Abstract

We propose a novel photonic structure to implement a chirped single-bandpass microwave photonic filter based on the amplitude modulation of a broadband optical signal transmitted by a non-linear dispersive element and an interferometric system prior to balanced photodetection. A full reconfigurability of the filter is achieved since amplitude and phase responses can be independently controlled. We have experimentally demonstrated chirp values up to tens of ns/GHz, which is, as far as we know, one order of magnitude better than others achieved by electrical approaches and furthermore, without restrictions in terms of frequency tuning since a frequency operation range up to 40 GHz has been experimentally demonstrated.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
    [CrossRef]
  2. J. Yao, “Microwave photonics,” J. Lightwave Technol. 27(3), 314–335 (2009).
    [CrossRef]
  3. J. Capmany, B. Ortega, D. Pastor, and S. Sales, “Discrete-Time optical processing of microwave signals,” J. Lightwave Technol. 23(2), 702–723 (2005).
    [CrossRef]
  4. J. Capmany, B. Ortega, and D. Pastor, “A tutorial on Microwave Photonic Filters,” J. Lightwave Technol. 24(1), 201–229 (2006).
    [CrossRef]
  5. M. A. G. Laso, T. Lopetegi, M. J. Erro, D. Benito, M. J. Garde, M. A. Muriel, M. Sorolla, and M. Guglielmi, “Real-Time spectrum analysis in microstrip technology,” IEEE Trans. Microw. Theory Tech. 51(3), 705–717 (2003).
    [CrossRef]
  6. J. D. Schwartz, J. Azaña, and D. V. Plant, “A Fully Electronic System for the Time Magnification of Ultra-Wideband Signals,” IEEE Trans. Microw. Theory Tech. 55(2), 327–334 (2007).
    [CrossRef]
  7. G. N. Saddik, R. S. Singh, and R. Brown, “Ultra-wideband multifunctional communications/radar system,” IEEE Trans. Microw. Theory Tech. 55(7), 1431–1437 (2007).
    [CrossRef]
  8. R. S. Withers, A. C. Anderson, P. V. Wright, and S. A. Reible, “Superconductive tapped delay lines for microwave analog signal processing,” IEEE Trans. Magn. 19(3), 480–484 (1983).
    [CrossRef]
  9. F. Huang, “Low loss quasitransversal microwave filters with specified amplitude and phase characteristics,” Proc. Inst. Electr. Eng. 140, 433–440 (1993).
  10. F. Huang, “Quasitransversal synthesis of microwave chirped filters,” Electron. Lett. 28(11), 1062–1064 (1992).
    [CrossRef]
  11. T. Lopetegi, M. A. G. Laso, J. Hernandez, M. Bacaicoa, D. Benito, M. J. Garde, M. Sorolla, and M. Guglielmi, “New microstrip “Wiggly-Line” filters with spurious passband supression,” IEEE Trans. Microw. Theory Tech. 49(9), 1593–1598 (2001).
    [CrossRef]
  12. M. A. G. Laso, T. Lopetegi, M. J. Erro, D. Benito, M. J. Garde, M. A. Muriel, M. Sorolla, and M. Guglielmi, “Chirped delay lines in microstrip Technology,” IEEE Trans. Microw. Wireless Compon. Lett. 11(12), 486–488 (2001).
    [CrossRef]
  13. J. D. Schwartz, J. Azaña, and D. V. Plant, “Experimental demonstration of real-time spectrum analysis using dispersive microstrip,” IEEE Trans. Microw. Wireless Compon. Lett. 16(4), 215–217 (2006).
    [CrossRef]
  14. J. D. Schwartz, I. Arnedo, M. A. G. Laso, T. Lopetegi, J. Azaña, and D. V. Plant, “An electronic UWB continuously tunable time-delay system with nanosecond delays,” IEEE Trans. Microw. Wireless Compon. Lett. 18(2), 103–105 (2008).
    [CrossRef]
  15. J. D. Schwartz, R. Abhari, D. V. Plant, and J. Azaña, “Design and analysis of 1-D uniform and chirped electromagnetic bandgap structures in substrate-integrated waveguides,” IEEE Trans. Microw. Theory Tech. 58(7), 1858–1866 (2010).
    [CrossRef]
  16. J. Mora, B. Ortega, A. Díez, J. L. Cruz, M. V. Andrés, J. Capmany, and D. Pastor, “Photonic microwave tunable single-bandpass filter based on a Mach-Zehnder Interferometer,” J. Lightwave Technol. 24(7), 2500–2509 (2006).
    [CrossRef]
  17. S. Wakabayashi and A. Baba, “Design and fabrication of an apodization profile in linearly chirped fiber Bragg gratings for wideband > 35 nm and compact tunable dispersion compensator,” Appl. Opt. 19, 1653–1660 (1980).

2010 (1)

J. D. Schwartz, R. Abhari, D. V. Plant, and J. Azaña, “Design and analysis of 1-D uniform and chirped electromagnetic bandgap structures in substrate-integrated waveguides,” IEEE Trans. Microw. Theory Tech. 58(7), 1858–1866 (2010).
[CrossRef]

2009 (1)

2008 (1)

J. D. Schwartz, I. Arnedo, M. A. G. Laso, T. Lopetegi, J. Azaña, and D. V. Plant, “An electronic UWB continuously tunable time-delay system with nanosecond delays,” IEEE Trans. Microw. Wireless Compon. Lett. 18(2), 103–105 (2008).
[CrossRef]

2007 (3)

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[CrossRef]

J. D. Schwartz, J. Azaña, and D. V. Plant, “A Fully Electronic System for the Time Magnification of Ultra-Wideband Signals,” IEEE Trans. Microw. Theory Tech. 55(2), 327–334 (2007).
[CrossRef]

G. N. Saddik, R. S. Singh, and R. Brown, “Ultra-wideband multifunctional communications/radar system,” IEEE Trans. Microw. Theory Tech. 55(7), 1431–1437 (2007).
[CrossRef]

2006 (3)

2005 (1)

2003 (1)

M. A. G. Laso, T. Lopetegi, M. J. Erro, D. Benito, M. J. Garde, M. A. Muriel, M. Sorolla, and M. Guglielmi, “Real-Time spectrum analysis in microstrip technology,” IEEE Trans. Microw. Theory Tech. 51(3), 705–717 (2003).
[CrossRef]

2001 (2)

T. Lopetegi, M. A. G. Laso, J. Hernandez, M. Bacaicoa, D. Benito, M. J. Garde, M. Sorolla, and M. Guglielmi, “New microstrip “Wiggly-Line” filters with spurious passband supression,” IEEE Trans. Microw. Theory Tech. 49(9), 1593–1598 (2001).
[CrossRef]

M. A. G. Laso, T. Lopetegi, M. J. Erro, D. Benito, M. J. Garde, M. A. Muriel, M. Sorolla, and M. Guglielmi, “Chirped delay lines in microstrip Technology,” IEEE Trans. Microw. Wireless Compon. Lett. 11(12), 486–488 (2001).
[CrossRef]

1993 (1)

F. Huang, “Low loss quasitransversal microwave filters with specified amplitude and phase characteristics,” Proc. Inst. Electr. Eng. 140, 433–440 (1993).

1992 (1)

F. Huang, “Quasitransversal synthesis of microwave chirped filters,” Electron. Lett. 28(11), 1062–1064 (1992).
[CrossRef]

1983 (1)

R. S. Withers, A. C. Anderson, P. V. Wright, and S. A. Reible, “Superconductive tapped delay lines for microwave analog signal processing,” IEEE Trans. Magn. 19(3), 480–484 (1983).
[CrossRef]

1980 (1)

Abhari, R.

J. D. Schwartz, R. Abhari, D. V. Plant, and J. Azaña, “Design and analysis of 1-D uniform and chirped electromagnetic bandgap structures in substrate-integrated waveguides,” IEEE Trans. Microw. Theory Tech. 58(7), 1858–1866 (2010).
[CrossRef]

Anderson, A. C.

R. S. Withers, A. C. Anderson, P. V. Wright, and S. A. Reible, “Superconductive tapped delay lines for microwave analog signal processing,” IEEE Trans. Magn. 19(3), 480–484 (1983).
[CrossRef]

Andrés, M. V.

Arnedo, I.

J. D. Schwartz, I. Arnedo, M. A. G. Laso, T. Lopetegi, J. Azaña, and D. V. Plant, “An electronic UWB continuously tunable time-delay system with nanosecond delays,” IEEE Trans. Microw. Wireless Compon. Lett. 18(2), 103–105 (2008).
[CrossRef]

Azaña, J.

J. D. Schwartz, R. Abhari, D. V. Plant, and J. Azaña, “Design and analysis of 1-D uniform and chirped electromagnetic bandgap structures in substrate-integrated waveguides,” IEEE Trans. Microw. Theory Tech. 58(7), 1858–1866 (2010).
[CrossRef]

J. D. Schwartz, I. Arnedo, M. A. G. Laso, T. Lopetegi, J. Azaña, and D. V. Plant, “An electronic UWB continuously tunable time-delay system with nanosecond delays,” IEEE Trans. Microw. Wireless Compon. Lett. 18(2), 103–105 (2008).
[CrossRef]

J. D. Schwartz, J. Azaña, and D. V. Plant, “A Fully Electronic System for the Time Magnification of Ultra-Wideband Signals,” IEEE Trans. Microw. Theory Tech. 55(2), 327–334 (2007).
[CrossRef]

J. D. Schwartz, J. Azaña, and D. V. Plant, “Experimental demonstration of real-time spectrum analysis using dispersive microstrip,” IEEE Trans. Microw. Wireless Compon. Lett. 16(4), 215–217 (2006).
[CrossRef]

Baba, A.

Bacaicoa, M.

T. Lopetegi, M. A. G. Laso, J. Hernandez, M. Bacaicoa, D. Benito, M. J. Garde, M. Sorolla, and M. Guglielmi, “New microstrip “Wiggly-Line” filters with spurious passband supression,” IEEE Trans. Microw. Theory Tech. 49(9), 1593–1598 (2001).
[CrossRef]

Benito, D.

M. A. G. Laso, T. Lopetegi, M. J. Erro, D. Benito, M. J. Garde, M. A. Muriel, M. Sorolla, and M. Guglielmi, “Real-Time spectrum analysis in microstrip technology,” IEEE Trans. Microw. Theory Tech. 51(3), 705–717 (2003).
[CrossRef]

T. Lopetegi, M. A. G. Laso, J. Hernandez, M. Bacaicoa, D. Benito, M. J. Garde, M. Sorolla, and M. Guglielmi, “New microstrip “Wiggly-Line” filters with spurious passband supression,” IEEE Trans. Microw. Theory Tech. 49(9), 1593–1598 (2001).
[CrossRef]

M. A. G. Laso, T. Lopetegi, M. J. Erro, D. Benito, M. J. Garde, M. A. Muriel, M. Sorolla, and M. Guglielmi, “Chirped delay lines in microstrip Technology,” IEEE Trans. Microw. Wireless Compon. Lett. 11(12), 486–488 (2001).
[CrossRef]

Brown, R.

G. N. Saddik, R. S. Singh, and R. Brown, “Ultra-wideband multifunctional communications/radar system,” IEEE Trans. Microw. Theory Tech. 55(7), 1431–1437 (2007).
[CrossRef]

Capmany, J.

Cruz, J. L.

Díez, A.

Erro, M. J.

M. A. G. Laso, T. Lopetegi, M. J. Erro, D. Benito, M. J. Garde, M. A. Muriel, M. Sorolla, and M. Guglielmi, “Real-Time spectrum analysis in microstrip technology,” IEEE Trans. Microw. Theory Tech. 51(3), 705–717 (2003).
[CrossRef]

M. A. G. Laso, T. Lopetegi, M. J. Erro, D. Benito, M. J. Garde, M. A. Muriel, M. Sorolla, and M. Guglielmi, “Chirped delay lines in microstrip Technology,” IEEE Trans. Microw. Wireless Compon. Lett. 11(12), 486–488 (2001).
[CrossRef]

Garde, M. J.

M. A. G. Laso, T. Lopetegi, M. J. Erro, D. Benito, M. J. Garde, M. A. Muriel, M. Sorolla, and M. Guglielmi, “Real-Time spectrum analysis in microstrip technology,” IEEE Trans. Microw. Theory Tech. 51(3), 705–717 (2003).
[CrossRef]

T. Lopetegi, M. A. G. Laso, J. Hernandez, M. Bacaicoa, D. Benito, M. J. Garde, M. Sorolla, and M. Guglielmi, “New microstrip “Wiggly-Line” filters with spurious passband supression,” IEEE Trans. Microw. Theory Tech. 49(9), 1593–1598 (2001).
[CrossRef]

M. A. G. Laso, T. Lopetegi, M. J. Erro, D. Benito, M. J. Garde, M. A. Muriel, M. Sorolla, and M. Guglielmi, “Chirped delay lines in microstrip Technology,” IEEE Trans. Microw. Wireless Compon. Lett. 11(12), 486–488 (2001).
[CrossRef]

Guglielmi, M.

M. A. G. Laso, T. Lopetegi, M. J. Erro, D. Benito, M. J. Garde, M. A. Muriel, M. Sorolla, and M. Guglielmi, “Real-Time spectrum analysis in microstrip technology,” IEEE Trans. Microw. Theory Tech. 51(3), 705–717 (2003).
[CrossRef]

T. Lopetegi, M. A. G. Laso, J. Hernandez, M. Bacaicoa, D. Benito, M. J. Garde, M. Sorolla, and M. Guglielmi, “New microstrip “Wiggly-Line” filters with spurious passband supression,” IEEE Trans. Microw. Theory Tech. 49(9), 1593–1598 (2001).
[CrossRef]

M. A. G. Laso, T. Lopetegi, M. J. Erro, D. Benito, M. J. Garde, M. A. Muriel, M. Sorolla, and M. Guglielmi, “Chirped delay lines in microstrip Technology,” IEEE Trans. Microw. Wireless Compon. Lett. 11(12), 486–488 (2001).
[CrossRef]

Hernandez, J.

T. Lopetegi, M. A. G. Laso, J. Hernandez, M. Bacaicoa, D. Benito, M. J. Garde, M. Sorolla, and M. Guglielmi, “New microstrip “Wiggly-Line” filters with spurious passband supression,” IEEE Trans. Microw. Theory Tech. 49(9), 1593–1598 (2001).
[CrossRef]

Huang, F.

F. Huang, “Low loss quasitransversal microwave filters with specified amplitude and phase characteristics,” Proc. Inst. Electr. Eng. 140, 433–440 (1993).

F. Huang, “Quasitransversal synthesis of microwave chirped filters,” Electron. Lett. 28(11), 1062–1064 (1992).
[CrossRef]

Laso, M. A. G.

J. D. Schwartz, I. Arnedo, M. A. G. Laso, T. Lopetegi, J. Azaña, and D. V. Plant, “An electronic UWB continuously tunable time-delay system with nanosecond delays,” IEEE Trans. Microw. Wireless Compon. Lett. 18(2), 103–105 (2008).
[CrossRef]

M. A. G. Laso, T. Lopetegi, M. J. Erro, D. Benito, M. J. Garde, M. A. Muriel, M. Sorolla, and M. Guglielmi, “Real-Time spectrum analysis in microstrip technology,” IEEE Trans. Microw. Theory Tech. 51(3), 705–717 (2003).
[CrossRef]

T. Lopetegi, M. A. G. Laso, J. Hernandez, M. Bacaicoa, D. Benito, M. J. Garde, M. Sorolla, and M. Guglielmi, “New microstrip “Wiggly-Line” filters with spurious passband supression,” IEEE Trans. Microw. Theory Tech. 49(9), 1593–1598 (2001).
[CrossRef]

M. A. G. Laso, T. Lopetegi, M. J. Erro, D. Benito, M. J. Garde, M. A. Muriel, M. Sorolla, and M. Guglielmi, “Chirped delay lines in microstrip Technology,” IEEE Trans. Microw. Wireless Compon. Lett. 11(12), 486–488 (2001).
[CrossRef]

Lopetegi, T.

J. D. Schwartz, I. Arnedo, M. A. G. Laso, T. Lopetegi, J. Azaña, and D. V. Plant, “An electronic UWB continuously tunable time-delay system with nanosecond delays,” IEEE Trans. Microw. Wireless Compon. Lett. 18(2), 103–105 (2008).
[CrossRef]

M. A. G. Laso, T. Lopetegi, M. J. Erro, D. Benito, M. J. Garde, M. A. Muriel, M. Sorolla, and M. Guglielmi, “Real-Time spectrum analysis in microstrip technology,” IEEE Trans. Microw. Theory Tech. 51(3), 705–717 (2003).
[CrossRef]

T. Lopetegi, M. A. G. Laso, J. Hernandez, M. Bacaicoa, D. Benito, M. J. Garde, M. Sorolla, and M. Guglielmi, “New microstrip “Wiggly-Line” filters with spurious passband supression,” IEEE Trans. Microw. Theory Tech. 49(9), 1593–1598 (2001).
[CrossRef]

M. A. G. Laso, T. Lopetegi, M. J. Erro, D. Benito, M. J. Garde, M. A. Muriel, M. Sorolla, and M. Guglielmi, “Chirped delay lines in microstrip Technology,” IEEE Trans. Microw. Wireless Compon. Lett. 11(12), 486–488 (2001).
[CrossRef]

Mora, J.

Muriel, M. A.

M. A. G. Laso, T. Lopetegi, M. J. Erro, D. Benito, M. J. Garde, M. A. Muriel, M. Sorolla, and M. Guglielmi, “Real-Time spectrum analysis in microstrip technology,” IEEE Trans. Microw. Theory Tech. 51(3), 705–717 (2003).
[CrossRef]

M. A. G. Laso, T. Lopetegi, M. J. Erro, D. Benito, M. J. Garde, M. A. Muriel, M. Sorolla, and M. Guglielmi, “Chirped delay lines in microstrip Technology,” IEEE Trans. Microw. Wireless Compon. Lett. 11(12), 486–488 (2001).
[CrossRef]

Novak, D.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[CrossRef]

Ortega, B.

Pastor, D.

Plant, D. V.

J. D. Schwartz, R. Abhari, D. V. Plant, and J. Azaña, “Design and analysis of 1-D uniform and chirped electromagnetic bandgap structures in substrate-integrated waveguides,” IEEE Trans. Microw. Theory Tech. 58(7), 1858–1866 (2010).
[CrossRef]

J. D. Schwartz, I. Arnedo, M. A. G. Laso, T. Lopetegi, J. Azaña, and D. V. Plant, “An electronic UWB continuously tunable time-delay system with nanosecond delays,” IEEE Trans. Microw. Wireless Compon. Lett. 18(2), 103–105 (2008).
[CrossRef]

J. D. Schwartz, J. Azaña, and D. V. Plant, “A Fully Electronic System for the Time Magnification of Ultra-Wideband Signals,” IEEE Trans. Microw. Theory Tech. 55(2), 327–334 (2007).
[CrossRef]

J. D. Schwartz, J. Azaña, and D. V. Plant, “Experimental demonstration of real-time spectrum analysis using dispersive microstrip,” IEEE Trans. Microw. Wireless Compon. Lett. 16(4), 215–217 (2006).
[CrossRef]

Reible, S. A.

R. S. Withers, A. C. Anderson, P. V. Wright, and S. A. Reible, “Superconductive tapped delay lines for microwave analog signal processing,” IEEE Trans. Magn. 19(3), 480–484 (1983).
[CrossRef]

Saddik, G. N.

G. N. Saddik, R. S. Singh, and R. Brown, “Ultra-wideband multifunctional communications/radar system,” IEEE Trans. Microw. Theory Tech. 55(7), 1431–1437 (2007).
[CrossRef]

Sales, S.

Schwartz, J. D.

J. D. Schwartz, R. Abhari, D. V. Plant, and J. Azaña, “Design and analysis of 1-D uniform and chirped electromagnetic bandgap structures in substrate-integrated waveguides,” IEEE Trans. Microw. Theory Tech. 58(7), 1858–1866 (2010).
[CrossRef]

J. D. Schwartz, I. Arnedo, M. A. G. Laso, T. Lopetegi, J. Azaña, and D. V. Plant, “An electronic UWB continuously tunable time-delay system with nanosecond delays,” IEEE Trans. Microw. Wireless Compon. Lett. 18(2), 103–105 (2008).
[CrossRef]

J. D. Schwartz, J. Azaña, and D. V. Plant, “A Fully Electronic System for the Time Magnification of Ultra-Wideband Signals,” IEEE Trans. Microw. Theory Tech. 55(2), 327–334 (2007).
[CrossRef]

J. D. Schwartz, J. Azaña, and D. V. Plant, “Experimental demonstration of real-time spectrum analysis using dispersive microstrip,” IEEE Trans. Microw. Wireless Compon. Lett. 16(4), 215–217 (2006).
[CrossRef]

Singh, R. S.

G. N. Saddik, R. S. Singh, and R. Brown, “Ultra-wideband multifunctional communications/radar system,” IEEE Trans. Microw. Theory Tech. 55(7), 1431–1437 (2007).
[CrossRef]

Sorolla, M.

M. A. G. Laso, T. Lopetegi, M. J. Erro, D. Benito, M. J. Garde, M. A. Muriel, M. Sorolla, and M. Guglielmi, “Real-Time spectrum analysis in microstrip technology,” IEEE Trans. Microw. Theory Tech. 51(3), 705–717 (2003).
[CrossRef]

T. Lopetegi, M. A. G. Laso, J. Hernandez, M. Bacaicoa, D. Benito, M. J. Garde, M. Sorolla, and M. Guglielmi, “New microstrip “Wiggly-Line” filters with spurious passband supression,” IEEE Trans. Microw. Theory Tech. 49(9), 1593–1598 (2001).
[CrossRef]

M. A. G. Laso, T. Lopetegi, M. J. Erro, D. Benito, M. J. Garde, M. A. Muriel, M. Sorolla, and M. Guglielmi, “Chirped delay lines in microstrip Technology,” IEEE Trans. Microw. Wireless Compon. Lett. 11(12), 486–488 (2001).
[CrossRef]

Wakabayashi, S.

Withers, R. S.

R. S. Withers, A. C. Anderson, P. V. Wright, and S. A. Reible, “Superconductive tapped delay lines for microwave analog signal processing,” IEEE Trans. Magn. 19(3), 480–484 (1983).
[CrossRef]

Wright, P. V.

R. S. Withers, A. C. Anderson, P. V. Wright, and S. A. Reible, “Superconductive tapped delay lines for microwave analog signal processing,” IEEE Trans. Magn. 19(3), 480–484 (1983).
[CrossRef]

Yao, J.

Appl. Opt. (1)

Electron. Lett. (1)

F. Huang, “Quasitransversal synthesis of microwave chirped filters,” Electron. Lett. 28(11), 1062–1064 (1992).
[CrossRef]

IEEE Trans. Magn. (1)

R. S. Withers, A. C. Anderson, P. V. Wright, and S. A. Reible, “Superconductive tapped delay lines for microwave analog signal processing,” IEEE Trans. Magn. 19(3), 480–484 (1983).
[CrossRef]

IEEE Trans. Microw. Theory Tech. (5)

M. A. G. Laso, T. Lopetegi, M. J. Erro, D. Benito, M. J. Garde, M. A. Muriel, M. Sorolla, and M. Guglielmi, “Real-Time spectrum analysis in microstrip technology,” IEEE Trans. Microw. Theory Tech. 51(3), 705–717 (2003).
[CrossRef]

J. D. Schwartz, J. Azaña, and D. V. Plant, “A Fully Electronic System for the Time Magnification of Ultra-Wideband Signals,” IEEE Trans. Microw. Theory Tech. 55(2), 327–334 (2007).
[CrossRef]

G. N. Saddik, R. S. Singh, and R. Brown, “Ultra-wideband multifunctional communications/radar system,” IEEE Trans. Microw. Theory Tech. 55(7), 1431–1437 (2007).
[CrossRef]

T. Lopetegi, M. A. G. Laso, J. Hernandez, M. Bacaicoa, D. Benito, M. J. Garde, M. Sorolla, and M. Guglielmi, “New microstrip “Wiggly-Line” filters with spurious passband supression,” IEEE Trans. Microw. Theory Tech. 49(9), 1593–1598 (2001).
[CrossRef]

J. D. Schwartz, R. Abhari, D. V. Plant, and J. Azaña, “Design and analysis of 1-D uniform and chirped electromagnetic bandgap structures in substrate-integrated waveguides,” IEEE Trans. Microw. Theory Tech. 58(7), 1858–1866 (2010).
[CrossRef]

IEEE Trans. Microw. Wireless Compon. Lett. (3)

M. A. G. Laso, T. Lopetegi, M. J. Erro, D. Benito, M. J. Garde, M. A. Muriel, M. Sorolla, and M. Guglielmi, “Chirped delay lines in microstrip Technology,” IEEE Trans. Microw. Wireless Compon. Lett. 11(12), 486–488 (2001).
[CrossRef]

J. D. Schwartz, J. Azaña, and D. V. Plant, “Experimental demonstration of real-time spectrum analysis using dispersive microstrip,” IEEE Trans. Microw. Wireless Compon. Lett. 16(4), 215–217 (2006).
[CrossRef]

J. D. Schwartz, I. Arnedo, M. A. G. Laso, T. Lopetegi, J. Azaña, and D. V. Plant, “An electronic UWB continuously tunable time-delay system with nanosecond delays,” IEEE Trans. Microw. Wireless Compon. Lett. 18(2), 103–105 (2008).
[CrossRef]

J. Lightwave Technol. (4)

Nat. Photonics (1)

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[CrossRef]

Proc. Inst. Electr. Eng. (1)

F. Huang, “Low loss quasitransversal microwave filters with specified amplitude and phase characteristics,” Proc. Inst. Electr. Eng. 140, 433–440 (1993).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Block diagram of chirped filter based on a single bandpass photonic filter with differential detection.

Fig. 2
Fig. 2

Uniform optical source power distribution with a central optical frequency and a bandwidth of (a) ω1 and δω', (b) ω2 and δω' and (c) ω0 and δω; (d), (e) and (f) and (g), (h) and (i) are the amplitude response and electrical group-delay time, respectively, corresponding to each optical source case.

Fig. 3
Fig. 3

Amplitude response system for passband tuned at 25 GHz (solid line) and carrier suppression effect due to the dispersion φ 0 (dashed line).

Fig. 4
Fig. 4

Experimental layout of the chirped filter.

Fig. 5
Fig. 5

Amplitude response (black solid line) and electrical delay (blue solid line) obtained experimentally and theoretically (red dot line) for (a) optical source width δλ = 38.4 nm, φ ¨ 0 = 1050 p s 2 and Δτ = 199 ps; (b) δλ /2, φ ¨ 0 and Δτ; (c) δλ, φ ¨ 0 / 2 and Δτ/2; (d) δλ, φ ¨ 0 / 2 and Δτ/4.

Fig. 6
Fig. 6

Experimental relationship between optical delay in MZI and bandpass central frequency for φ ¨ 0 = 525 p s 2 (■) and φ ¨ 0 = 1050 p s 2 (●) and the theoretical prediction in dashed line.

Fig. 7
Fig. 7

Experimental relationship between 10-dB bandwidth and optical source width for: φ ¨ 0 = 525 p s 2 , f0 = 15 GHz (●) and 2 φ ¨ 0 , f0 (■); (b) φ ¨ 0 , 2 · f0 () and 2 φ ¨ 0 , 2·f0 (). Theoretical simulations (dashed line).

Fig. 8
Fig. 8

Experimental results for relationship between first order dispersion ( | φ ¨ 0 | ) and filter chirp within passband when it is tuned at 15 GHz (■) and 30 GHz (). Theoretical prediction for both cases has been added in dashed line.

Fig. 9
Fig. 9

(a) Optical source power distribution, (b) amplitude response and (c) electrical group-delay response for uniform (dashed line) and apodized (solid line) when passband is tuned around 32.5 GHz. CSE when dispersion is −525 ps2 (dotted line).

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

H O P T ( ω ) = e j φ ( ω )
φ ( ω ) = φ 0 + φ ˙ 0 ( ω ω 0 ) + 1 2 ! φ ¨ 0 ( ω ω 0 ) 2 + 1 3 ! φ 0 ( ω ω 0 ) 3
τ O P T ( ω ) = d φ ( ω ) d ω = φ ˙ 0 + φ ¨ 0 ( ω ω 0 ) + 1 2 φ 0 ( ω ω 0 ) 2
φ ¨ ( ω ) = d τ O P T ( ω ) d ω = φ ¨ 0 + φ 0 ( ω ω 0 )
T ( ω ) = 1 2 [ 1 + cos ( 2 π ω ω 0 Δ ω ) ] w i t h Δ ω = 2 π Δ τ
f i = Δ τ 2 π | φ ¨ ( ω i ) |
Δ f = f 2 - f 1 f 0 δ ω φ ¨ 0 φ 0
Δ τ R F = τ O P T ( ω 2 ) τ O P T ( ω 1 ) = φ ¨ 0 δ ω
C = Δ τ R F Δ f φ ¨ 0 2 f 0 φ 0

Metrics