation in graphite,” Phys. Rev. Lett. 95(18), 187403 (2005).
[CrossRef] [PubMed]

Karasawa, H.

H. Karasawa, T. Komori, T. Watanabe, A. Satou, H. Fukidome, M. Suemitsu, V. Ryzhii, and T. Otsuji, “Observation of amplified stimulated terahertz emission from optically pumped heteroepitaxial graphene-on-silicon materials,” J. Infrared Millim. Terahz. Waves (2010), doi:.

Komori, T.

H. Karasawa, T. Komori, T. Watanabe, A. Satou, H. Fukidome, M. Suemitsu, V. Ryzhii, and T. Otsuji, “Observation of amplified stimulated terahertz emission from optically pumped heteroepitaxial graphene-on-silicon materials,” J. Infrared Millim. Terahz. Waves (2010), doi:.

Kurz, H.

M. Awad, M. Nagel, and H. Kurz, “Tapered Sommerfeld wire terahertz near-field imaging,” Appl. Phys. Lett. 94(5), 051107 (2009).
[CrossRef]

M. Wächter, M. Nagel, and H. Kurz, “Tapered photoconductive terahertz field probe tip with subwavelength spatial resolution,” Appl. Phys. Lett. 95(4), 041112 (2009).
[CrossRef]

M. Awad, M. Nagel, H. Kurz, J. Herfort, and K. Ploog, “Characterization of low temperature GaAs antenna array terahertz emitters,” Appl. Phys. Lett. 91(18), 181124 (2007).
[CrossRef]

Mikheev, G. M.

G. M. Mikheev, R. G. Zonov, A. N. Obraztsov, and Yu. P. Svirko, “Giant optical rectification effect in nanocarbon films,” Appl. Phys. Lett. 84(24), 4854 (2004).
[CrossRef]

Mitin, V.

V. Ryzhii, V. Mitin, M. Ryzhii, N. Ryabova, and T. Otsuji, “Device model for graphene nanoribbon phototransistor,” Appl. Phys. Exp. 1, 063002 (2008).
[CrossRef]

Nagel, M.

M. Wächter, M. Nagel, and H. Kurz, “Tapered photoconductive terahertz field probe tip with subwavelength spatial resolution,” Appl. Phys. Lett. 95(4), 041112 (2009).
[CrossRef]

M. Awad, M. Nagel, and H. Kurz, “Tapered Sommerfeld wire terahertz near-field imaging,” Appl. Phys. Lett. 94(5), 051107 (2009).
[CrossRef]

M. Awad, M. Nagel, H. Kurz, J. Herfort, and K. Ploog, “Characterization of low temperature GaAs antenna array terahertz emitters,” Appl. Phys. Lett. 91(18), 181124 (2007).
[CrossRef]

Newson, R. W.

Norris, T. B.

D. Sun, C. Divin, J. Rioux, J. E. Sipe, C. Berger, W. A. de Heer, P. N. First, and T. B. Norris, “Coherent control of ballistic photocurrents in multilayer epitaxial graphene using quantum interference,” Nano Lett. 10(4), 1293–1296 (2010).
[CrossRef] [PubMed]

Obraztsov, A. N.

G. M. Mikheev, R. G. Zonov, A. N. Obraztsov, and Yu. P. Svirko, “Giant optical rectification effect in nanocarbon films,” Appl. Phys. Lett. 84(24), 4854 (2004).
[CrossRef]

Otsuji, T.

H. Karasawa, T. Komori, T. Watanabe, A. Satou, H. Fukidome, M. Suemitsu, V. Ryzhii, and T. Otsuji, “Observation of amplified stimulated terahertz emission from optically pumped heteroepitaxial graphene-on-silicon materials,” J. Infrared Millim. Terahz. Waves (2010), doi:.

V. Ryzhii, V. Mitin, M. Ryzhii, N. Ryabova, and T. Otsuji, “Device model for graphene nanoribbon phototransistor,” Appl. Phys. Exp. 1, 063002 (2008).
[CrossRef]

Perfetti, L.

T. Kampfrath, L. Perfetti, F. Schapper, C. Frischkorn, and M. Wolf, “Strongly coupled optical phonons in the ultrafast dynamics of the electronic energy and current relaxation in graphite,” Phys. Rev. Lett. 95(18), 187403 (2005).
[CrossRef] [PubMed]

Planken, P. C. M.

Ploog, K.

M. Awad, M. Nagel, H. Kurz, J. Herfort, and K. Ploog, “Characterization of low temperature GaAs antenna array terahertz emitters,” Appl. Phys. Lett. 91(18), 181124 (2007).
[CrossRef]

Ramakrishnan, G.

Rana, F.

J. M. Dawlaty, S. Shivaraman, M. Chandrashekhar, F. Rana, and M. G. Spencer, “Measurement of ultrafast carrier dynamics in epitaxial graphene,” Appl. Phys. Lett. 92(4), 042116 (2008).
[CrossRef]

P. A. George, J. Strait, J. Dawlaty, S. Shivaraman, M. Chandrashekhar, F. Rana, and M. G. Spencer, “Ultrafast optical-pump terahertz-probe spectroscopy of the carrier relaxation and recombination dynamics in epitaxial graphene,” Nano Lett. 8(12), 4248–4251 (2008).
[CrossRef]

F. Rana, “Graphene terahertz plasmon oscillators,” IEEE Trans. NanoTechnol. 7(1), 91–99 (2008).
[CrossRef]

Rangel, N. L.

N. L. Rangel and J. M. Seminario, “Graphene terahertz generators for molecular circuits and sensors,” J. Phys. Chem. A 112(51), 13699–13705 (2008).
[CrossRef] [PubMed]

Rioux, J.

D. Sun, C. Divin, J. Rioux, J. E. Sipe, C. Berger, W. A. de Heer, P. N. First, and T. B. Norris, “Coherent control of ballistic photocurrents in multilayer epitaxial graphene using quantum interference,” Nano Lett. 10(4), 1293–1296 (2010).
[CrossRef] [PubMed]

Ropers, C.

M. Breusing, C. Ropers, and T. Elsaesser, “Ultrafast carrier dynamics in graphite,” Phys. Rev. Lett. 102(8), 086809 (2009).
[CrossRef] [PubMed]

Rudolf, P.

F. Carbone, P. Baum, P. Rudolf, and A. H. Zewail, “Structural preablation dynamics of graphite observed by ultrafast electron crystallography,” Phys. Rev. Lett. 100(3), 035501 (2008).
[CrossRef] [PubMed]

Ryabova, N.

V. Ryzhii, V. Mitin, M. Ryzhii, N. Ryabova, and T. Otsuji, “Device model for graphene nanoribbon phototransistor,” Appl. Phys. Exp. 1, 063002 (2008).
[CrossRef]

Ryzhii, M.

V. Ryzhii, V. Mitin, M. Ryzhii, N. Ryabova, and T. Otsuji, “Device model for graphene nanoribbon phototransistor,” Appl. Phys. Exp. 1, 063002 (2008).
[CrossRef]

Ryzhii, V.

H. Karasawa, T. Komori, T. Watanabe, A. Satou, H. Fukidome, M. Suemitsu, V. Ryzhii, and T. Otsuji, “Observation of amplified stimulated terahertz emission from optically pumped heteroepitaxial graphene-on-silicon materials,” J. Infrared Millim. Terahz. Waves (2010), doi:.

V. Y. Aleshkin, A. A. Dubinov, and V. Ryzhii, “Terahertz laser based on optically pumped graphene: model and feasibility of realization,” JETP Lett. 89(2), 63–67 (2009).
[CrossRef]

V. Ryzhii, V. Mitin, M. Ryzhii, N. Ryabova, and T. Otsuji, “Device model for graphene nanoribbon phototransistor,” Appl. Phys. Exp. 1, 063002 (2008).
[CrossRef]

Satou, A.

H. Karasawa, T. Komori, T. Watanabe, A. Satou, H. Fukidome, M. Suemitsu, V. Ryzhii, and T. Otsuji, “Observation of amplified stimulated terahertz emission from optically pumped heteroepitaxial graphene-on-silicon materials,” J. Infrared Millim. Terahz. Waves (2010), doi:.

Schapper, F.

T. Kampfrath, L. Perfetti, F. Schapper, C. Frischkorn, and M. Wolf, “Strongly coupled optical phonons in the ultrafast dynamics of the electronic energy and current relaxation in graphite,” Phys. Rev. Lett. 95(18), 187403 (2005).
[CrossRef] [PubMed]

Schmidt, B.

Seminario, J. M.

N. L. Rangel and J. M. Seminario, “Graphene terahertz generators for molecular circuits and sensors,” J. Phys. Chem. A 112(51), 13699–13705 (2008).
[CrossRef] [PubMed]

Shivaraman, S.

J. M. Dawlaty, S. Shivaraman, M. Chandrashekhar, F. Rana, and M. G. Spencer, “Measurement of ultrafast carrier dynamics in epitaxial graphene,” Appl. Phys. Lett. 92(4), 042116 (2008).
[CrossRef]

P. A. George, J. Strait, J. Dawlaty, S. Shivaraman, M. Chandrashekhar, F. Rana, and M. G. Spencer, “Ultrafast optical-pump terahertz-probe spectroscopy of the carrier relaxation and recombination dynamics in epitaxial graphene,” Nano Lett. 8(12), 4248–4251 (2008).
[CrossRef]

Sipe, J. E.

D. Sun, C. Divin, J. Rioux, J. E. Sipe, C. Berger, W. A. de Heer, P. N. First, and T. B. Norris, “Coherent control of ballistic photocurrents in multilayer epitaxial graphene using quantum interference,” Nano Lett. 10(4), 1293–1296 (2010).
[CrossRef] [PubMed]

Spencer, M. G.

P. A. George, J. Strait, J. Dawlaty, S. Shivaraman, M. Chandrashekhar, F. Rana, and M. G. Spencer, “Ultrafast optical-pump terahertz-probe spectroscopy of the carrier relaxation and recombination dynamics in epitaxial graphene,” Nano Lett. 8(12), 4248–4251 (2008).
[CrossRef]

J. M. Dawlaty, S. Shivaraman, M. Chandrashekhar, F. Rana, and M. G. Spencer, “Measurement of ultrafast carrier dynamics in epitaxial graphene,” Appl. Phys. Lett. 92(4), 042116 (2008).
[CrossRef]

Strait, J.

P. A. George, J. Strait, J. Dawlaty, S. Shivaraman, M. Chandrashekhar, F. Rana, and M. G. Spencer, “Ultrafast optical-pump terahertz-probe spectroscopy of the carrier relaxation and recombination dynamics in epitaxial graphene,” Nano Lett. 8(12), 4248–4251 (2008).
[CrossRef]

Suemitsu, M.

H. Karasawa, T. Komori, T. Watanabe, A. Satou, H. Fukidome, M. Suemitsu, V. Ryzhii, and T. Otsuji, “Observation of amplified stimulated terahertz emission from optically pumped heteroepitaxial graphene-on-silicon materials,” J. Infrared Millim. Terahz. Waves (2010), doi:.

Sun, D.

D. Sun, C. Divin, J. Rioux, J. E. Sipe, C. Berger, W. A. de Heer, P. N. First, and T. B. Norris, “Coherent control of ballistic photocurrents in multilayer epitaxial graphene using quantum interference,” Nano Lett. 10(4), 1293–1296 (2010).
[CrossRef] [PubMed]

Svirko, Yu. P.

G. M. Mikheev, R. G. Zonov, A. N. Obraztsov, and Yu. P. Svirko, “Giant optical rectification effect in nanocarbon films,” Appl. Phys. Lett. 84(24), 4854 (2004).
[CrossRef]

Torres, J. M.

J. M. Torres, “Nanosecond optical rectification and photon drag effect in nanocarbon thin films and wires,” J. Nanoelectron. Optoelectron. 4(2), 247–251 (2009).
[CrossRef]

van Driel, H. M.

Wächter, M.

M. Wächter, M. Nagel, and H. Kurz, “Tapered photoconductive terahertz field probe tip with subwavelength spatial resolution,” Appl. Phys. Lett. 95(4), 041112 (2009).
[CrossRef]

Watanabe, T.

H. Karasawa, T. Komori, T. Watanabe, A. Satou, H. Fukidome, M. Suemitsu, V. Ryzhii, and T. Otsuji, “Observation of amplified stimulated terahertz emission from optically pumped heteroepitaxial graphene-on-silicon materials,” J. Infrared Millim. Terahz. Waves (2010), doi:.

Wolf, M.

T. Kampfrath, L. Perfetti, F. Schapper, C. Frischkorn, and M. Wolf, “Strongly coupled optical phonons in the ultrafast dynamics of the electronic energy and current relaxation in graphite,” Phys. Rev. Lett. 95(18), 187403 (2005).
[CrossRef] [PubMed]

Zewail, A. H.

F. Carbone, P. Baum, P. Rudolf, and A. H. Zewail, “Structural preablation dynamics of graphite observed by ultrafast electron crystallography,” Phys. Rev. Lett. 100(3), 035501 (2008).
[CrossRef] [PubMed]

Zonov, R. G.

G. M. Mikheev, R. G. Zonov, A. N. Obraztsov, and Yu. P. Svirko, “Giant optical rectification effect in nanocarbon films,” Appl. Phys. Lett. 84(24), 4854 (2004).
[CrossRef]

Appl. Phys. Exp.

V. Ryzhii, V. Mitin, M. Ryzhii, N. Ryabova, and T. Otsuji, “Device model for graphene nanoribbon phototransistor,” Appl. Phys. Exp. 1, 063002 (2008).
[CrossRef]

Appl. Phys. Lett.

M. Wächter, M. Nagel, and H. Kurz, “Tapered photoconductive terahertz field probe tip with subwavelength spatial resolution,” Appl. Phys. Lett. 95(4), 041112 (2009).
[CrossRef]

M. Awad, M. Nagel, and H. Kurz, “Tapered Sommerfeld wire terahertz near-field imaging,” Appl. Phys. Lett. 94(5), 051107 (2009).
[CrossRef]

J. M. Dawlaty, S. Shivaraman, M. Chandrashekhar, F. Rana, and M. G. Spencer, “Measurement of ultrafast carrier dynamics in epitaxial graphene,” Appl. Phys. Lett. 92(4), 042116 (2008).
[CrossRef]

G. M. Mikheev, R. G. Zonov, A. N. Obraztsov, and Yu. P. Svirko, “Giant optical rectification effect in nanocarbon films,” Appl. Phys. Lett. 84(24), 4854 (2004).
[CrossRef]

M. Awad, M. Nagel, H. Kurz, J. Herfort, and K. Ploog, “Characterization of low temperature GaAs antenna array terahertz emitters,” Appl. Phys. Lett. 91(18), 181124 (2007).
[CrossRef]

Chem. Phys. Lett.

F. Carbone, “The interplay between structure and orbitals in the chemical bonding of graphite,” Chem. Phys. Lett. 496(4-6), 291–295 (2010).
[CrossRef]

IEEE Trans. NanoTechnol.

F. Rana, “Graphene terahertz plasmon oscillators,” IEEE Trans. NanoTechnol. 7(1), 91–99 (2008).
[CrossRef]

J. Infrared Millim. Terahz. Waves

H. Karasawa, T. Komori, T. Watanabe, A. Satou, H. Fukidome, M. Suemitsu, V. Ryzhii, and T. Otsuji, “Observation of amplified stimulated terahertz emission from optically pumped heteroepitaxial graphene-on-silicon materials,” J. Infrared Millim. Terahz. Waves (2010), doi:.

J. Nanoelectron. Optoelectron.

J. M. Torres, “Nanosecond optical rectification and photon drag effect in nanocarbon thin films and wires,” J. Nanoelectron. Optoelectron. 4(2), 247–251 (2009).
[CrossRef]

J. Phys. Chem. A

N. L. Rangel and J. M. Seminario, “Graphene terahertz generators for molecular circuits and sensors,” J. Phys. Chem. A 112(51), 13699–13705 (2008).
[CrossRef] [PubMed]

JETP Lett.

V. Y. Aleshkin, A. A. Dubinov, and V. Ryzhii, “Terahertz laser based on optically pumped graphene: model and feasibility of realization,” JETP Lett. 89(2), 63–67 (2009).
[CrossRef]

Nano Lett.

P. A. George, J. Strait, J. Dawlaty, S. Shivaraman, M. Chandrashekhar, F. Rana, and M. G. Spencer, “Ultrafast optical-pump terahertz-probe spectroscopy of the carrier relaxation and recombination dynamics in epitaxial graphene,” Nano Lett. 8(12), 4248–4251 (2008).
[CrossRef]

D. Sun, C. Divin, J. Rioux, J. E. Sipe, C. Berger, W. A. de Heer, P. N. First, and T. B. Norris, “Coherent control of ballistic photocurrents in multilayer epitaxial graphene using quantum interference,” Nano Lett. 10(4), 1293–1296 (2010).
[CrossRef] [PubMed]

Opt. Express

Phys. Rev. B

L. G. Johnson and G. Dresselhaus, “Optical properties of graphite,” Phys. Rev. B 7(6), 2275–2285 (1973).
[CrossRef]

Phys. Rev. Lett.

F. Carbone, P. Baum, P. Rudolf, and A. H. Zewail, “Structural preablation dynamics of graphite observed by ultrafast electron crystallography,” Phys. Rev. Lett. 100(3), 035501 (2008).
[CrossRef] [PubMed]

T. Kampfrath, L. Perfetti, F. Schapper, C. Frischkorn, and M. Wolf, “Strongly coupled optical phonons in the ultrafast dynamics of the electronic energy and current relaxation in graphite,” Phys. Rev. Lett. 95(18), 187403 (2005).
[CrossRef] [PubMed]

M. Breusing, C. Ropers, and T. Elsaesser, “Ultrafast carrier dynamics in graphite,” Phys. Rev. Lett. 102(8), 086809 (2009).
[CrossRef] [PubMed]

Other

J. Shan, and T. F. Heinz, in Ultrafast Dynamical Processes in Semiconductors, Topics in Applied Physics, K.-T. Tsen, ed., (Springer, 2004), Vol. 92, pp. 1–59.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Top-view of the PC probe-tip structure. (b) Cross-section of the applied sample structure and pump/probe configuration.

Fig. 2
Fig. 2

(Upper diagram) Time-domain data of the optically generated field pulses at the graphite flake measured in pump/probe-tip distances d = 130 µm (black line) and 80 µm (red line). (Lower diagram) Time-derivative of the upper time-domain data.

Fig. 3
Fig. 3

Numerical calculation of the vectorial electric field distribution at the graphite flake surface for (a) the first- and (b) the second-order eigenmode resonance. (c) Measured (continuous line) and calculated (dashed line) field amplitude spectra obtained by near-field probing. The spectral positions of the calculated eigenmodes center frequencies are marked by arrows.

Metrics