Y. Zou, Z. B. Deng, Z. Y. Lv, Z. Chen, D. H. Xu, Y. L. Chen, Y. H. Yin, H. L. Du, and Y. S. Wang, “Reduction of driving voltage in organic light-emitting diodes with molybdenum trioxide in CuPc/NPB interface,” J. Lumin. 130(6), 959–962 (2010).
[Crossref]
T. Matsushima, G. H. Jin, and H. Murata, “Marked improvement in electroluminescence characteristics of organic light-emitting diodes using an ultrathin hole-injection layer of molybdenum oxide,” J. Appl. Phys. 104(5), 054501 (2008).
[Crossref]
T. Matsushima and C. Adachi, “Enhanced hole injection and transport in molybdenum-dioxide-doped organic hole-transporting layers,” J. Appl. Phys. 103(3), 034501 (2008).
[Crossref]
W. J. Shin, J. Y. Lee, J. C. Kim, T. H. Yoon, T. S. Kim, and O. K. Song, “Bulk and interface properties of molybdenum trioxide-doped hole transporting layer in organic light-emitting diodes,” Org. Electron. 9(3), 333–338 (2008).
[Crossref]
H. You, Y. F. Dai, Z. Q. Zhang, and D. G. Ma, “Improved performances of organic light-emitting diodes with metal oxide as anode buffer,” J. Appl. Phys. 101(2), 026105 (2007).
[Crossref]
H. M. Zhang, Y. F. Dai, D. G. Ma, and H. Zhang, “High efficiency tandem organic light-emitting devices with Al/WO3/Au interconnecting layer,” Appl. Phys. Lett. 91(12), 123504 (2007).
[Crossref]
X.-Y. Jiang, Z.-L. Zhang, J. Cao, M. A. Khan, Khizar-ul-Haq, and W.-Q. Zhu, “White OLED with high stability and low driving voltage based on a novel buffer layer MoOx,” J. Phys. D Appl. Phys. 40(18), 5553–5557 (2007).
[Crossref]
T. Matsushima, Y. Kinoshita, and H. Murata, “Formation of Ohmic hole injection by inserting an ultrathin layer of molybdenum trioxide between indium tin oxide and organic hole-transporting layers,” Appl. Phys. Lett. 91(25), 253504 (2007).
[Crossref]
M. M. Hawkeye and M. J. Brett, “Glancing angle deposition: fabrication, properties, and applications of micro- and nanostructured thin films,” J. Vac. Sci. Technol. A 25(5), 1317–1335 (2007).
[Crossref]
H. Kanno, N. C. Giebink, Y. R. Sun, and S. R. Forrest, “Stacked white organic light-emitting devices based on a combination of fluorescent and phosphorescent emitters,” Appl. Phys. Lett. 89(2), 023503 (2006).
[Crossref]
R. Satoh, S. Naka, M. Shibata, H. Okada, H. Onnagawa, T. Miyabayashi, and T. Inoue, “Top-emission organic light-emitting diodes with ink-jet printed self-aligned emission zones,” Jpn. J. Appl. Phys. 45(3A), 1829–1831 (2006).
[Crossref]
H. Kanno, R. J. Holmes, Y. Sun, S. Kena-Cohen, and S. R. Forrest, “White stacked electrophosphorescent organic light-emitting devices employing MoO3 as a charge-generation layer,” Adv. Mater. (Deerfield Beach Fla.) 18(3), 339–342 (2006).
[Crossref]
I. H. Hong, M. W. Lee, Y. M. Koo, H. Jeong, T. S. Kim, and O. K. Song, “Effective hole injection of organic light-emitting diodes by introducing buckminsterfullerene on the indium tin oxide anode,” Appl. Phys. Lett. 87(6), 063502 (2005).
[Crossref]
B. J. Chen, X. W. Sun, B. K. Tay, L. Ke, and S. J. Chua, “Improvement of efficiency and stability of polymer light-emitting devices by modifying indium tin oxide anode surface with ultrathin tetrahedral amorphous carbon film,” Appl. Phys. Lett. 86(6), 063506 (2005).
[Crossref]
S. R. Forrest, “The path to ubiquitous and low-cost organic electronic appliances on plastic,” Nature 428(6986), 911–918 (2004).
[Crossref]
[PubMed]
J. X. Guo, Z. Sun, B. K. Tay, and X. W. Sun, “Field emission from modified nanocomposite carbon films prepared by filtered cathodic vacuum arc at high negative pulsed bias,” Appl. Surf. Sci. 214(1–4), 351–358 (2003).
[Crossref]
E. Tutiŝ, D. Berner, and L. Zuppiroli, “Internal electric field and charge distribution in multilayer organic light-emitting diodes,” J. Appl. Phys. 93(8), 4594–4602 (2003).
[Crossref]
J. Kalinowski, L. C. Palilis, W. H. Kim, and Z. H. Kafafi, “Determination of the width of the carrier recombination zone in organic light-emitting diodes,” J. Appl. Phys. 94(12), 7764–7767 (2003).
[Crossref]
C. Ganzorig, K. J. Kwak, K. Yagi, and M. Fujihira, “Fine tuning work function of indium tin oxide by surface molecular design: Enhanced hole injection in organic electroluminescent devices,” Appl. Phys. Lett. 79(2), 272–274 (2001).
[Crossref]
S. T. Lee, Y. M. Wang, X. Y. Hou, and C. W. Tang, “Interfacial electronic structures in an organic light-emitting diode,” Appl. Phys. Lett. 74(5), 670–672 (1999).
[Crossref]
H. Aziz, Z. D. Popovic, N. X. Hu, A. M. Hor, and G. Xu, “Degradation mechanism of small molecule-based organic light-emitting devices,” Science 283(5409), 1900–1902 (1999).
[Crossref]
[PubMed]
E. Ito, H. Oji, H. Ishii, K. Oichi, Y. Ouchi, and K. Seki, “Interfacial electronic structure of long-chain alkane/metal systems studied by UV-photoelectron and metastable atom electron spectroscopies,” Chem. Phys. Lett. 287(1–2), 137–142 (1998).
[Crossref]
J. Kido and T. Matsumoto, “Bright organic electroluminescent devices having a metal-doped electron-injecting layer,” Appl. Phys. Lett. 73(20), 2866–2868 (1998).
[Crossref]
C. C. Wu, C. I. Wu, J. C. Sturm, and A. Kahn, “Surface modification of indium tin oxide by plasma treatment: An effective method to improve the efficiency, brightness, and reliability of organic light emitting devices,” Appl. Phys. Lett. 70(11), 1348–1350 (1997).
[Crossref]
S. A. Van Slyke, C. H. Chen, and C. W. Tang, “Organic electroluminescent devices with improved stability,” Appl. Phys. Lett. 69(15), 2160–2162 (1996).
[Crossref]
S. Tokito, K. Noda, and Y. Taga, “Metal oxides as a hole-injecting layer for an organic electroluminescent device,” J. Phys. D Appl. Phys. 29(11), 2750–2753 (1996).
[Crossref]
C. Hosokawa, H. Tokailin, H. Higashi, and T. Kusumoto, “Transient-behavior of organic thin-film electroluminescence,” Appl. Phys. Lett. 60(10), 1220–1222 (1992).
[Crossref]
C. W. Tang and S. A. Vanslyke, “Organic electroluminescent diodes,” Appl. Phys. Lett. 51(12), 913–915 (1987).
[Crossref]
T. Matsushima and C. Adachi, “Enhanced hole injection and transport in molybdenum-dioxide-doped organic hole-transporting layers,” J. Appl. Phys. 103(3), 034501 (2008).
[Crossref]
H. Aziz, Z. D. Popovic, N. X. Hu, A. M. Hor, and G. Xu, “Degradation mechanism of small molecule-based organic light-emitting devices,” Science 283(5409), 1900–1902 (1999).
[Crossref]
[PubMed]
E. Tutiŝ, D. Berner, and L. Zuppiroli, “Internal electric field and charge distribution in multilayer organic light-emitting diodes,” J. Appl. Phys. 93(8), 4594–4602 (2003).
[Crossref]
M. M. Hawkeye and M. J. Brett, “Glancing angle deposition: fabrication, properties, and applications of micro- and nanostructured thin films,” J. Vac. Sci. Technol. A 25(5), 1317–1335 (2007).
[Crossref]
X.-Y. Jiang, Z.-L. Zhang, J. Cao, M. A. Khan, Khizar-ul-Haq, and W.-Q. Zhu, “White OLED with high stability and low driving voltage based on a novel buffer layer MoOx,” J. Phys. D Appl. Phys. 40(18), 5553–5557 (2007).
[Crossref]
B. J. Chen, X. W. Sun, B. K. Tay, L. Ke, and S. J. Chua, “Improvement of efficiency and stability of polymer light-emitting devices by modifying indium tin oxide anode surface with ultrathin tetrahedral amorphous carbon film,” Appl. Phys. Lett. 86(6), 063506 (2005).
[Crossref]
S. A. Van Slyke, C. H. Chen, and C. W. Tang, “Organic electroluminescent devices with improved stability,” Appl. Phys. Lett. 69(15), 2160–2162 (1996).
[Crossref]
Y. Zou, Z. B. Deng, Z. Y. Lv, Z. Chen, D. H. Xu, Y. L. Chen, Y. H. Yin, H. L. Du, and Y. S. Wang, “Reduction of driving voltage in organic light-emitting diodes with molybdenum trioxide in CuPc/NPB interface,” J. Lumin. 130(6), 959–962 (2010).
[Crossref]
Y. Zou, Z. B. Deng, Z. Y. Lv, Z. Chen, D. H. Xu, Y. L. Chen, Y. H. Yin, H. L. Du, and Y. S. Wang, “Reduction of driving voltage in organic light-emitting diodes with molybdenum trioxide in CuPc/NPB interface,” J. Lumin. 130(6), 959–962 (2010).
[Crossref]
B. J. Chen, X. W. Sun, B. K. Tay, L. Ke, and S. J. Chua, “Improvement of efficiency and stability of polymer light-emitting devices by modifying indium tin oxide anode surface with ultrathin tetrahedral amorphous carbon film,” Appl. Phys. Lett. 86(6), 063506 (2005).
[Crossref]
H. M. Zhang, Y. F. Dai, D. G. Ma, and H. Zhang, “High efficiency tandem organic light-emitting devices with Al/WO3/Au interconnecting layer,” Appl. Phys. Lett. 91(12), 123504 (2007).
[Crossref]
H. You, Y. F. Dai, Z. Q. Zhang, and D. G. Ma, “Improved performances of organic light-emitting diodes with metal oxide as anode buffer,” J. Appl. Phys. 101(2), 026105 (2007).
[Crossref]
Y. Zou, Z. B. Deng, Z. Y. Lv, Z. Chen, D. H. Xu, Y. L. Chen, Y. H. Yin, H. L. Du, and Y. S. Wang, “Reduction of driving voltage in organic light-emitting diodes with molybdenum trioxide in CuPc/NPB interface,” J. Lumin. 130(6), 959–962 (2010).
[Crossref]
Y. Zou, Z. B. Deng, Z. Y. Lv, Z. Chen, D. H. Xu, Y. L. Chen, Y. H. Yin, H. L. Du, and Y. S. Wang, “Reduction of driving voltage in organic light-emitting diodes with molybdenum trioxide in CuPc/NPB interface,” J. Lumin. 130(6), 959–962 (2010).
[Crossref]
H. Kanno, N. C. Giebink, Y. R. Sun, and S. R. Forrest, “Stacked white organic light-emitting devices based on a combination of fluorescent and phosphorescent emitters,” Appl. Phys. Lett. 89(2), 023503 (2006).
[Crossref]
H. Kanno, R. J. Holmes, Y. Sun, S. Kena-Cohen, and S. R. Forrest, “White stacked electrophosphorescent organic light-emitting devices employing MoO3 as a charge-generation layer,” Adv. Mater. (Deerfield Beach Fla.) 18(3), 339–342 (2006).
[Crossref]
S. R. Forrest, “The path to ubiquitous and low-cost organic electronic appliances on plastic,” Nature 428(6986), 911–918 (2004).
[Crossref]
[PubMed]
C. Ganzorig, K. J. Kwak, K. Yagi, and M. Fujihira, “Fine tuning work function of indium tin oxide by surface molecular design: Enhanced hole injection in organic electroluminescent devices,” Appl. Phys. Lett. 79(2), 272–274 (2001).
[Crossref]
C. Ganzorig, K. J. Kwak, K. Yagi, and M. Fujihira, “Fine tuning work function of indium tin oxide by surface molecular design: Enhanced hole injection in organic electroluminescent devices,” Appl. Phys. Lett. 79(2), 272–274 (2001).
[Crossref]
H. Kanno, N. C. Giebink, Y. R. Sun, and S. R. Forrest, “Stacked white organic light-emitting devices based on a combination of fluorescent and phosphorescent emitters,” Appl. Phys. Lett. 89(2), 023503 (2006).
[Crossref]
J. X. Guo, Z. Sun, B. K. Tay, and X. W. Sun, “Field emission from modified nanocomposite carbon films prepared by filtered cathodic vacuum arc at high negative pulsed bias,” Appl. Surf. Sci. 214(1–4), 351–358 (2003).
[Crossref]
M. M. Hawkeye and M. J. Brett, “Glancing angle deposition: fabrication, properties, and applications of micro- and nanostructured thin films,” J. Vac. Sci. Technol. A 25(5), 1317–1335 (2007).
[Crossref]
C. Hosokawa, H. Tokailin, H. Higashi, and T. Kusumoto, “Transient-behavior of organic thin-film electroluminescence,” Appl. Phys. Lett. 60(10), 1220–1222 (1992).
[Crossref]
H. Kanno, R. J. Holmes, Y. Sun, S. Kena-Cohen, and S. R. Forrest, “White stacked electrophosphorescent organic light-emitting devices employing MoO3 as a charge-generation layer,” Adv. Mater. (Deerfield Beach Fla.) 18(3), 339–342 (2006).
[Crossref]
I. H. Hong, M. W. Lee, Y. M. Koo, H. Jeong, T. S. Kim, and O. K. Song, “Effective hole injection of organic light-emitting diodes by introducing buckminsterfullerene on the indium tin oxide anode,” Appl. Phys. Lett. 87(6), 063502 (2005).
[Crossref]
H. Aziz, Z. D. Popovic, N. X. Hu, A. M. Hor, and G. Xu, “Degradation mechanism of small molecule-based organic light-emitting devices,” Science 283(5409), 1900–1902 (1999).
[Crossref]
[PubMed]
C. Hosokawa, H. Tokailin, H. Higashi, and T. Kusumoto, “Transient-behavior of organic thin-film electroluminescence,” Appl. Phys. Lett. 60(10), 1220–1222 (1992).
[Crossref]
S. T. Lee, Y. M. Wang, X. Y. Hou, and C. W. Tang, “Interfacial electronic structures in an organic light-emitting diode,” Appl. Phys. Lett. 74(5), 670–672 (1999).
[Crossref]
H. Aziz, Z. D. Popovic, N. X. Hu, A. M. Hor, and G. Xu, “Degradation mechanism of small molecule-based organic light-emitting devices,” Science 283(5409), 1900–1902 (1999).
[Crossref]
[PubMed]
R. Satoh, S. Naka, M. Shibata, H. Okada, H. Onnagawa, T. Miyabayashi, and T. Inoue, “Top-emission organic light-emitting diodes with ink-jet printed self-aligned emission zones,” Jpn. J. Appl. Phys. 45(3A), 1829–1831 (2006).
[Crossref]
E. Ito, H. Oji, H. Ishii, K. Oichi, Y. Ouchi, and K. Seki, “Interfacial electronic structure of long-chain alkane/metal systems studied by UV-photoelectron and metastable atom electron spectroscopies,” Chem. Phys. Lett. 287(1–2), 137–142 (1998).
[Crossref]
E. Ito, H. Oji, H. Ishii, K. Oichi, Y. Ouchi, and K. Seki, “Interfacial electronic structure of long-chain alkane/metal systems studied by UV-photoelectron and metastable atom electron spectroscopies,” Chem. Phys. Lett. 287(1–2), 137–142 (1998).
[Crossref]
I. H. Hong, M. W. Lee, Y. M. Koo, H. Jeong, T. S. Kim, and O. K. Song, “Effective hole injection of organic light-emitting diodes by introducing buckminsterfullerene on the indium tin oxide anode,” Appl. Phys. Lett. 87(6), 063502 (2005).
[Crossref]
X.-Y. Jiang, Z.-L. Zhang, J. Cao, M. A. Khan, Khizar-ul-Haq, and W.-Q. Zhu, “White OLED with high stability and low driving voltage based on a novel buffer layer MoOx,” J. Phys. D Appl. Phys. 40(18), 5553–5557 (2007).
[Crossref]
T. Matsushima, G. H. Jin, and H. Murata, “Marked improvement in electroluminescence characteristics of organic light-emitting diodes using an ultrathin hole-injection layer of molybdenum oxide,” J. Appl. Phys. 104(5), 054501 (2008).
[Crossref]
J. Kalinowski, L. C. Palilis, W. H. Kim, and Z. H. Kafafi, “Determination of the width of the carrier recombination zone in organic light-emitting diodes,” J. Appl. Phys. 94(12), 7764–7767 (2003).
[Crossref]
C. C. Wu, C. I. Wu, J. C. Sturm, and A. Kahn, “Surface modification of indium tin oxide by plasma treatment: An effective method to improve the efficiency, brightness, and reliability of organic light emitting devices,” Appl. Phys. Lett. 70(11), 1348–1350 (1997).
[Crossref]
J. Kalinowski, L. C. Palilis, W. H. Kim, and Z. H. Kafafi, “Determination of the width of the carrier recombination zone in organic light-emitting diodes,” J. Appl. Phys. 94(12), 7764–7767 (2003).
[Crossref]
H. Kanno, R. J. Holmes, Y. Sun, S. Kena-Cohen, and S. R. Forrest, “White stacked electrophosphorescent organic light-emitting devices employing MoO3 as a charge-generation layer,” Adv. Mater. (Deerfield Beach Fla.) 18(3), 339–342 (2006).
[Crossref]
H. Kanno, N. C. Giebink, Y. R. Sun, and S. R. Forrest, “Stacked white organic light-emitting devices based on a combination of fluorescent and phosphorescent emitters,” Appl. Phys. Lett. 89(2), 023503 (2006).
[Crossref]
B. J. Chen, X. W. Sun, B. K. Tay, L. Ke, and S. J. Chua, “Improvement of efficiency and stability of polymer light-emitting devices by modifying indium tin oxide anode surface with ultrathin tetrahedral amorphous carbon film,” Appl. Phys. Lett. 86(6), 063506 (2005).
[Crossref]
H. Kanno, R. J. Holmes, Y. Sun, S. Kena-Cohen, and S. R. Forrest, “White stacked electrophosphorescent organic light-emitting devices employing MoO3 as a charge-generation layer,” Adv. Mater. (Deerfield Beach Fla.) 18(3), 339–342 (2006).
[Crossref]
X.-Y. Jiang, Z.-L. Zhang, J. Cao, M. A. Khan, Khizar-ul-Haq, and W.-Q. Zhu, “White OLED with high stability and low driving voltage based on a novel buffer layer MoOx,” J. Phys. D Appl. Phys. 40(18), 5553–5557 (2007).
[Crossref]
X.-Y. Jiang, Z.-L. Zhang, J. Cao, M. A. Khan, Khizar-ul-Haq, and W.-Q. Zhu, “White OLED with high stability and low driving voltage based on a novel buffer layer MoOx,” J. Phys. D Appl. Phys. 40(18), 5553–5557 (2007).
[Crossref]
J. Kido and T. Matsumoto, “Bright organic electroluminescent devices having a metal-doped electron-injecting layer,” Appl. Phys. Lett. 73(20), 2866–2868 (1998).
[Crossref]
W. J. Shin, J. Y. Lee, J. C. Kim, T. H. Yoon, T. S. Kim, and O. K. Song, “Bulk and interface properties of molybdenum trioxide-doped hole transporting layer in organic light-emitting diodes,” Org. Electron. 9(3), 333–338 (2008).
[Crossref]
W. J. Shin, J. Y. Lee, J. C. Kim, T. H. Yoon, T. S. Kim, and O. K. Song, “Bulk and interface properties of molybdenum trioxide-doped hole transporting layer in organic light-emitting diodes,” Org. Electron. 9(3), 333–338 (2008).
[Crossref]
I. H. Hong, M. W. Lee, Y. M. Koo, H. Jeong, T. S. Kim, and O. K. Song, “Effective hole injection of organic light-emitting diodes by introducing buckminsterfullerene on the indium tin oxide anode,” Appl. Phys. Lett. 87(6), 063502 (2005).
[Crossref]
J. Kalinowski, L. C. Palilis, W. H. Kim, and Z. H. Kafafi, “Determination of the width of the carrier recombination zone in organic light-emitting diodes,” J. Appl. Phys. 94(12), 7764–7767 (2003).
[Crossref]
T. Matsushima, Y. Kinoshita, and H. Murata, “Formation of Ohmic hole injection by inserting an ultrathin layer of molybdenum trioxide between indium tin oxide and organic hole-transporting layers,” Appl. Phys. Lett. 91(25), 253504 (2007).
[Crossref]
I. H. Hong, M. W. Lee, Y. M. Koo, H. Jeong, T. S. Kim, and O. K. Song, “Effective hole injection of organic light-emitting diodes by introducing buckminsterfullerene on the indium tin oxide anode,” Appl. Phys. Lett. 87(6), 063502 (2005).
[Crossref]
C. Hosokawa, H. Tokailin, H. Higashi, and T. Kusumoto, “Transient-behavior of organic thin-film electroluminescence,” Appl. Phys. Lett. 60(10), 1220–1222 (1992).
[Crossref]
C. Ganzorig, K. J. Kwak, K. Yagi, and M. Fujihira, “Fine tuning work function of indium tin oxide by surface molecular design: Enhanced hole injection in organic electroluminescent devices,” Appl. Phys. Lett. 79(2), 272–274 (2001).
[Crossref]
W. J. Shin, J. Y. Lee, J. C. Kim, T. H. Yoon, T. S. Kim, and O. K. Song, “Bulk and interface properties of molybdenum trioxide-doped hole transporting layer in organic light-emitting diodes,” Org. Electron. 9(3), 333–338 (2008).
[Crossref]
I. H. Hong, M. W. Lee, Y. M. Koo, H. Jeong, T. S. Kim, and O. K. Song, “Effective hole injection of organic light-emitting diodes by introducing buckminsterfullerene on the indium tin oxide anode,” Appl. Phys. Lett. 87(6), 063502 (2005).
[Crossref]
S. T. Lee, Y. M. Wang, X. Y. Hou, and C. W. Tang, “Interfacial electronic structures in an organic light-emitting diode,” Appl. Phys. Lett. 74(5), 670–672 (1999).
[Crossref]
Y. Zou, Z. B. Deng, Z. Y. Lv, Z. Chen, D. H. Xu, Y. L. Chen, Y. H. Yin, H. L. Du, and Y. S. Wang, “Reduction of driving voltage in organic light-emitting diodes with molybdenum trioxide in CuPc/NPB interface,” J. Lumin. 130(6), 959–962 (2010).
[Crossref]
H. M. Zhang, Y. F. Dai, D. G. Ma, and H. Zhang, “High efficiency tandem organic light-emitting devices with Al/WO3/Au interconnecting layer,” Appl. Phys. Lett. 91(12), 123504 (2007).
[Crossref]
H. You, Y. F. Dai, Z. Q. Zhang, and D. G. Ma, “Improved performances of organic light-emitting diodes with metal oxide as anode buffer,” J. Appl. Phys. 101(2), 026105 (2007).
[Crossref]
J. Kido and T. Matsumoto, “Bright organic electroluminescent devices having a metal-doped electron-injecting layer,” Appl. Phys. Lett. 73(20), 2866–2868 (1998).
[Crossref]
T. Matsushima and C. Adachi, “Enhanced hole injection and transport in molybdenum-dioxide-doped organic hole-transporting layers,” J. Appl. Phys. 103(3), 034501 (2008).
[Crossref]
T. Matsushima, G. H. Jin, and H. Murata, “Marked improvement in electroluminescence characteristics of organic light-emitting diodes using an ultrathin hole-injection layer of molybdenum oxide,” J. Appl. Phys. 104(5), 054501 (2008).
[Crossref]
T. Matsushima, Y. Kinoshita, and H. Murata, “Formation of Ohmic hole injection by inserting an ultrathin layer of molybdenum trioxide between indium tin oxide and organic hole-transporting layers,” Appl. Phys. Lett. 91(25), 253504 (2007).
[Crossref]
R. Satoh, S. Naka, M. Shibata, H. Okada, H. Onnagawa, T. Miyabayashi, and T. Inoue, “Top-emission organic light-emitting diodes with ink-jet printed self-aligned emission zones,” Jpn. J. Appl. Phys. 45(3A), 1829–1831 (2006).
[Crossref]
T. Matsushima, G. H. Jin, and H. Murata, “Marked improvement in electroluminescence characteristics of organic light-emitting diodes using an ultrathin hole-injection layer of molybdenum oxide,” J. Appl. Phys. 104(5), 054501 (2008).
[Crossref]
T. Matsushima, Y. Kinoshita, and H. Murata, “Formation of Ohmic hole injection by inserting an ultrathin layer of molybdenum trioxide between indium tin oxide and organic hole-transporting layers,” Appl. Phys. Lett. 91(25), 253504 (2007).
[Crossref]
R. Satoh, S. Naka, M. Shibata, H. Okada, H. Onnagawa, T. Miyabayashi, and T. Inoue, “Top-emission organic light-emitting diodes with ink-jet printed self-aligned emission zones,” Jpn. J. Appl. Phys. 45(3A), 1829–1831 (2006).
[Crossref]
S. Tokito, K. Noda, and Y. Taga, “Metal oxides as a hole-injecting layer for an organic electroluminescent device,” J. Phys. D Appl. Phys. 29(11), 2750–2753 (1996).
[Crossref]
E. Ito, H. Oji, H. Ishii, K. Oichi, Y. Ouchi, and K. Seki, “Interfacial electronic structure of long-chain alkane/metal systems studied by UV-photoelectron and metastable atom electron spectroscopies,” Chem. Phys. Lett. 287(1–2), 137–142 (1998).
[Crossref]
E. Ito, H. Oji, H. Ishii, K. Oichi, Y. Ouchi, and K. Seki, “Interfacial electronic structure of long-chain alkane/metal systems studied by UV-photoelectron and metastable atom electron spectroscopies,” Chem. Phys. Lett. 287(1–2), 137–142 (1998).
[Crossref]
R. Satoh, S. Naka, M. Shibata, H. Okada, H. Onnagawa, T. Miyabayashi, and T. Inoue, “Top-emission organic light-emitting diodes with ink-jet printed self-aligned emission zones,” Jpn. J. Appl. Phys. 45(3A), 1829–1831 (2006).
[Crossref]
R. Satoh, S. Naka, M. Shibata, H. Okada, H. Onnagawa, T. Miyabayashi, and T. Inoue, “Top-emission organic light-emitting diodes with ink-jet printed self-aligned emission zones,” Jpn. J. Appl. Phys. 45(3A), 1829–1831 (2006).
[Crossref]
E. Ito, H. Oji, H. Ishii, K. Oichi, Y. Ouchi, and K. Seki, “Interfacial electronic structure of long-chain alkane/metal systems studied by UV-photoelectron and metastable atom electron spectroscopies,” Chem. Phys. Lett. 287(1–2), 137–142 (1998).
[Crossref]
J. Kalinowski, L. C. Palilis, W. H. Kim, and Z. H. Kafafi, “Determination of the width of the carrier recombination zone in organic light-emitting diodes,” J. Appl. Phys. 94(12), 7764–7767 (2003).
[Crossref]
H. Aziz, Z. D. Popovic, N. X. Hu, A. M. Hor, and G. Xu, “Degradation mechanism of small molecule-based organic light-emitting devices,” Science 283(5409), 1900–1902 (1999).
[Crossref]
[PubMed]
R. Satoh, S. Naka, M. Shibata, H. Okada, H. Onnagawa, T. Miyabayashi, and T. Inoue, “Top-emission organic light-emitting diodes with ink-jet printed self-aligned emission zones,” Jpn. J. Appl. Phys. 45(3A), 1829–1831 (2006).
[Crossref]
E. Ito, H. Oji, H. Ishii, K. Oichi, Y. Ouchi, and K. Seki, “Interfacial electronic structure of long-chain alkane/metal systems studied by UV-photoelectron and metastable atom electron spectroscopies,” Chem. Phys. Lett. 287(1–2), 137–142 (1998).
[Crossref]
R. Satoh, S. Naka, M. Shibata, H. Okada, H. Onnagawa, T. Miyabayashi, and T. Inoue, “Top-emission organic light-emitting diodes with ink-jet printed self-aligned emission zones,” Jpn. J. Appl. Phys. 45(3A), 1829–1831 (2006).
[Crossref]
W. J. Shin, J. Y. Lee, J. C. Kim, T. H. Yoon, T. S. Kim, and O. K. Song, “Bulk and interface properties of molybdenum trioxide-doped hole transporting layer in organic light-emitting diodes,” Org. Electron. 9(3), 333–338 (2008).
[Crossref]
W. J. Shin, J. Y. Lee, J. C. Kim, T. H. Yoon, T. S. Kim, and O. K. Song, “Bulk and interface properties of molybdenum trioxide-doped hole transporting layer in organic light-emitting diodes,” Org. Electron. 9(3), 333–338 (2008).
[Crossref]
I. H. Hong, M. W. Lee, Y. M. Koo, H. Jeong, T. S. Kim, and O. K. Song, “Effective hole injection of organic light-emitting diodes by introducing buckminsterfullerene on the indium tin oxide anode,” Appl. Phys. Lett. 87(6), 063502 (2005).
[Crossref]
C. C. Wu, C. I. Wu, J. C. Sturm, and A. Kahn, “Surface modification of indium tin oxide by plasma treatment: An effective method to improve the efficiency, brightness, and reliability of organic light emitting devices,” Appl. Phys. Lett. 70(11), 1348–1350 (1997).
[Crossref]
B. J. Chen, X. W. Sun, B. K. Tay, L. Ke, and S. J. Chua, “Improvement of efficiency and stability of polymer light-emitting devices by modifying indium tin oxide anode surface with ultrathin tetrahedral amorphous carbon film,” Appl. Phys. Lett. 86(6), 063506 (2005).
[Crossref]
J. X. Guo, Z. Sun, B. K. Tay, and X. W. Sun, “Field emission from modified nanocomposite carbon films prepared by filtered cathodic vacuum arc at high negative pulsed bias,” Appl. Surf. Sci. 214(1–4), 351–358 (2003).
[Crossref]
H. Kanno, R. J. Holmes, Y. Sun, S. Kena-Cohen, and S. R. Forrest, “White stacked electrophosphorescent organic light-emitting devices employing MoO3 as a charge-generation layer,” Adv. Mater. (Deerfield Beach Fla.) 18(3), 339–342 (2006).
[Crossref]
H. Kanno, N. C. Giebink, Y. R. Sun, and S. R. Forrest, “Stacked white organic light-emitting devices based on a combination of fluorescent and phosphorescent emitters,” Appl. Phys. Lett. 89(2), 023503 (2006).
[Crossref]
J. X. Guo, Z. Sun, B. K. Tay, and X. W. Sun, “Field emission from modified nanocomposite carbon films prepared by filtered cathodic vacuum arc at high negative pulsed bias,” Appl. Surf. Sci. 214(1–4), 351–358 (2003).
[Crossref]
S. Tokito, K. Noda, and Y. Taga, “Metal oxides as a hole-injecting layer for an organic electroluminescent device,” J. Phys. D Appl. Phys. 29(11), 2750–2753 (1996).
[Crossref]
S. T. Lee, Y. M. Wang, X. Y. Hou, and C. W. Tang, “Interfacial electronic structures in an organic light-emitting diode,” Appl. Phys. Lett. 74(5), 670–672 (1999).
[Crossref]
S. A. Van Slyke, C. H. Chen, and C. W. Tang, “Organic electroluminescent devices with improved stability,” Appl. Phys. Lett. 69(15), 2160–2162 (1996).
[Crossref]
C. W. Tang and S. A. Vanslyke, “Organic electroluminescent diodes,” Appl. Phys. Lett. 51(12), 913–915 (1987).
[Crossref]
B. J. Chen, X. W. Sun, B. K. Tay, L. Ke, and S. J. Chua, “Improvement of efficiency and stability of polymer light-emitting devices by modifying indium tin oxide anode surface with ultrathin tetrahedral amorphous carbon film,” Appl. Phys. Lett. 86(6), 063506 (2005).
[Crossref]
J. X. Guo, Z. Sun, B. K. Tay, and X. W. Sun, “Field emission from modified nanocomposite carbon films prepared by filtered cathodic vacuum arc at high negative pulsed bias,” Appl. Surf. Sci. 214(1–4), 351–358 (2003).
[Crossref]
C. Hosokawa, H. Tokailin, H. Higashi, and T. Kusumoto, “Transient-behavior of organic thin-film electroluminescence,” Appl. Phys. Lett. 60(10), 1220–1222 (1992).
[Crossref]
S. Tokito, K. Noda, and Y. Taga, “Metal oxides as a hole-injecting layer for an organic electroluminescent device,” J. Phys. D Appl. Phys. 29(11), 2750–2753 (1996).
[Crossref]
E. Tutiŝ, D. Berner, and L. Zuppiroli, “Internal electric field and charge distribution in multilayer organic light-emitting diodes,” J. Appl. Phys. 93(8), 4594–4602 (2003).
[Crossref]
S. A. Van Slyke, C. H. Chen, and C. W. Tang, “Organic electroluminescent devices with improved stability,” Appl. Phys. Lett. 69(15), 2160–2162 (1996).
[Crossref]
C. W. Tang and S. A. Vanslyke, “Organic electroluminescent diodes,” Appl. Phys. Lett. 51(12), 913–915 (1987).
[Crossref]
S. T. Lee, Y. M. Wang, X. Y. Hou, and C. W. Tang, “Interfacial electronic structures in an organic light-emitting diode,” Appl. Phys. Lett. 74(5), 670–672 (1999).
[Crossref]
Y. Zou, Z. B. Deng, Z. Y. Lv, Z. Chen, D. H. Xu, Y. L. Chen, Y. H. Yin, H. L. Du, and Y. S. Wang, “Reduction of driving voltage in organic light-emitting diodes with molybdenum trioxide in CuPc/NPB interface,” J. Lumin. 130(6), 959–962 (2010).
[Crossref]
C. C. Wu, C. I. Wu, J. C. Sturm, and A. Kahn, “Surface modification of indium tin oxide by plasma treatment: An effective method to improve the efficiency, brightness, and reliability of organic light emitting devices,” Appl. Phys. Lett. 70(11), 1348–1350 (1997).
[Crossref]
C. C. Wu, C. I. Wu, J. C. Sturm, and A. Kahn, “Surface modification of indium tin oxide by plasma treatment: An effective method to improve the efficiency, brightness, and reliability of organic light emitting devices,” Appl. Phys. Lett. 70(11), 1348–1350 (1997).
[Crossref]
Y. Zou, Z. B. Deng, Z. Y. Lv, Z. Chen, D. H. Xu, Y. L. Chen, Y. H. Yin, H. L. Du, and Y. S. Wang, “Reduction of driving voltage in organic light-emitting diodes with molybdenum trioxide in CuPc/NPB interface,” J. Lumin. 130(6), 959–962 (2010).
[Crossref]
H. Aziz, Z. D. Popovic, N. X. Hu, A. M. Hor, and G. Xu, “Degradation mechanism of small molecule-based organic light-emitting devices,” Science 283(5409), 1900–1902 (1999).
[Crossref]
[PubMed]
C. Ganzorig, K. J. Kwak, K. Yagi, and M. Fujihira, “Fine tuning work function of indium tin oxide by surface molecular design: Enhanced hole injection in organic electroluminescent devices,” Appl. Phys. Lett. 79(2), 272–274 (2001).
[Crossref]
Y. Zou, Z. B. Deng, Z. Y. Lv, Z. Chen, D. H. Xu, Y. L. Chen, Y. H. Yin, H. L. Du, and Y. S. Wang, “Reduction of driving voltage in organic light-emitting diodes with molybdenum trioxide in CuPc/NPB interface,” J. Lumin. 130(6), 959–962 (2010).
[Crossref]
W. J. Shin, J. Y. Lee, J. C. Kim, T. H. Yoon, T. S. Kim, and O. K. Song, “Bulk and interface properties of molybdenum trioxide-doped hole transporting layer in organic light-emitting diodes,” Org. Electron. 9(3), 333–338 (2008).
[Crossref]
H. You, Y. F. Dai, Z. Q. Zhang, and D. G. Ma, “Improved performances of organic light-emitting diodes with metal oxide as anode buffer,” J. Appl. Phys. 101(2), 026105 (2007).
[Crossref]
H. M. Zhang, Y. F. Dai, D. G. Ma, and H. Zhang, “High efficiency tandem organic light-emitting devices with Al/WO3/Au interconnecting layer,” Appl. Phys. Lett. 91(12), 123504 (2007).
[Crossref]
H. M. Zhang, Y. F. Dai, D. G. Ma, and H. Zhang, “High efficiency tandem organic light-emitting devices with Al/WO3/Au interconnecting layer,” Appl. Phys. Lett. 91(12), 123504 (2007).
[Crossref]
H. You, Y. F. Dai, Z. Q. Zhang, and D. G. Ma, “Improved performances of organic light-emitting diodes with metal oxide as anode buffer,” J. Appl. Phys. 101(2), 026105 (2007).
[Crossref]
X.-Y. Jiang, Z.-L. Zhang, J. Cao, M. A. Khan, Khizar-ul-Haq, and W.-Q. Zhu, “White OLED with high stability and low driving voltage based on a novel buffer layer MoOx,” J. Phys. D Appl. Phys. 40(18), 5553–5557 (2007).
[Crossref]
X.-Y. Jiang, Z.-L. Zhang, J. Cao, M. A. Khan, Khizar-ul-Haq, and W.-Q. Zhu, “White OLED with high stability and low driving voltage based on a novel buffer layer MoOx,” J. Phys. D Appl. Phys. 40(18), 5553–5557 (2007).
[Crossref]
Y. Zou, Z. B. Deng, Z. Y. Lv, Z. Chen, D. H. Xu, Y. L. Chen, Y. H. Yin, H. L. Du, and Y. S. Wang, “Reduction of driving voltage in organic light-emitting diodes with molybdenum trioxide in CuPc/NPB interface,” J. Lumin. 130(6), 959–962 (2010).
[Crossref]
E. Tutiŝ, D. Berner, and L. Zuppiroli, “Internal electric field and charge distribution in multilayer organic light-emitting diodes,” J. Appl. Phys. 93(8), 4594–4602 (2003).
[Crossref]
H. Kanno, R. J. Holmes, Y. Sun, S. Kena-Cohen, and S. R. Forrest, “White stacked electrophosphorescent organic light-emitting devices employing MoO3 as a charge-generation layer,” Adv. Mater. (Deerfield Beach Fla.) 18(3), 339–342 (2006).
[Crossref]
H. M. Zhang, Y. F. Dai, D. G. Ma, and H. Zhang, “High efficiency tandem organic light-emitting devices with Al/WO3/Au interconnecting layer,” Appl. Phys. Lett. 91(12), 123504 (2007).
[Crossref]
H. Kanno, N. C. Giebink, Y. R. Sun, and S. R. Forrest, “Stacked white organic light-emitting devices based on a combination of fluorescent and phosphorescent emitters,” Appl. Phys. Lett. 89(2), 023503 (2006).
[Crossref]
S. T. Lee, Y. M. Wang, X. Y. Hou, and C. W. Tang, “Interfacial electronic structures in an organic light-emitting diode,” Appl. Phys. Lett. 74(5), 670–672 (1999).
[Crossref]
C. W. Tang and S. A. Vanslyke, “Organic electroluminescent diodes,” Appl. Phys. Lett. 51(12), 913–915 (1987).
[Crossref]
C. C. Wu, C. I. Wu, J. C. Sturm, and A. Kahn, “Surface modification of indium tin oxide by plasma treatment: An effective method to improve the efficiency, brightness, and reliability of organic light emitting devices,” Appl. Phys. Lett. 70(11), 1348–1350 (1997).
[Crossref]
C. Ganzorig, K. J. Kwak, K. Yagi, and M. Fujihira, “Fine tuning work function of indium tin oxide by surface molecular design: Enhanced hole injection in organic electroluminescent devices,” Appl. Phys. Lett. 79(2), 272–274 (2001).
[Crossref]
S. A. Van Slyke, C. H. Chen, and C. W. Tang, “Organic electroluminescent devices with improved stability,” Appl. Phys. Lett. 69(15), 2160–2162 (1996).
[Crossref]
I. H. Hong, M. W. Lee, Y. M. Koo, H. Jeong, T. S. Kim, and O. K. Song, “Effective hole injection of organic light-emitting diodes by introducing buckminsterfullerene on the indium tin oxide anode,” Appl. Phys. Lett. 87(6), 063502 (2005).
[Crossref]
J. Kido and T. Matsumoto, “Bright organic electroluminescent devices having a metal-doped electron-injecting layer,” Appl. Phys. Lett. 73(20), 2866–2868 (1998).
[Crossref]
T. Matsushima, Y. Kinoshita, and H. Murata, “Formation of Ohmic hole injection by inserting an ultrathin layer of molybdenum trioxide between indium tin oxide and organic hole-transporting layers,” Appl. Phys. Lett. 91(25), 253504 (2007).
[Crossref]
B. J. Chen, X. W. Sun, B. K. Tay, L. Ke, and S. J. Chua, “Improvement of efficiency and stability of polymer light-emitting devices by modifying indium tin oxide anode surface with ultrathin tetrahedral amorphous carbon film,” Appl. Phys. Lett. 86(6), 063506 (2005).
[Crossref]
C. Hosokawa, H. Tokailin, H. Higashi, and T. Kusumoto, “Transient-behavior of organic thin-film electroluminescence,” Appl. Phys. Lett. 60(10), 1220–1222 (1992).
[Crossref]
J. X. Guo, Z. Sun, B. K. Tay, and X. W. Sun, “Field emission from modified nanocomposite carbon films prepared by filtered cathodic vacuum arc at high negative pulsed bias,” Appl. Surf. Sci. 214(1–4), 351–358 (2003).
[Crossref]
E. Ito, H. Oji, H. Ishii, K. Oichi, Y. Ouchi, and K. Seki, “Interfacial electronic structure of long-chain alkane/metal systems studied by UV-photoelectron and metastable atom electron spectroscopies,” Chem. Phys. Lett. 287(1–2), 137–142 (1998).
[Crossref]
J. Kalinowski, L. C. Palilis, W. H. Kim, and Z. H. Kafafi, “Determination of the width of the carrier recombination zone in organic light-emitting diodes,” J. Appl. Phys. 94(12), 7764–7767 (2003).
[Crossref]
T. Matsushima and C. Adachi, “Enhanced hole injection and transport in molybdenum-dioxide-doped organic hole-transporting layers,” J. Appl. Phys. 103(3), 034501 (2008).
[Crossref]
H. You, Y. F. Dai, Z. Q. Zhang, and D. G. Ma, “Improved performances of organic light-emitting diodes with metal oxide as anode buffer,” J. Appl. Phys. 101(2), 026105 (2007).
[Crossref]
E. Tutiŝ, D. Berner, and L. Zuppiroli, “Internal electric field and charge distribution in multilayer organic light-emitting diodes,” J. Appl. Phys. 93(8), 4594–4602 (2003).
[Crossref]
T. Matsushima, G. H. Jin, and H. Murata, “Marked improvement in electroluminescence characteristics of organic light-emitting diodes using an ultrathin hole-injection layer of molybdenum oxide,” J. Appl. Phys. 104(5), 054501 (2008).
[Crossref]
Y. Zou, Z. B. Deng, Z. Y. Lv, Z. Chen, D. H. Xu, Y. L. Chen, Y. H. Yin, H. L. Du, and Y. S. Wang, “Reduction of driving voltage in organic light-emitting diodes with molybdenum trioxide in CuPc/NPB interface,” J. Lumin. 130(6), 959–962 (2010).
[Crossref]
X.-Y. Jiang, Z.-L. Zhang, J. Cao, M. A. Khan, Khizar-ul-Haq, and W.-Q. Zhu, “White OLED with high stability and low driving voltage based on a novel buffer layer MoOx,” J. Phys. D Appl. Phys. 40(18), 5553–5557 (2007).
[Crossref]
S. Tokito, K. Noda, and Y. Taga, “Metal oxides as a hole-injecting layer for an organic electroluminescent device,” J. Phys. D Appl. Phys. 29(11), 2750–2753 (1996).
[Crossref]
M. M. Hawkeye and M. J. Brett, “Glancing angle deposition: fabrication, properties, and applications of micro- and nanostructured thin films,” J. Vac. Sci. Technol. A 25(5), 1317–1335 (2007).
[Crossref]
R. Satoh, S. Naka, M. Shibata, H. Okada, H. Onnagawa, T. Miyabayashi, and T. Inoue, “Top-emission organic light-emitting diodes with ink-jet printed self-aligned emission zones,” Jpn. J. Appl. Phys. 45(3A), 1829–1831 (2006).
[Crossref]
S. R. Forrest, “The path to ubiquitous and low-cost organic electronic appliances on plastic,” Nature 428(6986), 911–918 (2004).
[Crossref]
[PubMed]
W. J. Shin, J. Y. Lee, J. C. Kim, T. H. Yoon, T. S. Kim, and O. K. Song, “Bulk and interface properties of molybdenum trioxide-doped hole transporting layer in organic light-emitting diodes,” Org. Electron. 9(3), 333–338 (2008).
[Crossref]
H. Aziz, Z. D. Popovic, N. X. Hu, A. M. Hor, and G. Xu, “Degradation mechanism of small molecule-based organic light-emitting devices,” Science 283(5409), 1900–1902 (1999).
[Crossref]
[PubMed]