Abstract

Spectroscopic chemical classification based on adaptive, feature-specific measurements has been implemented and demonstrated to provide significant performance gain over traditional systems. The measurement scheme and the decision model are discussed. A prototype system with a digital micro-mirror device as the adaptive element has been constructed and validates the theoretical findings and simulation results.

© 2011 OSA

Full Article  |  PDF Article
Related Articles
Objective assessment of image quality. III. ROC metrics, ideal observers, and likelihood-generating functions

Harrison H. Barrett, Craig K. Abbey, and Eric Clarkson
J. Opt. Soc. Am. A 15(6) 1520-1535 (1998)

Effect of source spectral shape on task-based assessment of detection and resolution in optical coherence tomography

A. Ceyhun Akcay, Eric Clarkson, and Jannick P. Rolland
Appl. Opt. 44(35) 7573-7580 (2005)

Objective assessment of image quality. IV. Application to adaptive optics

Harrison H. Barrett, Kyle J. Myers, Nicholas Devaney, and Christopher Dainty
J. Opt. Soc. Am. A 23(12) 3080-3105 (2006)

References

  • View by:
  • |
  • |
  • |

  1. Y. Sun and K. Ong, Detection technologies for chemical warfare agents and toxic vapors (CRC, 2005).
  2. W. Pearman and A. Fountain, “Classification of chemical and biological warfare agent simulants by surface-enhanced Raman spectroscopy and multivariate statistical techniques,” J. Appl. Spectrosc. 60(4), 356–365 (2006).
    [Crossref]
  3. H. Liu, Y. Chen, G. Bastiaans, and X. Zhang, “Detection and identification of explosive RDX by THz diffuse reflection spectroscopy,” J. Appl. Spectrosc. 43, 414–417 (2004).
  4. H. Liu, H. Zhong, N. Karpowicz, Y. Chen, and X. Zhang, “Terahertz spectroscopy and imaging for defense and security applications,” Proc. IEEE 95(8), 1514–1527 (2007).
    [Crossref]
  5. K. Maquelin, T. van Vreeswijk, H. Endtz, B. Smith, R. Bennett, H. Bruining, and G. Puppels, “Raman spectroscopic method for identification of clinically relevant microorganisms growing on solid culture medium,” Anal. Chem. 72(1), 12–19 (2000).
    [Crossref] [PubMed]
  6. K. Maquelin, C. Kirschner, L. Choo-Smith, N. Van den Braak, H. Endtz, D. Naumann, and G. Puppels, “Identification of medically relevant microorganisms by vibrational spectroscopy,” J. Microbiol. Methods 51(3), 255–271 (2002).
    [Crossref] [PubMed]
  7. A. Manz, N. Graber, and H. Widmer, “Miniaturized total chemical analysis systems: a novel concept for chemical sensing,” Sens. Actuators B 1(1–6), 244–248 (1990).
    [Crossref]
  8. D. Harrison, P. Glavina, and A. Manz, “Towards miniaturized electrophoresis and chemical analysis systems on silicon: an alternative to chemical sensors,” Sens. Actuators B 10(2), 107–116 (1993).
    [Crossref]
  9. R. Kopelman and W. Tan, “Near-field optical microscopy, spectroscopy, and chemical sensors,” Appl. Spectrosc. Rev. 29(1), 39–66 (1994).
    [Crossref]
  10. J. Chou, Y. Han, and B. Jalali, “Time-wavelength spectroscopy for chemical sensing,” IEEE Photon. Technol. Lett. 16(4), 1140–1142 (2004).
    [Crossref]
  11. H. Pal, D. Ganotra, and M. Neifeld, “Face recognition by using feature-specific imaging,” Appl. Opt. 44(18), 3784–3794 (2005).
    [Crossref] [PubMed]
  12. M. Neifeld and P. Shankar, “Feature-specific imaging,” Appl. Opt. 42(17), 3379–3389 (2003).
    [Crossref] [PubMed]
  13. P. Fellgett, “Conclusions on multiplex methods,” J. Phys. Colloques 28, C2-165–C2-171 (1967).
    [Crossref]
  14. F. Robey, D. Fuhrmann, E. Kelly, and R. Nitzberg, “A CFAR adaptive matched filter detector,” IEEE Aerosp. Electron. Syst. 28 (1)208–216 (1992).
    [Crossref]
  15. I. Reed, R. Gagliardi, and L. Stotts, “Optical moving target detection with 3-D matched filtering,” IEEE Aerosp. Electron. Syst. 24(4), 327–336 (1988).
    [Crossref]
  16. S. Kay, Fundamentals of Statistical Signal Processing, Volume 2: Detection Theory (Prentice Hall PTR, 1998).
  17. C. Helstrom, Statistical theory of signal detection (PergamonOxford, 1968).
  18. T. Wickens, Elementary signal detection theory (Oxford University Press, USA, 2002).
  19. A. Wald, Sequential analysis (Dover Pubns, 2004).
  20. P. Armitage, “Sequential analysis with more than two alternative hypotheses, and its relation to discriminant function analysis,” J. R. Stat. Soc. Ser. B (Methodol.) 12(1), 137–144 (1950).
  21. I. Jolliffe, Principal component analysis (Springer verlag, 2002).
  22. J. Ke, P. Baheti, and M. Neifeld, “Applications of adaptive feature-specific imaging,” Proc. SPIE 6575, 657505 (2007).
    [Crossref]
  23. Texas Instruments, .17 HVGA DMD Datasheet.
  24. Multicomp Corporation, Multicomp RGB LED Array Datasheet.
  25. M. Neifeld, A. Ashok, and P. Baheti, “Task-specific information for imaging system analysis,” J. Opt. Soc. Am. A 24(12), B25–B41 (2007).
    [Crossref]

2007 (3)

H. Liu, H. Zhong, N. Karpowicz, Y. Chen, and X. Zhang, “Terahertz spectroscopy and imaging for defense and security applications,” Proc. IEEE 95(8), 1514–1527 (2007).
[Crossref]

J. Ke, P. Baheti, and M. Neifeld, “Applications of adaptive feature-specific imaging,” Proc. SPIE 6575, 657505 (2007).
[Crossref]

M. Neifeld, A. Ashok, and P. Baheti, “Task-specific information for imaging system analysis,” J. Opt. Soc. Am. A 24(12), B25–B41 (2007).
[Crossref]

2006 (1)

W. Pearman and A. Fountain, “Classification of chemical and biological warfare agent simulants by surface-enhanced Raman spectroscopy and multivariate statistical techniques,” J. Appl. Spectrosc. 60(4), 356–365 (2006).
[Crossref]

2005 (1)

2004 (3)

A. Wald, Sequential analysis (Dover Pubns, 2004).

H. Liu, Y. Chen, G. Bastiaans, and X. Zhang, “Detection and identification of explosive RDX by THz diffuse reflection spectroscopy,” J. Appl. Spectrosc. 43, 414–417 (2004).

J. Chou, Y. Han, and B. Jalali, “Time-wavelength spectroscopy for chemical sensing,” IEEE Photon. Technol. Lett. 16(4), 1140–1142 (2004).
[Crossref]

2003 (1)

2002 (1)

K. Maquelin, C. Kirschner, L. Choo-Smith, N. Van den Braak, H. Endtz, D. Naumann, and G. Puppels, “Identification of medically relevant microorganisms by vibrational spectroscopy,” J. Microbiol. Methods 51(3), 255–271 (2002).
[Crossref] [PubMed]

2000 (1)

K. Maquelin, T. van Vreeswijk, H. Endtz, B. Smith, R. Bennett, H. Bruining, and G. Puppels, “Raman spectroscopic method for identification of clinically relevant microorganisms growing on solid culture medium,” Anal. Chem. 72(1), 12–19 (2000).
[Crossref] [PubMed]

1994 (1)

R. Kopelman and W. Tan, “Near-field optical microscopy, spectroscopy, and chemical sensors,” Appl. Spectrosc. Rev. 29(1), 39–66 (1994).
[Crossref]

1993 (1)

D. Harrison, P. Glavina, and A. Manz, “Towards miniaturized electrophoresis and chemical analysis systems on silicon: an alternative to chemical sensors,” Sens. Actuators B 10(2), 107–116 (1993).
[Crossref]

1992 (1)

F. Robey, D. Fuhrmann, E. Kelly, and R. Nitzberg, “A CFAR adaptive matched filter detector,” IEEE Aerosp. Electron. Syst. 28 (1)208–216 (1992).
[Crossref]

1990 (1)

A. Manz, N. Graber, and H. Widmer, “Miniaturized total chemical analysis systems: a novel concept for chemical sensing,” Sens. Actuators B 1(1–6), 244–248 (1990).
[Crossref]

1988 (1)

I. Reed, R. Gagliardi, and L. Stotts, “Optical moving target detection with 3-D matched filtering,” IEEE Aerosp. Electron. Syst. 24(4), 327–336 (1988).
[Crossref]

1967 (1)

P. Fellgett, “Conclusions on multiplex methods,” J. Phys. Colloques 28, C2-165–C2-171 (1967).
[Crossref]

1950 (1)

P. Armitage, “Sequential analysis with more than two alternative hypotheses, and its relation to discriminant function analysis,” J. R. Stat. Soc. Ser. B (Methodol.) 12(1), 137–144 (1950).

Armitage, P.

P. Armitage, “Sequential analysis with more than two alternative hypotheses, and its relation to discriminant function analysis,” J. R. Stat. Soc. Ser. B (Methodol.) 12(1), 137–144 (1950).

Ashok, A.

Baheti, P.

M. Neifeld, A. Ashok, and P. Baheti, “Task-specific information for imaging system analysis,” J. Opt. Soc. Am. A 24(12), B25–B41 (2007).
[Crossref]

J. Ke, P. Baheti, and M. Neifeld, “Applications of adaptive feature-specific imaging,” Proc. SPIE 6575, 657505 (2007).
[Crossref]

Bastiaans, G.

H. Liu, Y. Chen, G. Bastiaans, and X. Zhang, “Detection and identification of explosive RDX by THz diffuse reflection spectroscopy,” J. Appl. Spectrosc. 43, 414–417 (2004).

Bennett, R.

K. Maquelin, T. van Vreeswijk, H. Endtz, B. Smith, R. Bennett, H. Bruining, and G. Puppels, “Raman spectroscopic method for identification of clinically relevant microorganisms growing on solid culture medium,” Anal. Chem. 72(1), 12–19 (2000).
[Crossref] [PubMed]

Bruining, H.

K. Maquelin, T. van Vreeswijk, H. Endtz, B. Smith, R. Bennett, H. Bruining, and G. Puppels, “Raman spectroscopic method for identification of clinically relevant microorganisms growing on solid culture medium,” Anal. Chem. 72(1), 12–19 (2000).
[Crossref] [PubMed]

Chen, Y.

H. Liu, H. Zhong, N. Karpowicz, Y. Chen, and X. Zhang, “Terahertz spectroscopy and imaging for defense and security applications,” Proc. IEEE 95(8), 1514–1527 (2007).
[Crossref]

H. Liu, Y. Chen, G. Bastiaans, and X. Zhang, “Detection and identification of explosive RDX by THz diffuse reflection spectroscopy,” J. Appl. Spectrosc. 43, 414–417 (2004).

Choo-Smith, L.

K. Maquelin, C. Kirschner, L. Choo-Smith, N. Van den Braak, H. Endtz, D. Naumann, and G. Puppels, “Identification of medically relevant microorganisms by vibrational spectroscopy,” J. Microbiol. Methods 51(3), 255–271 (2002).
[Crossref] [PubMed]

Chou, J.

J. Chou, Y. Han, and B. Jalali, “Time-wavelength spectroscopy for chemical sensing,” IEEE Photon. Technol. Lett. 16(4), 1140–1142 (2004).
[Crossref]

Endtz, H.

K. Maquelin, C. Kirschner, L. Choo-Smith, N. Van den Braak, H. Endtz, D. Naumann, and G. Puppels, “Identification of medically relevant microorganisms by vibrational spectroscopy,” J. Microbiol. Methods 51(3), 255–271 (2002).
[Crossref] [PubMed]

K. Maquelin, T. van Vreeswijk, H. Endtz, B. Smith, R. Bennett, H. Bruining, and G. Puppels, “Raman spectroscopic method for identification of clinically relevant microorganisms growing on solid culture medium,” Anal. Chem. 72(1), 12–19 (2000).
[Crossref] [PubMed]

Fellgett, P.

P. Fellgett, “Conclusions on multiplex methods,” J. Phys. Colloques 28, C2-165–C2-171 (1967).
[Crossref]

Fountain, A.

W. Pearman and A. Fountain, “Classification of chemical and biological warfare agent simulants by surface-enhanced Raman spectroscopy and multivariate statistical techniques,” J. Appl. Spectrosc. 60(4), 356–365 (2006).
[Crossref]

Fuhrmann, D.

F. Robey, D. Fuhrmann, E. Kelly, and R. Nitzberg, “A CFAR adaptive matched filter detector,” IEEE Aerosp. Electron. Syst. 28 (1)208–216 (1992).
[Crossref]

Gagliardi, R.

I. Reed, R. Gagliardi, and L. Stotts, “Optical moving target detection with 3-D matched filtering,” IEEE Aerosp. Electron. Syst. 24(4), 327–336 (1988).
[Crossref]

Ganotra, D.

Glavina, P.

D. Harrison, P. Glavina, and A. Manz, “Towards miniaturized electrophoresis and chemical analysis systems on silicon: an alternative to chemical sensors,” Sens. Actuators B 10(2), 107–116 (1993).
[Crossref]

Graber, N.

A. Manz, N. Graber, and H. Widmer, “Miniaturized total chemical analysis systems: a novel concept for chemical sensing,” Sens. Actuators B 1(1–6), 244–248 (1990).
[Crossref]

Han, Y.

J. Chou, Y. Han, and B. Jalali, “Time-wavelength spectroscopy for chemical sensing,” IEEE Photon. Technol. Lett. 16(4), 1140–1142 (2004).
[Crossref]

Harrison, D.

D. Harrison, P. Glavina, and A. Manz, “Towards miniaturized electrophoresis and chemical analysis systems on silicon: an alternative to chemical sensors,” Sens. Actuators B 10(2), 107–116 (1993).
[Crossref]

Helstrom, C.

C. Helstrom, Statistical theory of signal detection (PergamonOxford, 1968).

Jalali, B.

J. Chou, Y. Han, and B. Jalali, “Time-wavelength spectroscopy for chemical sensing,” IEEE Photon. Technol. Lett. 16(4), 1140–1142 (2004).
[Crossref]

Jolliffe, I.

I. Jolliffe, Principal component analysis (Springer verlag, 2002).

Karpowicz, N.

H. Liu, H. Zhong, N. Karpowicz, Y. Chen, and X. Zhang, “Terahertz spectroscopy and imaging for defense and security applications,” Proc. IEEE 95(8), 1514–1527 (2007).
[Crossref]

Kay, S.

S. Kay, Fundamentals of Statistical Signal Processing, Volume 2: Detection Theory (Prentice Hall PTR, 1998).

Ke, J.

J. Ke, P. Baheti, and M. Neifeld, “Applications of adaptive feature-specific imaging,” Proc. SPIE 6575, 657505 (2007).
[Crossref]

Kelly, E.

F. Robey, D. Fuhrmann, E. Kelly, and R. Nitzberg, “A CFAR adaptive matched filter detector,” IEEE Aerosp. Electron. Syst. 28 (1)208–216 (1992).
[Crossref]

Kirschner, C.

K. Maquelin, C. Kirschner, L. Choo-Smith, N. Van den Braak, H. Endtz, D. Naumann, and G. Puppels, “Identification of medically relevant microorganisms by vibrational spectroscopy,” J. Microbiol. Methods 51(3), 255–271 (2002).
[Crossref] [PubMed]

Kopelman, R.

R. Kopelman and W. Tan, “Near-field optical microscopy, spectroscopy, and chemical sensors,” Appl. Spectrosc. Rev. 29(1), 39–66 (1994).
[Crossref]

Liu, H.

H. Liu, H. Zhong, N. Karpowicz, Y. Chen, and X. Zhang, “Terahertz spectroscopy and imaging for defense and security applications,” Proc. IEEE 95(8), 1514–1527 (2007).
[Crossref]

H. Liu, Y. Chen, G. Bastiaans, and X. Zhang, “Detection and identification of explosive RDX by THz diffuse reflection spectroscopy,” J. Appl. Spectrosc. 43, 414–417 (2004).

Manz, A.

D. Harrison, P. Glavina, and A. Manz, “Towards miniaturized electrophoresis and chemical analysis systems on silicon: an alternative to chemical sensors,” Sens. Actuators B 10(2), 107–116 (1993).
[Crossref]

A. Manz, N. Graber, and H. Widmer, “Miniaturized total chemical analysis systems: a novel concept for chemical sensing,” Sens. Actuators B 1(1–6), 244–248 (1990).
[Crossref]

Maquelin, K.

K. Maquelin, C. Kirschner, L. Choo-Smith, N. Van den Braak, H. Endtz, D. Naumann, and G. Puppels, “Identification of medically relevant microorganisms by vibrational spectroscopy,” J. Microbiol. Methods 51(3), 255–271 (2002).
[Crossref] [PubMed]

K. Maquelin, T. van Vreeswijk, H. Endtz, B. Smith, R. Bennett, H. Bruining, and G. Puppels, “Raman spectroscopic method for identification of clinically relevant microorganisms growing on solid culture medium,” Anal. Chem. 72(1), 12–19 (2000).
[Crossref] [PubMed]

Naumann, D.

K. Maquelin, C. Kirschner, L. Choo-Smith, N. Van den Braak, H. Endtz, D. Naumann, and G. Puppels, “Identification of medically relevant microorganisms by vibrational spectroscopy,” J. Microbiol. Methods 51(3), 255–271 (2002).
[Crossref] [PubMed]

Neifeld, M.

Nitzberg, R.

F. Robey, D. Fuhrmann, E. Kelly, and R. Nitzberg, “A CFAR adaptive matched filter detector,” IEEE Aerosp. Electron. Syst. 28 (1)208–216 (1992).
[Crossref]

Ong, K.

Y. Sun and K. Ong, Detection technologies for chemical warfare agents and toxic vapors (CRC, 2005).

Pal, H.

Pearman, W.

W. Pearman and A. Fountain, “Classification of chemical and biological warfare agent simulants by surface-enhanced Raman spectroscopy and multivariate statistical techniques,” J. Appl. Spectrosc. 60(4), 356–365 (2006).
[Crossref]

Puppels, G.

K. Maquelin, C. Kirschner, L. Choo-Smith, N. Van den Braak, H. Endtz, D. Naumann, and G. Puppels, “Identification of medically relevant microorganisms by vibrational spectroscopy,” J. Microbiol. Methods 51(3), 255–271 (2002).
[Crossref] [PubMed]

K. Maquelin, T. van Vreeswijk, H. Endtz, B. Smith, R. Bennett, H. Bruining, and G. Puppels, “Raman spectroscopic method for identification of clinically relevant microorganisms growing on solid culture medium,” Anal. Chem. 72(1), 12–19 (2000).
[Crossref] [PubMed]

Reed, I.

I. Reed, R. Gagliardi, and L. Stotts, “Optical moving target detection with 3-D matched filtering,” IEEE Aerosp. Electron. Syst. 24(4), 327–336 (1988).
[Crossref]

Robey, F.

F. Robey, D. Fuhrmann, E. Kelly, and R. Nitzberg, “A CFAR adaptive matched filter detector,” IEEE Aerosp. Electron. Syst. 28 (1)208–216 (1992).
[Crossref]

Shankar, P.

Smith, B.

K. Maquelin, T. van Vreeswijk, H. Endtz, B. Smith, R. Bennett, H. Bruining, and G. Puppels, “Raman spectroscopic method for identification of clinically relevant microorganisms growing on solid culture medium,” Anal. Chem. 72(1), 12–19 (2000).
[Crossref] [PubMed]

Stotts, L.

I. Reed, R. Gagliardi, and L. Stotts, “Optical moving target detection with 3-D matched filtering,” IEEE Aerosp. Electron. Syst. 24(4), 327–336 (1988).
[Crossref]

Sun, Y.

Y. Sun and K. Ong, Detection technologies for chemical warfare agents and toxic vapors (CRC, 2005).

Tan, W.

R. Kopelman and W. Tan, “Near-field optical microscopy, spectroscopy, and chemical sensors,” Appl. Spectrosc. Rev. 29(1), 39–66 (1994).
[Crossref]

Van den Braak, N.

K. Maquelin, C. Kirschner, L. Choo-Smith, N. Van den Braak, H. Endtz, D. Naumann, and G. Puppels, “Identification of medically relevant microorganisms by vibrational spectroscopy,” J. Microbiol. Methods 51(3), 255–271 (2002).
[Crossref] [PubMed]

van Vreeswijk, T.

K. Maquelin, T. van Vreeswijk, H. Endtz, B. Smith, R. Bennett, H. Bruining, and G. Puppels, “Raman spectroscopic method for identification of clinically relevant microorganisms growing on solid culture medium,” Anal. Chem. 72(1), 12–19 (2000).
[Crossref] [PubMed]

Wald, A.

A. Wald, Sequential analysis (Dover Pubns, 2004).

Wickens, T.

T. Wickens, Elementary signal detection theory (Oxford University Press, USA, 2002).

Widmer, H.

A. Manz, N. Graber, and H. Widmer, “Miniaturized total chemical analysis systems: a novel concept for chemical sensing,” Sens. Actuators B 1(1–6), 244–248 (1990).
[Crossref]

Zhang, X.

H. Liu, H. Zhong, N. Karpowicz, Y. Chen, and X. Zhang, “Terahertz spectroscopy and imaging for defense and security applications,” Proc. IEEE 95(8), 1514–1527 (2007).
[Crossref]

H. Liu, Y. Chen, G. Bastiaans, and X. Zhang, “Detection and identification of explosive RDX by THz diffuse reflection spectroscopy,” J. Appl. Spectrosc. 43, 414–417 (2004).

Zhong, H.

H. Liu, H. Zhong, N. Karpowicz, Y. Chen, and X. Zhang, “Terahertz spectroscopy and imaging for defense and security applications,” Proc. IEEE 95(8), 1514–1527 (2007).
[Crossref]

Anal. Chem. (1)

K. Maquelin, T. van Vreeswijk, H. Endtz, B. Smith, R. Bennett, H. Bruining, and G. Puppels, “Raman spectroscopic method for identification of clinically relevant microorganisms growing on solid culture medium,” Anal. Chem. 72(1), 12–19 (2000).
[Crossref] [PubMed]

Appl. Opt. (2)

Appl. Spectrosc. Rev. (1)

R. Kopelman and W. Tan, “Near-field optical microscopy, spectroscopy, and chemical sensors,” Appl. Spectrosc. Rev. 29(1), 39–66 (1994).
[Crossref]

IEEE Aerosp. Electron. Syst. (2)

F. Robey, D. Fuhrmann, E. Kelly, and R. Nitzberg, “A CFAR adaptive matched filter detector,” IEEE Aerosp. Electron. Syst. 28 (1)208–216 (1992).
[Crossref]

I. Reed, R. Gagliardi, and L. Stotts, “Optical moving target detection with 3-D matched filtering,” IEEE Aerosp. Electron. Syst. 24(4), 327–336 (1988).
[Crossref]

IEEE Photon. Technol. Lett. (1)

J. Chou, Y. Han, and B. Jalali, “Time-wavelength spectroscopy for chemical sensing,” IEEE Photon. Technol. Lett. 16(4), 1140–1142 (2004).
[Crossref]

J. Appl. Spectrosc. (2)

W. Pearman and A. Fountain, “Classification of chemical and biological warfare agent simulants by surface-enhanced Raman spectroscopy and multivariate statistical techniques,” J. Appl. Spectrosc. 60(4), 356–365 (2006).
[Crossref]

H. Liu, Y. Chen, G. Bastiaans, and X. Zhang, “Detection and identification of explosive RDX by THz diffuse reflection spectroscopy,” J. Appl. Spectrosc. 43, 414–417 (2004).

J. Microbiol. Methods (1)

K. Maquelin, C. Kirschner, L. Choo-Smith, N. Van den Braak, H. Endtz, D. Naumann, and G. Puppels, “Identification of medically relevant microorganisms by vibrational spectroscopy,” J. Microbiol. Methods 51(3), 255–271 (2002).
[Crossref] [PubMed]

J. Opt. Soc. Am. A (1)

J. Phys. Colloques (1)

P. Fellgett, “Conclusions on multiplex methods,” J. Phys. Colloques 28, C2-165–C2-171 (1967).
[Crossref]

J. R. Stat. Soc. Ser. B (Methodol.) (1)

P. Armitage, “Sequential analysis with more than two alternative hypotheses, and its relation to discriminant function analysis,” J. R. Stat. Soc. Ser. B (Methodol.) 12(1), 137–144 (1950).

Proc. IEEE (1)

H. Liu, H. Zhong, N. Karpowicz, Y. Chen, and X. Zhang, “Terahertz spectroscopy and imaging for defense and security applications,” Proc. IEEE 95(8), 1514–1527 (2007).
[Crossref]

Proc. SPIE (1)

J. Ke, P. Baheti, and M. Neifeld, “Applications of adaptive feature-specific imaging,” Proc. SPIE 6575, 657505 (2007).
[Crossref]

Sens. Actuators B (2)

A. Manz, N. Graber, and H. Widmer, “Miniaturized total chemical analysis systems: a novel concept for chemical sensing,” Sens. Actuators B 1(1–6), 244–248 (1990).
[Crossref]

D. Harrison, P. Glavina, and A. Manz, “Towards miniaturized electrophoresis and chemical analysis systems on silicon: an alternative to chemical sensors,” Sens. Actuators B 10(2), 107–116 (1993).
[Crossref]

Sequential analysis (1)

A. Wald, Sequential analysis (Dover Pubns, 2004).

Other (7)

Y. Sun and K. Ong, Detection technologies for chemical warfare agents and toxic vapors (CRC, 2005).

S. Kay, Fundamentals of Statistical Signal Processing, Volume 2: Detection Theory (Prentice Hall PTR, 1998).

C. Helstrom, Statistical theory of signal detection (PergamonOxford, 1968).

T. Wickens, Elementary signal detection theory (Oxford University Press, USA, 2002).

Texas Instruments, .17 HVGA DMD Datasheet.

Multicomp Corporation, Multicomp RGB LED Array Datasheet.

I. Jolliffe, Principal component analysis (Springer verlag, 2002).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

The block diagram illustrates the measurement and decision framework in an AFSS system. The knowledge gained after each measurement is fully used by adaptively reconfiguring the feature vectors.

Fig. 2
Fig. 2

The plot compares the performance of the AFSS with a static feature specific spectrometer and a traditional spectrometer.

Fig. 3
Fig. 3

Schematic illustrating the working of an AFSS system and the optics involved in its design.

Fig. 4
Fig. 4

The important components of an AFSS system are shown in this block diagram.

Fig. 5
Fig. 5

3D model showing the optics involved in the AFSS design, the spectral filter and the mounts.

Fig. 6
Fig. 6

A photograph showing the AFSS experimental prototype.

Fig. 7
Fig. 7

A block diagram illustrating the different functional elements involved in the AFSS prototype along with all the additional hardware which aids in improving the system SNR.

Fig. 8
Fig. 8

A snapshot showing the AFSS prototype along with the optical chopper and the lock-in amplifier.

Fig. 9
Fig. 9

A sample class size = 5 LED spectral library.

Fig. 10
Fig. 10

A plot showing the variation of the samples per trigger acquired by the data acquisition board with the noise standard deviation.

Fig. 11
Fig. 11

A plot validating the performance of the AFSS. The experimental results match very closely with the simulation results and is shown to perform better than the traditional systems at the low task SNR regions.

Fig. 12
Fig. 12

The performance curves for a broadband LED spectral library and a down-sampled version of the Raman spectral pharmaceuticals library.

Fig. 13
Fig. 13

A plot showing the linear variation of the performance gain of the AFSS over its traditional counterpart with the dimensionality of the spectral library under consideration.

Tables (1)

Tables Icon

Table 1 Edmund Optics Part Numbers of the Optical Components Used in the AFSS Prototype and Their Specifications

Equations (26)

Equations on this page are rendered with MathJax. Learn more.

m t = s + n t ,
m p = P s + n p ,
Pr H 0 | { m p } k = L 0 , k P r H 0 Pr { m p } k and Pr H 1 | { m p } k = L 1 , k P r H 1 Pr { m p } k .
L i , k = Pr { m p } k | H i .
Λ k = Pr H 0 | { m p } k Pr H 1 | { m p } k = L 0 , k L 1 , k H 0 H 1 = L 01 , k H 0 H 1 .
Λ k = L 01 , k .
Λ k = L 01 L 01 , k 1 ,
L i , k = Pr H i | m p Pr H i | { m p } k .
Decide in favor of H 0 if Λ k > Θ 0 Decide in favor of H 1 if Λ k < Θ 1 Do not make a decision and make another measurement if Θ 1 Λ k Θ 0 .
Λ i , j ; k = L i j , m Λ i , j ; k 1 ,
Decide in favor of H i if Λ i , j ; k > Θ i i j Do not make a decision and make another measurement otherwise .
S ¯ = 1 r b = 1 r S b .
C = b = 1 r ( S b S ¯ ) ( S b S ¯ ) T .
Pr H j | { m p } k = 1 i = 1 m Λ i , j ; k ,
Λ i , j ; k = Pr H i | { m p } k Pr H j | { m p } k .
Q k = b = 1 m Pr H b | { m p } k ( S b S ¯ ) ( S b S ¯ ) T ,
S ¯ = 1 m b = 1 m Pr H b | { m p } k S b .
σ l = min | s i s j | .
TSNR = 10 log σ l σ n .
m + = p + s + n 1 ( σ 1 ) and m = p s + n 2 ( σ 2 ) ,
M e = C S e ,
M = C S e + n e ,
S ^ e = C 1 M ,
log y = 0.48329 log x + 0.29035 ,
σ n = σ l exp ( T S N R 10 ) ,
x = 1.8235 y 2.069 .

Metrics