Abstract

Strong electro mechanical effect was used to generate and study self adaptation and pitch jumps in a helicoidal photonic bandgap structure naturally formed by a cholesteric liquid crystal. The negative dielectric anisotropy of the material allowed its stabilization by the electric field and important thickness changes, achieved thanks to the use of a very thin substrate, allowed the observation of multiple dynamic jumps at fixed deformation conditions. Spectral and morphological studies of the material during those jumps were performed too.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. G. de Gennes, and J. Prost, The Physics of Liquid Crystals, (Oxford University Press, 1995), 2nd Edition.
  2. A. C. Neville and S. Caveney, “Scarabaeid beetle exocuticle as an optical analogue of cholesteric liquid crystals,” Biol. Rev. Camb. Philos. Soc. 44(4), 531–562 (1969).
    [CrossRef] [PubMed]
  3. H. Finkelmann, S. T. Kim, A. Muñoz, P. Palffy-Muhoray, and B. Taheri, “Tunable Mirrorless Lasing in Cholesteric Liquid Crystalline Elastomers,” Adv. Mater. 13(14), 1069–1072 (2001).
    [CrossRef]
  4. G. Chilaya, A. Chanishvili, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, and P. V. Shibaev, “Reversible Tuning of Lasing in Cholesteric Liquid Crystals Controlled by Light-Emitting Diodes,” Adv. Mater. 19(4), 565–568 (2007).
    [CrossRef]
  5. Y. Huang, Y. Zhou, C. Doyle, and S.-T. Wu, “Tuning the photonic band gap in cholesteric liquid crystals by temperature-dependent dopant solubility,” Opt. Express 14(3), 1236–1242 (2006).
    [CrossRef] [PubMed]
  6. D. J. Broer, J. Lub, and G. N. Mol, “Wide-band reflective polarizers from cholesteric polymer networks with a pitch gradient,” Nature 378(6556), 467–469 (1995).
    [CrossRef]
  7. M. Mitov, E. Nouvet, and N. Dessaud, “Polymer-stabilized cholesteric liquid crystals as switchable photonic broad bandgaps,” Eur Phys J E Soft Matter 15(4), 413–419 (2004).
    [CrossRef] [PubMed]
  8. S.-Y. Lu and L.-C. Chien, “A polymer-stabilized single-layer color cholesteric liquid crystal display with anisotropic reflection,” Appl. Phys. Lett. 91(13), 131119 (2007).
    [CrossRef]
  9. W. C. Yip and H. S. Kwok, “Helix unwinding of doped cholesteric liquid crystals,” Appl. Phys. Lett. 78(4), 425–427 (2001).
    [CrossRef]
  10. V. A. Belyakov, V. E. Dmitrienko, and V. P. Orlov, “Optics of cholesteric liquid crystals,” Sov. Phys. Usp. 22(2), 64–88 (1979).
    [CrossRef]
  11. V. A. Belyakov, “Untwisting of the Helical Structure in a Plane Layer of Chiral Liquid Crystal,” JETP Lett. 76(2), 88–92 (2002).
    [CrossRef]
  12. S. P. Palto, “On Mechanisms of the Helix Pitch Variation in a Thin Cholesteric Layer Confined between Two Surfaces,” J. Exp. Theor. Phys. 94(2), 260–269 (2002).
    [CrossRef]
  13. L. M. Blinov, and V. G. Chigrinov, Electrooptics Effects in Liquid Crystal Materials (Springer-Verlag, New York, 1994).
  14. C. A. Bailey, V. P. Tondiglia, L. V. Natarajan, M. M. Duning, R. L. Bricker, R. L. Sutherland, T. J. White, M. F. Durstock, and T. J. Bunning, “Electromechanical tuning of cholesteric liquid crystals,” J. Appl. Phys. 107(1), 013105 (2010).
    [CrossRef]
  15. L. V. Natarajan, J. M. Wofford, V. P. Tondiglia, R. L. Sutherland, H. Koerner, R. A. Vaia, and T. J. Bunning, “Electro-thermal tuning in a negative dielectric cholesteric liquid crystal material,” J. Appl. Phys. 103(9), 093107 (2008).
    [CrossRef]
  16. (a)V. A. Belyakov and W. Kuczynski, “Motion of Nonsingular Walls in Plane Layer of Twistwd Nematics,” MCLC 480, 243 (2008).(b)V. A. Belyakov, “Cano-Grangjean Wedge at Weak Surface Anchoring,” MCLC 480, 262 (2008).c) V.A. Belyakov, D.V. Shmeliova, Nonsingular Walls in Cano-Grangjean Wedge, MCLC v.527, p.53/[2009] (2010).
  17. B. Cano, Soc. Fr. Mineral. Cristallogr. 90, 333 (1967).
  18. E.P. Raynes, “Twisted wedges for the measurement of long pitch lengths in chiral nematic liquid crystals,” Liquid Crystals, 34(6), 697–699 (2007).
  19. We thank the referee for pointing out this possibility.

2010

C. A. Bailey, V. P. Tondiglia, L. V. Natarajan, M. M. Duning, R. L. Bricker, R. L. Sutherland, T. J. White, M. F. Durstock, and T. J. Bunning, “Electromechanical tuning of cholesteric liquid crystals,” J. Appl. Phys. 107(1), 013105 (2010).
[CrossRef]

2008

L. V. Natarajan, J. M. Wofford, V. P. Tondiglia, R. L. Sutherland, H. Koerner, R. A. Vaia, and T. J. Bunning, “Electro-thermal tuning in a negative dielectric cholesteric liquid crystal material,” J. Appl. Phys. 103(9), 093107 (2008).
[CrossRef]

(a)V. A. Belyakov and W. Kuczynski, “Motion of Nonsingular Walls in Plane Layer of Twistwd Nematics,” MCLC 480, 243 (2008).(b)V. A. Belyakov, “Cano-Grangjean Wedge at Weak Surface Anchoring,” MCLC 480, 262 (2008).c) V.A. Belyakov, D.V. Shmeliova, Nonsingular Walls in Cano-Grangjean Wedge, MCLC v.527, p.53/[2009] (2010).

(a)V. A. Belyakov and W. Kuczynski, “Motion of Nonsingular Walls in Plane Layer of Twistwd Nematics,” MCLC 480, 243 (2008).(b)V. A. Belyakov, “Cano-Grangjean Wedge at Weak Surface Anchoring,” MCLC 480, 262 (2008).c) V.A. Belyakov, D.V. Shmeliova, Nonsingular Walls in Cano-Grangjean Wedge, MCLC v.527, p.53/[2009] (2010).

2007

E.P. Raynes, “Twisted wedges for the measurement of long pitch lengths in chiral nematic liquid crystals,” Liquid Crystals, 34(6), 697–699 (2007).

G. Chilaya, A. Chanishvili, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, and P. V. Shibaev, “Reversible Tuning of Lasing in Cholesteric Liquid Crystals Controlled by Light-Emitting Diodes,” Adv. Mater. 19(4), 565–568 (2007).
[CrossRef]

S.-Y. Lu and L.-C. Chien, “A polymer-stabilized single-layer color cholesteric liquid crystal display with anisotropic reflection,” Appl. Phys. Lett. 91(13), 131119 (2007).
[CrossRef]

2006

2004

M. Mitov, E. Nouvet, and N. Dessaud, “Polymer-stabilized cholesteric liquid crystals as switchable photonic broad bandgaps,” Eur Phys J E Soft Matter 15(4), 413–419 (2004).
[CrossRef] [PubMed]

2002

V. A. Belyakov, “Untwisting of the Helical Structure in a Plane Layer of Chiral Liquid Crystal,” JETP Lett. 76(2), 88–92 (2002).
[CrossRef]

S. P. Palto, “On Mechanisms of the Helix Pitch Variation in a Thin Cholesteric Layer Confined between Two Surfaces,” J. Exp. Theor. Phys. 94(2), 260–269 (2002).
[CrossRef]

2001

W. C. Yip and H. S. Kwok, “Helix unwinding of doped cholesteric liquid crystals,” Appl. Phys. Lett. 78(4), 425–427 (2001).
[CrossRef]

H. Finkelmann, S. T. Kim, A. Muñoz, P. Palffy-Muhoray, and B. Taheri, “Tunable Mirrorless Lasing in Cholesteric Liquid Crystalline Elastomers,” Adv. Mater. 13(14), 1069–1072 (2001).
[CrossRef]

1995

D. J. Broer, J. Lub, and G. N. Mol, “Wide-band reflective polarizers from cholesteric polymer networks with a pitch gradient,” Nature 378(6556), 467–469 (1995).
[CrossRef]

1979

V. A. Belyakov, V. E. Dmitrienko, and V. P. Orlov, “Optics of cholesteric liquid crystals,” Sov. Phys. Usp. 22(2), 64–88 (1979).
[CrossRef]

1969

A. C. Neville and S. Caveney, “Scarabaeid beetle exocuticle as an optical analogue of cholesteric liquid crystals,” Biol. Rev. Camb. Philos. Soc. 44(4), 531–562 (1969).
[CrossRef] [PubMed]

1967

B. Cano, Soc. Fr. Mineral. Cristallogr. 90, 333 (1967).

Bailey, C. A.

C. A. Bailey, V. P. Tondiglia, L. V. Natarajan, M. M. Duning, R. L. Bricker, R. L. Sutherland, T. J. White, M. F. Durstock, and T. J. Bunning, “Electromechanical tuning of cholesteric liquid crystals,” J. Appl. Phys. 107(1), 013105 (2010).
[CrossRef]

Barberi, R.

G. Chilaya, A. Chanishvili, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, and P. V. Shibaev, “Reversible Tuning of Lasing in Cholesteric Liquid Crystals Controlled by Light-Emitting Diodes,” Adv. Mater. 19(4), 565–568 (2007).
[CrossRef]

Bartolino, R.

G. Chilaya, A. Chanishvili, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, and P. V. Shibaev, “Reversible Tuning of Lasing in Cholesteric Liquid Crystals Controlled by Light-Emitting Diodes,” Adv. Mater. 19(4), 565–568 (2007).
[CrossRef]

Belyakov, V. A.

(a)V. A. Belyakov and W. Kuczynski, “Motion of Nonsingular Walls in Plane Layer of Twistwd Nematics,” MCLC 480, 243 (2008).(b)V. A. Belyakov, “Cano-Grangjean Wedge at Weak Surface Anchoring,” MCLC 480, 262 (2008).c) V.A. Belyakov, D.V. Shmeliova, Nonsingular Walls in Cano-Grangjean Wedge, MCLC v.527, p.53/[2009] (2010).

(a)V. A. Belyakov and W. Kuczynski, “Motion of Nonsingular Walls in Plane Layer of Twistwd Nematics,” MCLC 480, 243 (2008).(b)V. A. Belyakov, “Cano-Grangjean Wedge at Weak Surface Anchoring,” MCLC 480, 262 (2008).c) V.A. Belyakov, D.V. Shmeliova, Nonsingular Walls in Cano-Grangjean Wedge, MCLC v.527, p.53/[2009] (2010).

V. A. Belyakov, “Untwisting of the Helical Structure in a Plane Layer of Chiral Liquid Crystal,” JETP Lett. 76(2), 88–92 (2002).
[CrossRef]

V. A. Belyakov, V. E. Dmitrienko, and V. P. Orlov, “Optics of cholesteric liquid crystals,” Sov. Phys. Usp. 22(2), 64–88 (1979).
[CrossRef]

Bricker, R. L.

C. A. Bailey, V. P. Tondiglia, L. V. Natarajan, M. M. Duning, R. L. Bricker, R. L. Sutherland, T. J. White, M. F. Durstock, and T. J. Bunning, “Electromechanical tuning of cholesteric liquid crystals,” J. Appl. Phys. 107(1), 013105 (2010).
[CrossRef]

Broer, D. J.

D. J. Broer, J. Lub, and G. N. Mol, “Wide-band reflective polarizers from cholesteric polymer networks with a pitch gradient,” Nature 378(6556), 467–469 (1995).
[CrossRef]

Bunning, T. J.

C. A. Bailey, V. P. Tondiglia, L. V. Natarajan, M. M. Duning, R. L. Bricker, R. L. Sutherland, T. J. White, M. F. Durstock, and T. J. Bunning, “Electromechanical tuning of cholesteric liquid crystals,” J. Appl. Phys. 107(1), 013105 (2010).
[CrossRef]

L. V. Natarajan, J. M. Wofford, V. P. Tondiglia, R. L. Sutherland, H. Koerner, R. A. Vaia, and T. J. Bunning, “Electro-thermal tuning in a negative dielectric cholesteric liquid crystal material,” J. Appl. Phys. 103(9), 093107 (2008).
[CrossRef]

Cano, B.

B. Cano, Soc. Fr. Mineral. Cristallogr. 90, 333 (1967).

Caveney, S.

A. C. Neville and S. Caveney, “Scarabaeid beetle exocuticle as an optical analogue of cholesteric liquid crystals,” Biol. Rev. Camb. Philos. Soc. 44(4), 531–562 (1969).
[CrossRef] [PubMed]

Chanishvili, A.

G. Chilaya, A. Chanishvili, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, and P. V. Shibaev, “Reversible Tuning of Lasing in Cholesteric Liquid Crystals Controlled by Light-Emitting Diodes,” Adv. Mater. 19(4), 565–568 (2007).
[CrossRef]

Chien, L.-C.

S.-Y. Lu and L.-C. Chien, “A polymer-stabilized single-layer color cholesteric liquid crystal display with anisotropic reflection,” Appl. Phys. Lett. 91(13), 131119 (2007).
[CrossRef]

Chilaya, G.

G. Chilaya, A. Chanishvili, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, and P. V. Shibaev, “Reversible Tuning of Lasing in Cholesteric Liquid Crystals Controlled by Light-Emitting Diodes,” Adv. Mater. 19(4), 565–568 (2007).
[CrossRef]

Cipparrone, G.

G. Chilaya, A. Chanishvili, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, and P. V. Shibaev, “Reversible Tuning of Lasing in Cholesteric Liquid Crystals Controlled by Light-Emitting Diodes,” Adv. Mater. 19(4), 565–568 (2007).
[CrossRef]

Dessaud, N.

M. Mitov, E. Nouvet, and N. Dessaud, “Polymer-stabilized cholesteric liquid crystals as switchable photonic broad bandgaps,” Eur Phys J E Soft Matter 15(4), 413–419 (2004).
[CrossRef] [PubMed]

Dmitrienko, V. E.

V. A. Belyakov, V. E. Dmitrienko, and V. P. Orlov, “Optics of cholesteric liquid crystals,” Sov. Phys. Usp. 22(2), 64–88 (1979).
[CrossRef]

Doyle, C.

Duning, M. M.

C. A. Bailey, V. P. Tondiglia, L. V. Natarajan, M. M. Duning, R. L. Bricker, R. L. Sutherland, T. J. White, M. F. Durstock, and T. J. Bunning, “Electromechanical tuning of cholesteric liquid crystals,” J. Appl. Phys. 107(1), 013105 (2010).
[CrossRef]

Durstock, M. F.

C. A. Bailey, V. P. Tondiglia, L. V. Natarajan, M. M. Duning, R. L. Bricker, R. L. Sutherland, T. J. White, M. F. Durstock, and T. J. Bunning, “Electromechanical tuning of cholesteric liquid crystals,” J. Appl. Phys. 107(1), 013105 (2010).
[CrossRef]

Finkelmann, H.

H. Finkelmann, S. T. Kim, A. Muñoz, P. Palffy-Muhoray, and B. Taheri, “Tunable Mirrorless Lasing in Cholesteric Liquid Crystalline Elastomers,” Adv. Mater. 13(14), 1069–1072 (2001).
[CrossRef]

Huang, Y.

Kim, S. T.

H. Finkelmann, S. T. Kim, A. Muñoz, P. Palffy-Muhoray, and B. Taheri, “Tunable Mirrorless Lasing in Cholesteric Liquid Crystalline Elastomers,” Adv. Mater. 13(14), 1069–1072 (2001).
[CrossRef]

Koerner, H.

L. V. Natarajan, J. M. Wofford, V. P. Tondiglia, R. L. Sutherland, H. Koerner, R. A. Vaia, and T. J. Bunning, “Electro-thermal tuning in a negative dielectric cholesteric liquid crystal material,” J. Appl. Phys. 103(9), 093107 (2008).
[CrossRef]

Kuczynski, W.

(a)V. A. Belyakov and W. Kuczynski, “Motion of Nonsingular Walls in Plane Layer of Twistwd Nematics,” MCLC 480, 243 (2008).(b)V. A. Belyakov, “Cano-Grangjean Wedge at Weak Surface Anchoring,” MCLC 480, 262 (2008).c) V.A. Belyakov, D.V. Shmeliova, Nonsingular Walls in Cano-Grangjean Wedge, MCLC v.527, p.53/[2009] (2010).

Kwok, H. S.

W. C. Yip and H. S. Kwok, “Helix unwinding of doped cholesteric liquid crystals,” Appl. Phys. Lett. 78(4), 425–427 (2001).
[CrossRef]

Lu, S.-Y.

S.-Y. Lu and L.-C. Chien, “A polymer-stabilized single-layer color cholesteric liquid crystal display with anisotropic reflection,” Appl. Phys. Lett. 91(13), 131119 (2007).
[CrossRef]

Lub, J.

D. J. Broer, J. Lub, and G. N. Mol, “Wide-band reflective polarizers from cholesteric polymer networks with a pitch gradient,” Nature 378(6556), 467–469 (1995).
[CrossRef]

Mazzulla, A.

G. Chilaya, A. Chanishvili, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, and P. V. Shibaev, “Reversible Tuning of Lasing in Cholesteric Liquid Crystals Controlled by Light-Emitting Diodes,” Adv. Mater. 19(4), 565–568 (2007).
[CrossRef]

Mitov, M.

M. Mitov, E. Nouvet, and N. Dessaud, “Polymer-stabilized cholesteric liquid crystals as switchable photonic broad bandgaps,” Eur Phys J E Soft Matter 15(4), 413–419 (2004).
[CrossRef] [PubMed]

Mol, G. N.

D. J. Broer, J. Lub, and G. N. Mol, “Wide-band reflective polarizers from cholesteric polymer networks with a pitch gradient,” Nature 378(6556), 467–469 (1995).
[CrossRef]

Muñoz, A.

H. Finkelmann, S. T. Kim, A. Muñoz, P. Palffy-Muhoray, and B. Taheri, “Tunable Mirrorless Lasing in Cholesteric Liquid Crystalline Elastomers,” Adv. Mater. 13(14), 1069–1072 (2001).
[CrossRef]

Natarajan, L. V.

C. A. Bailey, V. P. Tondiglia, L. V. Natarajan, M. M. Duning, R. L. Bricker, R. L. Sutherland, T. J. White, M. F. Durstock, and T. J. Bunning, “Electromechanical tuning of cholesteric liquid crystals,” J. Appl. Phys. 107(1), 013105 (2010).
[CrossRef]

L. V. Natarajan, J. M. Wofford, V. P. Tondiglia, R. L. Sutherland, H. Koerner, R. A. Vaia, and T. J. Bunning, “Electro-thermal tuning in a negative dielectric cholesteric liquid crystal material,” J. Appl. Phys. 103(9), 093107 (2008).
[CrossRef]

Neville, A. C.

A. C. Neville and S. Caveney, “Scarabaeid beetle exocuticle as an optical analogue of cholesteric liquid crystals,” Biol. Rev. Camb. Philos. Soc. 44(4), 531–562 (1969).
[CrossRef] [PubMed]

Nouvet, E.

M. Mitov, E. Nouvet, and N. Dessaud, “Polymer-stabilized cholesteric liquid crystals as switchable photonic broad bandgaps,” Eur Phys J E Soft Matter 15(4), 413–419 (2004).
[CrossRef] [PubMed]

Orlov, V. P.

V. A. Belyakov, V. E. Dmitrienko, and V. P. Orlov, “Optics of cholesteric liquid crystals,” Sov. Phys. Usp. 22(2), 64–88 (1979).
[CrossRef]

Palffy-Muhoray, P.

H. Finkelmann, S. T. Kim, A. Muñoz, P. Palffy-Muhoray, and B. Taheri, “Tunable Mirrorless Lasing in Cholesteric Liquid Crystalline Elastomers,” Adv. Mater. 13(14), 1069–1072 (2001).
[CrossRef]

Palto, S. P.

S. P. Palto, “On Mechanisms of the Helix Pitch Variation in a Thin Cholesteric Layer Confined between Two Surfaces,” J. Exp. Theor. Phys. 94(2), 260–269 (2002).
[CrossRef]

Petriashvili, G.

G. Chilaya, A. Chanishvili, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, and P. V. Shibaev, “Reversible Tuning of Lasing in Cholesteric Liquid Crystals Controlled by Light-Emitting Diodes,” Adv. Mater. 19(4), 565–568 (2007).
[CrossRef]

Raynes, E.P.

E.P. Raynes, “Twisted wedges for the measurement of long pitch lengths in chiral nematic liquid crystals,” Liquid Crystals, 34(6), 697–699 (2007).

Shibaev, P. V.

G. Chilaya, A. Chanishvili, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, and P. V. Shibaev, “Reversible Tuning of Lasing in Cholesteric Liquid Crystals Controlled by Light-Emitting Diodes,” Adv. Mater. 19(4), 565–568 (2007).
[CrossRef]

Sutherland, R. L.

C. A. Bailey, V. P. Tondiglia, L. V. Natarajan, M. M. Duning, R. L. Bricker, R. L. Sutherland, T. J. White, M. F. Durstock, and T. J. Bunning, “Electromechanical tuning of cholesteric liquid crystals,” J. Appl. Phys. 107(1), 013105 (2010).
[CrossRef]

L. V. Natarajan, J. M. Wofford, V. P. Tondiglia, R. L. Sutherland, H. Koerner, R. A. Vaia, and T. J. Bunning, “Electro-thermal tuning in a negative dielectric cholesteric liquid crystal material,” J. Appl. Phys. 103(9), 093107 (2008).
[CrossRef]

Taheri, B.

H. Finkelmann, S. T. Kim, A. Muñoz, P. Palffy-Muhoray, and B. Taheri, “Tunable Mirrorless Lasing in Cholesteric Liquid Crystalline Elastomers,” Adv. Mater. 13(14), 1069–1072 (2001).
[CrossRef]

Tondiglia, V. P.

C. A. Bailey, V. P. Tondiglia, L. V. Natarajan, M. M. Duning, R. L. Bricker, R. L. Sutherland, T. J. White, M. F. Durstock, and T. J. Bunning, “Electromechanical tuning of cholesteric liquid crystals,” J. Appl. Phys. 107(1), 013105 (2010).
[CrossRef]

L. V. Natarajan, J. M. Wofford, V. P. Tondiglia, R. L. Sutherland, H. Koerner, R. A. Vaia, and T. J. Bunning, “Electro-thermal tuning in a negative dielectric cholesteric liquid crystal material,” J. Appl. Phys. 103(9), 093107 (2008).
[CrossRef]

Vaia, R. A.

L. V. Natarajan, J. M. Wofford, V. P. Tondiglia, R. L. Sutherland, H. Koerner, R. A. Vaia, and T. J. Bunning, “Electro-thermal tuning in a negative dielectric cholesteric liquid crystal material,” J. Appl. Phys. 103(9), 093107 (2008).
[CrossRef]

White, T. J.

C. A. Bailey, V. P. Tondiglia, L. V. Natarajan, M. M. Duning, R. L. Bricker, R. L. Sutherland, T. J. White, M. F. Durstock, and T. J. Bunning, “Electromechanical tuning of cholesteric liquid crystals,” J. Appl. Phys. 107(1), 013105 (2010).
[CrossRef]

Wofford, J. M.

L. V. Natarajan, J. M. Wofford, V. P. Tondiglia, R. L. Sutherland, H. Koerner, R. A. Vaia, and T. J. Bunning, “Electro-thermal tuning in a negative dielectric cholesteric liquid crystal material,” J. Appl. Phys. 103(9), 093107 (2008).
[CrossRef]

Wu, S.-T.

Yip, W. C.

W. C. Yip and H. S. Kwok, “Helix unwinding of doped cholesteric liquid crystals,” Appl. Phys. Lett. 78(4), 425–427 (2001).
[CrossRef]

Zhou, Y.

Adv. Mater.

H. Finkelmann, S. T. Kim, A. Muñoz, P. Palffy-Muhoray, and B. Taheri, “Tunable Mirrorless Lasing in Cholesteric Liquid Crystalline Elastomers,” Adv. Mater. 13(14), 1069–1072 (2001).
[CrossRef]

G. Chilaya, A. Chanishvili, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, and P. V. Shibaev, “Reversible Tuning of Lasing in Cholesteric Liquid Crystals Controlled by Light-Emitting Diodes,” Adv. Mater. 19(4), 565–568 (2007).
[CrossRef]

Appl. Phys. Lett.

S.-Y. Lu and L.-C. Chien, “A polymer-stabilized single-layer color cholesteric liquid crystal display with anisotropic reflection,” Appl. Phys. Lett. 91(13), 131119 (2007).
[CrossRef]

W. C. Yip and H. S. Kwok, “Helix unwinding of doped cholesteric liquid crystals,” Appl. Phys. Lett. 78(4), 425–427 (2001).
[CrossRef]

Biol. Rev. Camb. Philos. Soc.

A. C. Neville and S. Caveney, “Scarabaeid beetle exocuticle as an optical analogue of cholesteric liquid crystals,” Biol. Rev. Camb. Philos. Soc. 44(4), 531–562 (1969).
[CrossRef] [PubMed]

Eur Phys J E Soft Matter

M. Mitov, E. Nouvet, and N. Dessaud, “Polymer-stabilized cholesteric liquid crystals as switchable photonic broad bandgaps,” Eur Phys J E Soft Matter 15(4), 413–419 (2004).
[CrossRef] [PubMed]

J. Appl. Phys.

C. A. Bailey, V. P. Tondiglia, L. V. Natarajan, M. M. Duning, R. L. Bricker, R. L. Sutherland, T. J. White, M. F. Durstock, and T. J. Bunning, “Electromechanical tuning of cholesteric liquid crystals,” J. Appl. Phys. 107(1), 013105 (2010).
[CrossRef]

L. V. Natarajan, J. M. Wofford, V. P. Tondiglia, R. L. Sutherland, H. Koerner, R. A. Vaia, and T. J. Bunning, “Electro-thermal tuning in a negative dielectric cholesteric liquid crystal material,” J. Appl. Phys. 103(9), 093107 (2008).
[CrossRef]

J. Exp. Theor. Phys.

S. P. Palto, “On Mechanisms of the Helix Pitch Variation in a Thin Cholesteric Layer Confined between Two Surfaces,” J. Exp. Theor. Phys. 94(2), 260–269 (2002).
[CrossRef]

JETP Lett.

V. A. Belyakov, “Untwisting of the Helical Structure in a Plane Layer of Chiral Liquid Crystal,” JETP Lett. 76(2), 88–92 (2002).
[CrossRef]

MCLC

(a)V. A. Belyakov and W. Kuczynski, “Motion of Nonsingular Walls in Plane Layer of Twistwd Nematics,” MCLC 480, 243 (2008).(b)V. A. Belyakov, “Cano-Grangjean Wedge at Weak Surface Anchoring,” MCLC 480, 262 (2008).c) V.A. Belyakov, D.V. Shmeliova, Nonsingular Walls in Cano-Grangjean Wedge, MCLC v.527, p.53/[2009] (2010).

Nature

D. J. Broer, J. Lub, and G. N. Mol, “Wide-band reflective polarizers from cholesteric polymer networks with a pitch gradient,” Nature 378(6556), 467–469 (1995).
[CrossRef]

Opt. Express

Soc. Fr. Mineral. Cristallogr.

B. Cano, Soc. Fr. Mineral. Cristallogr. 90, 333 (1967).

Sov. Phys. Usp.

V. A. Belyakov, V. E. Dmitrienko, and V. P. Orlov, “Optics of cholesteric liquid crystals,” Sov. Phys. Usp. 22(2), 64–88 (1979).
[CrossRef]

Other

P. G. de Gennes, and J. Prost, The Physics of Liquid Crystals, (Oxford University Press, 1995), 2nd Edition.

E.P. Raynes, “Twisted wedges for the measurement of long pitch lengths in chiral nematic liquid crystals,” Liquid Crystals, 34(6), 697–699 (2007).

We thank the referee for pointing out this possibility.

L. M. Blinov, and V. G. Chigrinov, Electrooptics Effects in Liquid Crystal Materials (Springer-Verlag, New York, 1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Transmission spectra of a CLC mixture, measured with an unpolarized probe beam, demonstrating the key characteristics of a CLC: the absence of the second order Bragg reflection (shown by the vertical arrow) and the large bandwidth of the resonance defined by the local anisotropy of the CLC.

Fig. 2
Fig. 2

The transmission spectra of the CLC cell for unpolarized input light at different RMS voltages applied to the cell up to the first jump of the pitch (voltages are growing from 0 to 18 RMS Volts; low excitation regime).

Fig. 3
Fig. 3

The dependence of the resonance wavelength of the CLC upon the RMS voltage applied to the cell (growing voltage: open squares and decreasing voltage: filled circles).

Fig. 4
Fig. 4

Ring structure observed in the reflected, from the CLC-filled cell, for various voltages applied 20 V (left picture) and 10 V (right picture). Vertically aligned half ellipsoidal white zones (on right and left sides of each picture) are the conductive adhesive zones with vertical wires in the bottom zones of the figure.

Fig. 5
Fig. 5

Spectral modifications of the cell during the evolution of the disclination (at a fixed voltage, slightly above the jumping threshold voltage) allowing the re-adjustment of the pitch of the helix. Consecutive spectra (labelled 1, 2 and 3) are taken with approximately 1 min of delay.

Fig. 6
Fig. 6

Microscope observation of the transient propagation of the disclination wall allowing the establishement of a self-adjusted (to the new value of L) period of director rotation. Consecutive pictures (at 20 V) are taken with approximately 0.5 min of delay.

Metrics