Abstract

We fabricated and demonstrated improved organic light emitting diodes (OLEDs) in a thin film architecture of indium tin oxide (ITO)/ molybdenum trioxide (MoO3) (20 nm)/ N,N’-Di(naphth-2-yl)-N,N’-diphenyl-benzidine (NPB) (50 nm)/ tris-(8-hydroxyquinoline) (Alq3) (70 nm)/ Mg:Ag (200 nm) using an oblique angle deposition technique by which MoO3 was deposited at oblique angles (θ) with respect to the surface normal. It was found that, without sacrificing the power efficiency of the device, the device current efficiency and external quantum efficiency were significantly enhanced at an oblique deposition angle of θ = 60° for MoO3.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. R. Forrest, “The path to ubiquitous and low-cost organic electronic appliances on plastic,” Nature 428(6986), 911–918 (2004).
    [CrossRef] [PubMed]
  2. C. W. Tang and S. A. Vanslyke, “Organic electroluminescent diodes,” Appl. Phys. Lett. 51(12), 913–915 (1987).
    [CrossRef]
  3. C. C. Wu, C. I. Wu, J. C. Sturm, and A. Kahn, “Surface modification of indium tin oxide by plasma treatment: An effective method to improve the efficiency, brightness, and reliability of organic light emitting devices,” Appl. Phys. Lett. 70(11), 1348–1350 (1997).
    [CrossRef]
  4. C. Ganzorig, K. J. Kwak, K. Yagi, and M. Fujihira, “Fine tuning work function of indium tin oxide by surface molecular design: Enhanced hole injection in organic electroluminescent devices,” Appl. Phys. Lett. 79(2), 272–274 (2001).
    [CrossRef]
  5. S. A. Van Slyke, C. H. Chen, and C. W. Tang, “Organic electroluminescent devices with improved stability,” Appl. Phys. Lett. 69(15), 2160–2162 (1996).
    [CrossRef]
  6. S. Tokito, K. Noda, and Y. Taga, “Metal oxides as a hole-injecting layer for an organic electroluminescent device,” J. Phys. D Appl. Phys. 29(11), 2750–2753 (1996).
    [CrossRef]
  7. I. H. Hong, M. W. Lee, Y. M. Koo, H. Jeong, T. S. Kim, and O. K. Song, “Effective hole injection of organic light-emitting diodes by introducing buckminsterfullerene on the indium tin oxide anode,” Appl. Phys. Lett. 87(6), 063502 (2005).
    [CrossRef]
  8. J. Kido and T. Matsumoto, “Bright organic electroluminescent devices having a metal-doped electron-injecting layer,” Appl. Phys. Lett. 73(20), 2866–2868 (1998).
    [CrossRef]
  9. T. Matsushima and C. Adachi, “Enhanced hole injection and transport in molybdenum-dioxide-doped organic hole-transporting layers,” J. Appl. Phys. 103(3), 034501 (2008).
    [CrossRef]
  10. H. You, Y. F. Dai, Z. Q. Zhang, and D. G. Ma, “Improved performances of organic light-emitting diodes with metal oxide as anode buffer,” J. Appl. Phys. 101(2), 026105 (2007).
    [CrossRef]
  11. H. Kanno, R. J. Holmes, Y. Sun, S. Kena-Cohen, and S. R. Forrest, “White stacked electrophosphorescent organic light-emitting devices employing MoO3 as a charge-generation layer,” Adv. Mater. (Deerfield Beach Fla.) 18(3), 339–342 (2006).
    [CrossRef]
  12. T. Matsushima, G. H. Jin, and H. Murata, “Marked improvement in electroluminescence characteristics of organic light-emitting diodes using an ultrathin hole-injection layer of molybdenum oxide,” J. Appl. Phys. 104(5), 054501 (2008).
    [CrossRef]
  13. H. M. Zhang, Y. F. Dai, D. G. Ma, and H. Zhang, “High efficiency tandem organic light-emitting devices with Al/WO3/Au interconnecting layer,” Appl. Phys. Lett. 91(12), 123504 (2007).
    [CrossRef]
  14. X.-Y. Jiang, Z.-L. Zhang, J. Cao, M. A. Khan, Khizar-ul-Haq, and W.-Q. Zhu, “White OLED with high stability and low driving voltage based on a novel buffer layer MoOx,” J. Phys. D Appl. Phys. 40(18), 5553–5557 (2007).
    [CrossRef]
  15. H. Kanno, N. C. Giebink, Y. R. Sun, and S. R. Forrest, “Stacked white organic light-emitting devices based on a combination of fluorescent and phosphorescent emitters,” Appl. Phys. Lett. 89(2), 023503 (2006).
    [CrossRef]
  16. R. Satoh, S. Naka, M. Shibata, H. Okada, H. Onnagawa, T. Miyabayashi, and T. Inoue, “Top-emission organic light-emitting diodes with ink-jet printed self-aligned emission zones,” Jpn. J. Appl. Phys. 45(3A), 1829–1831 (2006).
    [CrossRef]
  17. S. T. Lee, Y. M. Wang, X. Y. Hou, and C. W. Tang, “Interfacial electronic structures in an organic light-emitting diode,” Appl. Phys. Lett. 74(5), 670–672 (1999).
    [CrossRef]
  18. E. Tutiŝ, D. Berner, and L. Zuppiroli, “Internal electric field and charge distribution in multilayer organic light-emitting diodes,” J. Appl. Phys. 93(8), 4594–4602 (2003).
    [CrossRef]
  19. Y. Zou, Z. B. Deng, Z. Y. Lv, Z. Chen, D. H. Xu, Y. L. Chen, Y. H. Yin, H. L. Du, and Y. S. Wang, “Reduction of driving voltage in organic light-emitting diodes with molybdenum trioxide in CuPc/NPB interface,” J. Lumin. 130(6), 959–962 (2010).
    [CrossRef]
  20. T. Matsushima, Y. Kinoshita, and H. Murata, “Formation of Ohmic hole injection by inserting an ultrathin layer of molybdenum trioxide between indium tin oxide and organic hole-transporting layers,” Appl. Phys. Lett. 91(25), 253504 (2007).
    [CrossRef]
  21. M. M. Hawkeye and M. J. Brett, “Glancing angle deposition: fabrication, properties, and applications of micro- and nanostructured thin films,” J. Vac. Sci. Technol. A 25(5), 1317–1335 (2007).
    [CrossRef]
  22. B. J. Chen, X. W. Sun, B. K. Tay, L. Ke, and S. J. Chua, “Improvement of efficiency and stability of polymer light-emitting devices by modifying indium tin oxide anode surface with ultrathin tetrahedral amorphous carbon film,” Appl. Phys. Lett. 86(6), 063506 (2005).
    [CrossRef]
  23. J. X. Guo, Z. Sun, B. K. Tay, and X. W. Sun, “Field emission from modified nanocomposite carbon films prepared by filtered cathodic vacuum arc at high negative pulsed bias,” Appl. Surf. Sci. 214(1–4), 351–358 (2003).
    [CrossRef]
  24. E. Ito, H. Oji, H. Ishii, K. Oichi, Y. Ouchi, and K. Seki, “Interfacial electronic structure of long-chain alkane/metal systems studied by UV-photoelectron and metastable atom electron spectroscopies,” Chem. Phys. Lett. 287(1–2), 137–142 (1998).
    [CrossRef]
  25. C. Hosokawa, H. Tokailin, H. Higashi, and T. Kusumoto, “Transient-behavior of organic thin-film electroluminescence,” Appl. Phys. Lett. 60(10), 1220–1222 (1992).
    [CrossRef]
  26. W. J. Shin, J. Y. Lee, J. C. Kim, T. H. Yoon, T. S. Kim, and O. K. Song, “Bulk and interface properties of molybdenum trioxide-doped hole transporting layer in organic light-emitting diodes,” Org. Electron. 9(3), 333–338 (2008).
    [CrossRef]
  27. H. Aziz, Z. D. Popovic, N. X. Hu, A. M. Hor, and G. Xu, “Degradation mechanism of small molecule-based organic light-emitting devices,” Science 283(5409), 1900–1902 (1999).
    [CrossRef] [PubMed]
  28. J. Kalinowski, L. C. Palilis, W. H. Kim, and Z. H. Kafafi, “Determination of the width of the carrier recombination zone in organic light-emitting diodes,” J. Appl. Phys. 94(12), 7764–7767 (2003).
    [CrossRef]

2010 (1)

Y. Zou, Z. B. Deng, Z. Y. Lv, Z. Chen, D. H. Xu, Y. L. Chen, Y. H. Yin, H. L. Du, and Y. S. Wang, “Reduction of driving voltage in organic light-emitting diodes with molybdenum trioxide in CuPc/NPB interface,” J. Lumin. 130(6), 959–962 (2010).
[CrossRef]

2008 (3)

T. Matsushima, G. H. Jin, and H. Murata, “Marked improvement in electroluminescence characteristics of organic light-emitting diodes using an ultrathin hole-injection layer of molybdenum oxide,” J. Appl. Phys. 104(5), 054501 (2008).
[CrossRef]

T. Matsushima and C. Adachi, “Enhanced hole injection and transport in molybdenum-dioxide-doped organic hole-transporting layers,” J. Appl. Phys. 103(3), 034501 (2008).
[CrossRef]

W. J. Shin, J. Y. Lee, J. C. Kim, T. H. Yoon, T. S. Kim, and O. K. Song, “Bulk and interface properties of molybdenum trioxide-doped hole transporting layer in organic light-emitting diodes,” Org. Electron. 9(3), 333–338 (2008).
[CrossRef]

2007 (5)

H. You, Y. F. Dai, Z. Q. Zhang, and D. G. Ma, “Improved performances of organic light-emitting diodes with metal oxide as anode buffer,” J. Appl. Phys. 101(2), 026105 (2007).
[CrossRef]

H. M. Zhang, Y. F. Dai, D. G. Ma, and H. Zhang, “High efficiency tandem organic light-emitting devices with Al/WO3/Au interconnecting layer,” Appl. Phys. Lett. 91(12), 123504 (2007).
[CrossRef]

X.-Y. Jiang, Z.-L. Zhang, J. Cao, M. A. Khan, Khizar-ul-Haq, and W.-Q. Zhu, “White OLED with high stability and low driving voltage based on a novel buffer layer MoOx,” J. Phys. D Appl. Phys. 40(18), 5553–5557 (2007).
[CrossRef]

T. Matsushima, Y. Kinoshita, and H. Murata, “Formation of Ohmic hole injection by inserting an ultrathin layer of molybdenum trioxide between indium tin oxide and organic hole-transporting layers,” Appl. Phys. Lett. 91(25), 253504 (2007).
[CrossRef]

M. M. Hawkeye and M. J. Brett, “Glancing angle deposition: fabrication, properties, and applications of micro- and nanostructured thin films,” J. Vac. Sci. Technol. A 25(5), 1317–1335 (2007).
[CrossRef]

2006 (3)

H. Kanno, N. C. Giebink, Y. R. Sun, and S. R. Forrest, “Stacked white organic light-emitting devices based on a combination of fluorescent and phosphorescent emitters,” Appl. Phys. Lett. 89(2), 023503 (2006).
[CrossRef]

R. Satoh, S. Naka, M. Shibata, H. Okada, H. Onnagawa, T. Miyabayashi, and T. Inoue, “Top-emission organic light-emitting diodes with ink-jet printed self-aligned emission zones,” Jpn. J. Appl. Phys. 45(3A), 1829–1831 (2006).
[CrossRef]

H. Kanno, R. J. Holmes, Y. Sun, S. Kena-Cohen, and S. R. Forrest, “White stacked electrophosphorescent organic light-emitting devices employing MoO3 as a charge-generation layer,” Adv. Mater. (Deerfield Beach Fla.) 18(3), 339–342 (2006).
[CrossRef]

2005 (2)

I. H. Hong, M. W. Lee, Y. M. Koo, H. Jeong, T. S. Kim, and O. K. Song, “Effective hole injection of organic light-emitting diodes by introducing buckminsterfullerene on the indium tin oxide anode,” Appl. Phys. Lett. 87(6), 063502 (2005).
[CrossRef]

B. J. Chen, X. W. Sun, B. K. Tay, L. Ke, and S. J. Chua, “Improvement of efficiency and stability of polymer light-emitting devices by modifying indium tin oxide anode surface with ultrathin tetrahedral amorphous carbon film,” Appl. Phys. Lett. 86(6), 063506 (2005).
[CrossRef]

2004 (1)

S. R. Forrest, “The path to ubiquitous and low-cost organic electronic appliances on plastic,” Nature 428(6986), 911–918 (2004).
[CrossRef] [PubMed]

2003 (3)

J. X. Guo, Z. Sun, B. K. Tay, and X. W. Sun, “Field emission from modified nanocomposite carbon films prepared by filtered cathodic vacuum arc at high negative pulsed bias,” Appl. Surf. Sci. 214(1–4), 351–358 (2003).
[CrossRef]

E. Tutiŝ, D. Berner, and L. Zuppiroli, “Internal electric field and charge distribution in multilayer organic light-emitting diodes,” J. Appl. Phys. 93(8), 4594–4602 (2003).
[CrossRef]

J. Kalinowski, L. C. Palilis, W. H. Kim, and Z. H. Kafafi, “Determination of the width of the carrier recombination zone in organic light-emitting diodes,” J. Appl. Phys. 94(12), 7764–7767 (2003).
[CrossRef]

2001 (1)

C. Ganzorig, K. J. Kwak, K. Yagi, and M. Fujihira, “Fine tuning work function of indium tin oxide by surface molecular design: Enhanced hole injection in organic electroluminescent devices,” Appl. Phys. Lett. 79(2), 272–274 (2001).
[CrossRef]

1999 (2)

S. T. Lee, Y. M. Wang, X. Y. Hou, and C. W. Tang, “Interfacial electronic structures in an organic light-emitting diode,” Appl. Phys. Lett. 74(5), 670–672 (1999).
[CrossRef]

H. Aziz, Z. D. Popovic, N. X. Hu, A. M. Hor, and G. Xu, “Degradation mechanism of small molecule-based organic light-emitting devices,” Science 283(5409), 1900–1902 (1999).
[CrossRef] [PubMed]

1998 (2)

E. Ito, H. Oji, H. Ishii, K. Oichi, Y. Ouchi, and K. Seki, “Interfacial electronic structure of long-chain alkane/metal systems studied by UV-photoelectron and metastable atom electron spectroscopies,” Chem. Phys. Lett. 287(1–2), 137–142 (1998).
[CrossRef]

J. Kido and T. Matsumoto, “Bright organic electroluminescent devices having a metal-doped electron-injecting layer,” Appl. Phys. Lett. 73(20), 2866–2868 (1998).
[CrossRef]

1997 (1)

C. C. Wu, C. I. Wu, J. C. Sturm, and A. Kahn, “Surface modification of indium tin oxide by plasma treatment: An effective method to improve the efficiency, brightness, and reliability of organic light emitting devices,” Appl. Phys. Lett. 70(11), 1348–1350 (1997).
[CrossRef]

1996 (2)

S. A. Van Slyke, C. H. Chen, and C. W. Tang, “Organic electroluminescent devices with improved stability,” Appl. Phys. Lett. 69(15), 2160–2162 (1996).
[CrossRef]

S. Tokito, K. Noda, and Y. Taga, “Metal oxides as a hole-injecting layer for an organic electroluminescent device,” J. Phys. D Appl. Phys. 29(11), 2750–2753 (1996).
[CrossRef]

1992 (1)

C. Hosokawa, H. Tokailin, H. Higashi, and T. Kusumoto, “Transient-behavior of organic thin-film electroluminescence,” Appl. Phys. Lett. 60(10), 1220–1222 (1992).
[CrossRef]

1987 (1)

C. W. Tang and S. A. Vanslyke, “Organic electroluminescent diodes,” Appl. Phys. Lett. 51(12), 913–915 (1987).
[CrossRef]

Adachi, C.

T. Matsushima and C. Adachi, “Enhanced hole injection and transport in molybdenum-dioxide-doped organic hole-transporting layers,” J. Appl. Phys. 103(3), 034501 (2008).
[CrossRef]

Aziz, H.

H. Aziz, Z. D. Popovic, N. X. Hu, A. M. Hor, and G. Xu, “Degradation mechanism of small molecule-based organic light-emitting devices,” Science 283(5409), 1900–1902 (1999).
[CrossRef] [PubMed]

Berner, D.

E. Tutiŝ, D. Berner, and L. Zuppiroli, “Internal electric field and charge distribution in multilayer organic light-emitting diodes,” J. Appl. Phys. 93(8), 4594–4602 (2003).
[CrossRef]

Brett, M. J.

M. M. Hawkeye and M. J. Brett, “Glancing angle deposition: fabrication, properties, and applications of micro- and nanostructured thin films,” J. Vac. Sci. Technol. A 25(5), 1317–1335 (2007).
[CrossRef]

Cao, J.

X.-Y. Jiang, Z.-L. Zhang, J. Cao, M. A. Khan, Khizar-ul-Haq, and W.-Q. Zhu, “White OLED with high stability and low driving voltage based on a novel buffer layer MoOx,” J. Phys. D Appl. Phys. 40(18), 5553–5557 (2007).
[CrossRef]

Chen, B. J.

B. J. Chen, X. W. Sun, B. K. Tay, L. Ke, and S. J. Chua, “Improvement of efficiency and stability of polymer light-emitting devices by modifying indium tin oxide anode surface with ultrathin tetrahedral amorphous carbon film,” Appl. Phys. Lett. 86(6), 063506 (2005).
[CrossRef]

Chen, C. H.

S. A. Van Slyke, C. H. Chen, and C. W. Tang, “Organic electroluminescent devices with improved stability,” Appl. Phys. Lett. 69(15), 2160–2162 (1996).
[CrossRef]

Chen, Y. L.

Y. Zou, Z. B. Deng, Z. Y. Lv, Z. Chen, D. H. Xu, Y. L. Chen, Y. H. Yin, H. L. Du, and Y. S. Wang, “Reduction of driving voltage in organic light-emitting diodes with molybdenum trioxide in CuPc/NPB interface,” J. Lumin. 130(6), 959–962 (2010).
[CrossRef]

Chen, Z.

Y. Zou, Z. B. Deng, Z. Y. Lv, Z. Chen, D. H. Xu, Y. L. Chen, Y. H. Yin, H. L. Du, and Y. S. Wang, “Reduction of driving voltage in organic light-emitting diodes with molybdenum trioxide in CuPc/NPB interface,” J. Lumin. 130(6), 959–962 (2010).
[CrossRef]

Chua, S. J.

B. J. Chen, X. W. Sun, B. K. Tay, L. Ke, and S. J. Chua, “Improvement of efficiency and stability of polymer light-emitting devices by modifying indium tin oxide anode surface with ultrathin tetrahedral amorphous carbon film,” Appl. Phys. Lett. 86(6), 063506 (2005).
[CrossRef]

Dai, Y. F.

H. M. Zhang, Y. F. Dai, D. G. Ma, and H. Zhang, “High efficiency tandem organic light-emitting devices with Al/WO3/Au interconnecting layer,” Appl. Phys. Lett. 91(12), 123504 (2007).
[CrossRef]

H. You, Y. F. Dai, Z. Q. Zhang, and D. G. Ma, “Improved performances of organic light-emitting diodes with metal oxide as anode buffer,” J. Appl. Phys. 101(2), 026105 (2007).
[CrossRef]

Deng, Z. B.

Y. Zou, Z. B. Deng, Z. Y. Lv, Z. Chen, D. H. Xu, Y. L. Chen, Y. H. Yin, H. L. Du, and Y. S. Wang, “Reduction of driving voltage in organic light-emitting diodes with molybdenum trioxide in CuPc/NPB interface,” J. Lumin. 130(6), 959–962 (2010).
[CrossRef]

Du, H. L.

Y. Zou, Z. B. Deng, Z. Y. Lv, Z. Chen, D. H. Xu, Y. L. Chen, Y. H. Yin, H. L. Du, and Y. S. Wang, “Reduction of driving voltage in organic light-emitting diodes with molybdenum trioxide in CuPc/NPB interface,” J. Lumin. 130(6), 959–962 (2010).
[CrossRef]

Forrest, S. R.

H. Kanno, N. C. Giebink, Y. R. Sun, and S. R. Forrest, “Stacked white organic light-emitting devices based on a combination of fluorescent and phosphorescent emitters,” Appl. Phys. Lett. 89(2), 023503 (2006).
[CrossRef]

H. Kanno, R. J. Holmes, Y. Sun, S. Kena-Cohen, and S. R. Forrest, “White stacked electrophosphorescent organic light-emitting devices employing MoO3 as a charge-generation layer,” Adv. Mater. (Deerfield Beach Fla.) 18(3), 339–342 (2006).
[CrossRef]

S. R. Forrest, “The path to ubiquitous and low-cost organic electronic appliances on plastic,” Nature 428(6986), 911–918 (2004).
[CrossRef] [PubMed]

Fujihira, M.

C. Ganzorig, K. J. Kwak, K. Yagi, and M. Fujihira, “Fine tuning work function of indium tin oxide by surface molecular design: Enhanced hole injection in organic electroluminescent devices,” Appl. Phys. Lett. 79(2), 272–274 (2001).
[CrossRef]

Ganzorig, C.

C. Ganzorig, K. J. Kwak, K. Yagi, and M. Fujihira, “Fine tuning work function of indium tin oxide by surface molecular design: Enhanced hole injection in organic electroluminescent devices,” Appl. Phys. Lett. 79(2), 272–274 (2001).
[CrossRef]

Giebink, N. C.

H. Kanno, N. C. Giebink, Y. R. Sun, and S. R. Forrest, “Stacked white organic light-emitting devices based on a combination of fluorescent and phosphorescent emitters,” Appl. Phys. Lett. 89(2), 023503 (2006).
[CrossRef]

Guo, J. X.

J. X. Guo, Z. Sun, B. K. Tay, and X. W. Sun, “Field emission from modified nanocomposite carbon films prepared by filtered cathodic vacuum arc at high negative pulsed bias,” Appl. Surf. Sci. 214(1–4), 351–358 (2003).
[CrossRef]

Hawkeye, M. M.

M. M. Hawkeye and M. J. Brett, “Glancing angle deposition: fabrication, properties, and applications of micro- and nanostructured thin films,” J. Vac. Sci. Technol. A 25(5), 1317–1335 (2007).
[CrossRef]

Higashi, H.

C. Hosokawa, H. Tokailin, H. Higashi, and T. Kusumoto, “Transient-behavior of organic thin-film electroluminescence,” Appl. Phys. Lett. 60(10), 1220–1222 (1992).
[CrossRef]

Holmes, R. J.

H. Kanno, R. J. Holmes, Y. Sun, S. Kena-Cohen, and S. R. Forrest, “White stacked electrophosphorescent organic light-emitting devices employing MoO3 as a charge-generation layer,” Adv. Mater. (Deerfield Beach Fla.) 18(3), 339–342 (2006).
[CrossRef]

Hong, I. H.

I. H. Hong, M. W. Lee, Y. M. Koo, H. Jeong, T. S. Kim, and O. K. Song, “Effective hole injection of organic light-emitting diodes by introducing buckminsterfullerene on the indium tin oxide anode,” Appl. Phys. Lett. 87(6), 063502 (2005).
[CrossRef]

Hor, A. M.

H. Aziz, Z. D. Popovic, N. X. Hu, A. M. Hor, and G. Xu, “Degradation mechanism of small molecule-based organic light-emitting devices,” Science 283(5409), 1900–1902 (1999).
[CrossRef] [PubMed]

Hosokawa, C.

C. Hosokawa, H. Tokailin, H. Higashi, and T. Kusumoto, “Transient-behavior of organic thin-film electroluminescence,” Appl. Phys. Lett. 60(10), 1220–1222 (1992).
[CrossRef]

Hou, X. Y.

S. T. Lee, Y. M. Wang, X. Y. Hou, and C. W. Tang, “Interfacial electronic structures in an organic light-emitting diode,” Appl. Phys. Lett. 74(5), 670–672 (1999).
[CrossRef]

Hu, N. X.

H. Aziz, Z. D. Popovic, N. X. Hu, A. M. Hor, and G. Xu, “Degradation mechanism of small molecule-based organic light-emitting devices,” Science 283(5409), 1900–1902 (1999).
[CrossRef] [PubMed]

Inoue, T.

R. Satoh, S. Naka, M. Shibata, H. Okada, H. Onnagawa, T. Miyabayashi, and T. Inoue, “Top-emission organic light-emitting diodes with ink-jet printed self-aligned emission zones,” Jpn. J. Appl. Phys. 45(3A), 1829–1831 (2006).
[CrossRef]

Ishii, H.

E. Ito, H. Oji, H. Ishii, K. Oichi, Y. Ouchi, and K. Seki, “Interfacial electronic structure of long-chain alkane/metal systems studied by UV-photoelectron and metastable atom electron spectroscopies,” Chem. Phys. Lett. 287(1–2), 137–142 (1998).
[CrossRef]

Ito, E.

E. Ito, H. Oji, H. Ishii, K. Oichi, Y. Ouchi, and K. Seki, “Interfacial electronic structure of long-chain alkane/metal systems studied by UV-photoelectron and metastable atom electron spectroscopies,” Chem. Phys. Lett. 287(1–2), 137–142 (1998).
[CrossRef]

Jeong, H.

I. H. Hong, M. W. Lee, Y. M. Koo, H. Jeong, T. S. Kim, and O. K. Song, “Effective hole injection of organic light-emitting diodes by introducing buckminsterfullerene on the indium tin oxide anode,” Appl. Phys. Lett. 87(6), 063502 (2005).
[CrossRef]

Jiang, X.-Y.

X.-Y. Jiang, Z.-L. Zhang, J. Cao, M. A. Khan, Khizar-ul-Haq, and W.-Q. Zhu, “White OLED with high stability and low driving voltage based on a novel buffer layer MoOx,” J. Phys. D Appl. Phys. 40(18), 5553–5557 (2007).
[CrossRef]

Jin, G. H.

T. Matsushima, G. H. Jin, and H. Murata, “Marked improvement in electroluminescence characteristics of organic light-emitting diodes using an ultrathin hole-injection layer of molybdenum oxide,” J. Appl. Phys. 104(5), 054501 (2008).
[CrossRef]

Kafafi, Z. H.

J. Kalinowski, L. C. Palilis, W. H. Kim, and Z. H. Kafafi, “Determination of the width of the carrier recombination zone in organic light-emitting diodes,” J. Appl. Phys. 94(12), 7764–7767 (2003).
[CrossRef]

Kahn, A.

C. C. Wu, C. I. Wu, J. C. Sturm, and A. Kahn, “Surface modification of indium tin oxide by plasma treatment: An effective method to improve the efficiency, brightness, and reliability of organic light emitting devices,” Appl. Phys. Lett. 70(11), 1348–1350 (1997).
[CrossRef]

Kalinowski, J.

J. Kalinowski, L. C. Palilis, W. H. Kim, and Z. H. Kafafi, “Determination of the width of the carrier recombination zone in organic light-emitting diodes,” J. Appl. Phys. 94(12), 7764–7767 (2003).
[CrossRef]

Kanno, H.

H. Kanno, R. J. Holmes, Y. Sun, S. Kena-Cohen, and S. R. Forrest, “White stacked electrophosphorescent organic light-emitting devices employing MoO3 as a charge-generation layer,” Adv. Mater. (Deerfield Beach Fla.) 18(3), 339–342 (2006).
[CrossRef]

H. Kanno, N. C. Giebink, Y. R. Sun, and S. R. Forrest, “Stacked white organic light-emitting devices based on a combination of fluorescent and phosphorescent emitters,” Appl. Phys. Lett. 89(2), 023503 (2006).
[CrossRef]

Ke, L.

B. J. Chen, X. W. Sun, B. K. Tay, L. Ke, and S. J. Chua, “Improvement of efficiency and stability of polymer light-emitting devices by modifying indium tin oxide anode surface with ultrathin tetrahedral amorphous carbon film,” Appl. Phys. Lett. 86(6), 063506 (2005).
[CrossRef]

Kena-Cohen, S.

H. Kanno, R. J. Holmes, Y. Sun, S. Kena-Cohen, and S. R. Forrest, “White stacked electrophosphorescent organic light-emitting devices employing MoO3 as a charge-generation layer,” Adv. Mater. (Deerfield Beach Fla.) 18(3), 339–342 (2006).
[CrossRef]

Khan, M. A.

X.-Y. Jiang, Z.-L. Zhang, J. Cao, M. A. Khan, Khizar-ul-Haq, and W.-Q. Zhu, “White OLED with high stability and low driving voltage based on a novel buffer layer MoOx,” J. Phys. D Appl. Phys. 40(18), 5553–5557 (2007).
[CrossRef]

Khizar-ul-Haq,

X.-Y. Jiang, Z.-L. Zhang, J. Cao, M. A. Khan, Khizar-ul-Haq, and W.-Q. Zhu, “White OLED with high stability and low driving voltage based on a novel buffer layer MoOx,” J. Phys. D Appl. Phys. 40(18), 5553–5557 (2007).
[CrossRef]

Kido, J.

J. Kido and T. Matsumoto, “Bright organic electroluminescent devices having a metal-doped electron-injecting layer,” Appl. Phys. Lett. 73(20), 2866–2868 (1998).
[CrossRef]

Kim, J. C.

W. J. Shin, J. Y. Lee, J. C. Kim, T. H. Yoon, T. S. Kim, and O. K. Song, “Bulk and interface properties of molybdenum trioxide-doped hole transporting layer in organic light-emitting diodes,” Org. Electron. 9(3), 333–338 (2008).
[CrossRef]

Kim, T. S.

W. J. Shin, J. Y. Lee, J. C. Kim, T. H. Yoon, T. S. Kim, and O. K. Song, “Bulk and interface properties of molybdenum trioxide-doped hole transporting layer in organic light-emitting diodes,” Org. Electron. 9(3), 333–338 (2008).
[CrossRef]

I. H. Hong, M. W. Lee, Y. M. Koo, H. Jeong, T. S. Kim, and O. K. Song, “Effective hole injection of organic light-emitting diodes by introducing buckminsterfullerene on the indium tin oxide anode,” Appl. Phys. Lett. 87(6), 063502 (2005).
[CrossRef]

Kim, W. H.

J. Kalinowski, L. C. Palilis, W. H. Kim, and Z. H. Kafafi, “Determination of the width of the carrier recombination zone in organic light-emitting diodes,” J. Appl. Phys. 94(12), 7764–7767 (2003).
[CrossRef]

Kinoshita, Y.

T. Matsushima, Y. Kinoshita, and H. Murata, “Formation of Ohmic hole injection by inserting an ultrathin layer of molybdenum trioxide between indium tin oxide and organic hole-transporting layers,” Appl. Phys. Lett. 91(25), 253504 (2007).
[CrossRef]

Koo, Y. M.

I. H. Hong, M. W. Lee, Y. M. Koo, H. Jeong, T. S. Kim, and O. K. Song, “Effective hole injection of organic light-emitting diodes by introducing buckminsterfullerene on the indium tin oxide anode,” Appl. Phys. Lett. 87(6), 063502 (2005).
[CrossRef]

Kusumoto, T.

C. Hosokawa, H. Tokailin, H. Higashi, and T. Kusumoto, “Transient-behavior of organic thin-film electroluminescence,” Appl. Phys. Lett. 60(10), 1220–1222 (1992).
[CrossRef]

Kwak, K. J.

C. Ganzorig, K. J. Kwak, K. Yagi, and M. Fujihira, “Fine tuning work function of indium tin oxide by surface molecular design: Enhanced hole injection in organic electroluminescent devices,” Appl. Phys. Lett. 79(2), 272–274 (2001).
[CrossRef]

Lee, J. Y.

W. J. Shin, J. Y. Lee, J. C. Kim, T. H. Yoon, T. S. Kim, and O. K. Song, “Bulk and interface properties of molybdenum trioxide-doped hole transporting layer in organic light-emitting diodes,” Org. Electron. 9(3), 333–338 (2008).
[CrossRef]

Lee, M. W.

I. H. Hong, M. W. Lee, Y. M. Koo, H. Jeong, T. S. Kim, and O. K. Song, “Effective hole injection of organic light-emitting diodes by introducing buckminsterfullerene on the indium tin oxide anode,” Appl. Phys. Lett. 87(6), 063502 (2005).
[CrossRef]

Lee, S. T.

S. T. Lee, Y. M. Wang, X. Y. Hou, and C. W. Tang, “Interfacial electronic structures in an organic light-emitting diode,” Appl. Phys. Lett. 74(5), 670–672 (1999).
[CrossRef]

Lv, Z. Y.

Y. Zou, Z. B. Deng, Z. Y. Lv, Z. Chen, D. H. Xu, Y. L. Chen, Y. H. Yin, H. L. Du, and Y. S. Wang, “Reduction of driving voltage in organic light-emitting diodes with molybdenum trioxide in CuPc/NPB interface,” J. Lumin. 130(6), 959–962 (2010).
[CrossRef]

Ma, D. G.

H. M. Zhang, Y. F. Dai, D. G. Ma, and H. Zhang, “High efficiency tandem organic light-emitting devices with Al/WO3/Au interconnecting layer,” Appl. Phys. Lett. 91(12), 123504 (2007).
[CrossRef]

H. You, Y. F. Dai, Z. Q. Zhang, and D. G. Ma, “Improved performances of organic light-emitting diodes with metal oxide as anode buffer,” J. Appl. Phys. 101(2), 026105 (2007).
[CrossRef]

Matsumoto, T.

J. Kido and T. Matsumoto, “Bright organic electroluminescent devices having a metal-doped electron-injecting layer,” Appl. Phys. Lett. 73(20), 2866–2868 (1998).
[CrossRef]

Matsushima, T.

T. Matsushima and C. Adachi, “Enhanced hole injection and transport in molybdenum-dioxide-doped organic hole-transporting layers,” J. Appl. Phys. 103(3), 034501 (2008).
[CrossRef]

T. Matsushima, G. H. Jin, and H. Murata, “Marked improvement in electroluminescence characteristics of organic light-emitting diodes using an ultrathin hole-injection layer of molybdenum oxide,” J. Appl. Phys. 104(5), 054501 (2008).
[CrossRef]

T. Matsushima, Y. Kinoshita, and H. Murata, “Formation of Ohmic hole injection by inserting an ultrathin layer of molybdenum trioxide between indium tin oxide and organic hole-transporting layers,” Appl. Phys. Lett. 91(25), 253504 (2007).
[CrossRef]

Miyabayashi, T.

R. Satoh, S. Naka, M. Shibata, H. Okada, H. Onnagawa, T. Miyabayashi, and T. Inoue, “Top-emission organic light-emitting diodes with ink-jet printed self-aligned emission zones,” Jpn. J. Appl. Phys. 45(3A), 1829–1831 (2006).
[CrossRef]

Murata, H.

T. Matsushima, G. H. Jin, and H. Murata, “Marked improvement in electroluminescence characteristics of organic light-emitting diodes using an ultrathin hole-injection layer of molybdenum oxide,” J. Appl. Phys. 104(5), 054501 (2008).
[CrossRef]

T. Matsushima, Y. Kinoshita, and H. Murata, “Formation of Ohmic hole injection by inserting an ultrathin layer of molybdenum trioxide between indium tin oxide and organic hole-transporting layers,” Appl. Phys. Lett. 91(25), 253504 (2007).
[CrossRef]

Naka, S.

R. Satoh, S. Naka, M. Shibata, H. Okada, H. Onnagawa, T. Miyabayashi, and T. Inoue, “Top-emission organic light-emitting diodes with ink-jet printed self-aligned emission zones,” Jpn. J. Appl. Phys. 45(3A), 1829–1831 (2006).
[CrossRef]

Noda, K.

S. Tokito, K. Noda, and Y. Taga, “Metal oxides as a hole-injecting layer for an organic electroluminescent device,” J. Phys. D Appl. Phys. 29(11), 2750–2753 (1996).
[CrossRef]

Oichi, K.

E. Ito, H. Oji, H. Ishii, K. Oichi, Y. Ouchi, and K. Seki, “Interfacial electronic structure of long-chain alkane/metal systems studied by UV-photoelectron and metastable atom electron spectroscopies,” Chem. Phys. Lett. 287(1–2), 137–142 (1998).
[CrossRef]

Oji, H.

E. Ito, H. Oji, H. Ishii, K. Oichi, Y. Ouchi, and K. Seki, “Interfacial electronic structure of long-chain alkane/metal systems studied by UV-photoelectron and metastable atom electron spectroscopies,” Chem. Phys. Lett. 287(1–2), 137–142 (1998).
[CrossRef]

Okada, H.

R. Satoh, S. Naka, M. Shibata, H. Okada, H. Onnagawa, T. Miyabayashi, and T. Inoue, “Top-emission organic light-emitting diodes with ink-jet printed self-aligned emission zones,” Jpn. J. Appl. Phys. 45(3A), 1829–1831 (2006).
[CrossRef]

Onnagawa, H.

R. Satoh, S. Naka, M. Shibata, H. Okada, H. Onnagawa, T. Miyabayashi, and T. Inoue, “Top-emission organic light-emitting diodes with ink-jet printed self-aligned emission zones,” Jpn. J. Appl. Phys. 45(3A), 1829–1831 (2006).
[CrossRef]

Ouchi, Y.

E. Ito, H. Oji, H. Ishii, K. Oichi, Y. Ouchi, and K. Seki, “Interfacial electronic structure of long-chain alkane/metal systems studied by UV-photoelectron and metastable atom electron spectroscopies,” Chem. Phys. Lett. 287(1–2), 137–142 (1998).
[CrossRef]

Palilis, L. C.

J. Kalinowski, L. C. Palilis, W. H. Kim, and Z. H. Kafafi, “Determination of the width of the carrier recombination zone in organic light-emitting diodes,” J. Appl. Phys. 94(12), 7764–7767 (2003).
[CrossRef]

Popovic, Z. D.

H. Aziz, Z. D. Popovic, N. X. Hu, A. M. Hor, and G. Xu, “Degradation mechanism of small molecule-based organic light-emitting devices,” Science 283(5409), 1900–1902 (1999).
[CrossRef] [PubMed]

Satoh, R.

R. Satoh, S. Naka, M. Shibata, H. Okada, H. Onnagawa, T. Miyabayashi, and T. Inoue, “Top-emission organic light-emitting diodes with ink-jet printed self-aligned emission zones,” Jpn. J. Appl. Phys. 45(3A), 1829–1831 (2006).
[CrossRef]

Seki, K.

E. Ito, H. Oji, H. Ishii, K. Oichi, Y. Ouchi, and K. Seki, “Interfacial electronic structure of long-chain alkane/metal systems studied by UV-photoelectron and metastable atom electron spectroscopies,” Chem. Phys. Lett. 287(1–2), 137–142 (1998).
[CrossRef]

Shibata, M.

R. Satoh, S. Naka, M. Shibata, H. Okada, H. Onnagawa, T. Miyabayashi, and T. Inoue, “Top-emission organic light-emitting diodes with ink-jet printed self-aligned emission zones,” Jpn. J. Appl. Phys. 45(3A), 1829–1831 (2006).
[CrossRef]

Shin, W. J.

W. J. Shin, J. Y. Lee, J. C. Kim, T. H. Yoon, T. S. Kim, and O. K. Song, “Bulk and interface properties of molybdenum trioxide-doped hole transporting layer in organic light-emitting diodes,” Org. Electron. 9(3), 333–338 (2008).
[CrossRef]

Song, O. K.

W. J. Shin, J. Y. Lee, J. C. Kim, T. H. Yoon, T. S. Kim, and O. K. Song, “Bulk and interface properties of molybdenum trioxide-doped hole transporting layer in organic light-emitting diodes,” Org. Electron. 9(3), 333–338 (2008).
[CrossRef]

I. H. Hong, M. W. Lee, Y. M. Koo, H. Jeong, T. S. Kim, and O. K. Song, “Effective hole injection of organic light-emitting diodes by introducing buckminsterfullerene on the indium tin oxide anode,” Appl. Phys. Lett. 87(6), 063502 (2005).
[CrossRef]

Sturm, J. C.

C. C. Wu, C. I. Wu, J. C. Sturm, and A. Kahn, “Surface modification of indium tin oxide by plasma treatment: An effective method to improve the efficiency, brightness, and reliability of organic light emitting devices,” Appl. Phys. Lett. 70(11), 1348–1350 (1997).
[CrossRef]

Sun, X. W.

B. J. Chen, X. W. Sun, B. K. Tay, L. Ke, and S. J. Chua, “Improvement of efficiency and stability of polymer light-emitting devices by modifying indium tin oxide anode surface with ultrathin tetrahedral amorphous carbon film,” Appl. Phys. Lett. 86(6), 063506 (2005).
[CrossRef]

J. X. Guo, Z. Sun, B. K. Tay, and X. W. Sun, “Field emission from modified nanocomposite carbon films prepared by filtered cathodic vacuum arc at high negative pulsed bias,” Appl. Surf. Sci. 214(1–4), 351–358 (2003).
[CrossRef]

Sun, Y.

H. Kanno, R. J. Holmes, Y. Sun, S. Kena-Cohen, and S. R. Forrest, “White stacked electrophosphorescent organic light-emitting devices employing MoO3 as a charge-generation layer,” Adv. Mater. (Deerfield Beach Fla.) 18(3), 339–342 (2006).
[CrossRef]

Sun, Y. R.

H. Kanno, N. C. Giebink, Y. R. Sun, and S. R. Forrest, “Stacked white organic light-emitting devices based on a combination of fluorescent and phosphorescent emitters,” Appl. Phys. Lett. 89(2), 023503 (2006).
[CrossRef]

Sun, Z.

J. X. Guo, Z. Sun, B. K. Tay, and X. W. Sun, “Field emission from modified nanocomposite carbon films prepared by filtered cathodic vacuum arc at high negative pulsed bias,” Appl. Surf. Sci. 214(1–4), 351–358 (2003).
[CrossRef]

Taga, Y.

S. Tokito, K. Noda, and Y. Taga, “Metal oxides as a hole-injecting layer for an organic electroluminescent device,” J. Phys. D Appl. Phys. 29(11), 2750–2753 (1996).
[CrossRef]

Tang, C. W.

S. T. Lee, Y. M. Wang, X. Y. Hou, and C. W. Tang, “Interfacial electronic structures in an organic light-emitting diode,” Appl. Phys. Lett. 74(5), 670–672 (1999).
[CrossRef]

S. A. Van Slyke, C. H. Chen, and C. W. Tang, “Organic electroluminescent devices with improved stability,” Appl. Phys. Lett. 69(15), 2160–2162 (1996).
[CrossRef]

C. W. Tang and S. A. Vanslyke, “Organic electroluminescent diodes,” Appl. Phys. Lett. 51(12), 913–915 (1987).
[CrossRef]

Tay, B. K.

B. J. Chen, X. W. Sun, B. K. Tay, L. Ke, and S. J. Chua, “Improvement of efficiency and stability of polymer light-emitting devices by modifying indium tin oxide anode surface with ultrathin tetrahedral amorphous carbon film,” Appl. Phys. Lett. 86(6), 063506 (2005).
[CrossRef]

J. X. Guo, Z. Sun, B. K. Tay, and X. W. Sun, “Field emission from modified nanocomposite carbon films prepared by filtered cathodic vacuum arc at high negative pulsed bias,” Appl. Surf. Sci. 214(1–4), 351–358 (2003).
[CrossRef]

Tokailin, H.

C. Hosokawa, H. Tokailin, H. Higashi, and T. Kusumoto, “Transient-behavior of organic thin-film electroluminescence,” Appl. Phys. Lett. 60(10), 1220–1222 (1992).
[CrossRef]

Tokito, S.

S. Tokito, K. Noda, and Y. Taga, “Metal oxides as a hole-injecting layer for an organic electroluminescent device,” J. Phys. D Appl. Phys. 29(11), 2750–2753 (1996).
[CrossRef]

Tutis, E.

E. Tutiŝ, D. Berner, and L. Zuppiroli, “Internal electric field and charge distribution in multilayer organic light-emitting diodes,” J. Appl. Phys. 93(8), 4594–4602 (2003).
[CrossRef]

Van Slyke, S. A.

S. A. Van Slyke, C. H. Chen, and C. W. Tang, “Organic electroluminescent devices with improved stability,” Appl. Phys. Lett. 69(15), 2160–2162 (1996).
[CrossRef]

Vanslyke, S. A.

C. W. Tang and S. A. Vanslyke, “Organic electroluminescent diodes,” Appl. Phys. Lett. 51(12), 913–915 (1987).
[CrossRef]

Wang, Y. M.

S. T. Lee, Y. M. Wang, X. Y. Hou, and C. W. Tang, “Interfacial electronic structures in an organic light-emitting diode,” Appl. Phys. Lett. 74(5), 670–672 (1999).
[CrossRef]

Wang, Y. S.

Y. Zou, Z. B. Deng, Z. Y. Lv, Z. Chen, D. H. Xu, Y. L. Chen, Y. H. Yin, H. L. Du, and Y. S. Wang, “Reduction of driving voltage in organic light-emitting diodes with molybdenum trioxide in CuPc/NPB interface,” J. Lumin. 130(6), 959–962 (2010).
[CrossRef]

Wu, C. C.

C. C. Wu, C. I. Wu, J. C. Sturm, and A. Kahn, “Surface modification of indium tin oxide by plasma treatment: An effective method to improve the efficiency, brightness, and reliability of organic light emitting devices,” Appl. Phys. Lett. 70(11), 1348–1350 (1997).
[CrossRef]

Wu, C. I.

C. C. Wu, C. I. Wu, J. C. Sturm, and A. Kahn, “Surface modification of indium tin oxide by plasma treatment: An effective method to improve the efficiency, brightness, and reliability of organic light emitting devices,” Appl. Phys. Lett. 70(11), 1348–1350 (1997).
[CrossRef]

Xu, D. H.

Y. Zou, Z. B. Deng, Z. Y. Lv, Z. Chen, D. H. Xu, Y. L. Chen, Y. H. Yin, H. L. Du, and Y. S. Wang, “Reduction of driving voltage in organic light-emitting diodes with molybdenum trioxide in CuPc/NPB interface,” J. Lumin. 130(6), 959–962 (2010).
[CrossRef]

Xu, G.

H. Aziz, Z. D. Popovic, N. X. Hu, A. M. Hor, and G. Xu, “Degradation mechanism of small molecule-based organic light-emitting devices,” Science 283(5409), 1900–1902 (1999).
[CrossRef] [PubMed]

Yagi, K.

C. Ganzorig, K. J. Kwak, K. Yagi, and M. Fujihira, “Fine tuning work function of indium tin oxide by surface molecular design: Enhanced hole injection in organic electroluminescent devices,” Appl. Phys. Lett. 79(2), 272–274 (2001).
[CrossRef]

Yin, Y. H.

Y. Zou, Z. B. Deng, Z. Y. Lv, Z. Chen, D. H. Xu, Y. L. Chen, Y. H. Yin, H. L. Du, and Y. S. Wang, “Reduction of driving voltage in organic light-emitting diodes with molybdenum trioxide in CuPc/NPB interface,” J. Lumin. 130(6), 959–962 (2010).
[CrossRef]

Yoon, T. H.

W. J. Shin, J. Y. Lee, J. C. Kim, T. H. Yoon, T. S. Kim, and O. K. Song, “Bulk and interface properties of molybdenum trioxide-doped hole transporting layer in organic light-emitting diodes,” Org. Electron. 9(3), 333–338 (2008).
[CrossRef]

You, H.

H. You, Y. F. Dai, Z. Q. Zhang, and D. G. Ma, “Improved performances of organic light-emitting diodes with metal oxide as anode buffer,” J. Appl. Phys. 101(2), 026105 (2007).
[CrossRef]

Zhang, H.

H. M. Zhang, Y. F. Dai, D. G. Ma, and H. Zhang, “High efficiency tandem organic light-emitting devices with Al/WO3/Au interconnecting layer,” Appl. Phys. Lett. 91(12), 123504 (2007).
[CrossRef]

Zhang, H. M.

H. M. Zhang, Y. F. Dai, D. G. Ma, and H. Zhang, “High efficiency tandem organic light-emitting devices with Al/WO3/Au interconnecting layer,” Appl. Phys. Lett. 91(12), 123504 (2007).
[CrossRef]

Zhang, Z. Q.

H. You, Y. F. Dai, Z. Q. Zhang, and D. G. Ma, “Improved performances of organic light-emitting diodes with metal oxide as anode buffer,” J. Appl. Phys. 101(2), 026105 (2007).
[CrossRef]

Zhang, Z.-L.

X.-Y. Jiang, Z.-L. Zhang, J. Cao, M. A. Khan, Khizar-ul-Haq, and W.-Q. Zhu, “White OLED with high stability and low driving voltage based on a novel buffer layer MoOx,” J. Phys. D Appl. Phys. 40(18), 5553–5557 (2007).
[CrossRef]

Zhu, W.-Q.

X.-Y. Jiang, Z.-L. Zhang, J. Cao, M. A. Khan, Khizar-ul-Haq, and W.-Q. Zhu, “White OLED with high stability and low driving voltage based on a novel buffer layer MoOx,” J. Phys. D Appl. Phys. 40(18), 5553–5557 (2007).
[CrossRef]

Zou, Y.

Y. Zou, Z. B. Deng, Z. Y. Lv, Z. Chen, D. H. Xu, Y. L. Chen, Y. H. Yin, H. L. Du, and Y. S. Wang, “Reduction of driving voltage in organic light-emitting diodes with molybdenum trioxide in CuPc/NPB interface,” J. Lumin. 130(6), 959–962 (2010).
[CrossRef]

Zuppiroli, L.

E. Tutiŝ, D. Berner, and L. Zuppiroli, “Internal electric field and charge distribution in multilayer organic light-emitting diodes,” J. Appl. Phys. 93(8), 4594–4602 (2003).
[CrossRef]

Adv. Mater. (Deerfield Beach Fla.) (1)

H. Kanno, R. J. Holmes, Y. Sun, S. Kena-Cohen, and S. R. Forrest, “White stacked electrophosphorescent organic light-emitting devices employing MoO3 as a charge-generation layer,” Adv. Mater. (Deerfield Beach Fla.) 18(3), 339–342 (2006).
[CrossRef]

Appl. Phys. Lett. (12)

H. M. Zhang, Y. F. Dai, D. G. Ma, and H. Zhang, “High efficiency tandem organic light-emitting devices with Al/WO3/Au interconnecting layer,” Appl. Phys. Lett. 91(12), 123504 (2007).
[CrossRef]

H. Kanno, N. C. Giebink, Y. R. Sun, and S. R. Forrest, “Stacked white organic light-emitting devices based on a combination of fluorescent and phosphorescent emitters,” Appl. Phys. Lett. 89(2), 023503 (2006).
[CrossRef]

S. T. Lee, Y. M. Wang, X. Y. Hou, and C. W. Tang, “Interfacial electronic structures in an organic light-emitting diode,” Appl. Phys. Lett. 74(5), 670–672 (1999).
[CrossRef]

C. W. Tang and S. A. Vanslyke, “Organic electroluminescent diodes,” Appl. Phys. Lett. 51(12), 913–915 (1987).
[CrossRef]

C. C. Wu, C. I. Wu, J. C. Sturm, and A. Kahn, “Surface modification of indium tin oxide by plasma treatment: An effective method to improve the efficiency, brightness, and reliability of organic light emitting devices,” Appl. Phys. Lett. 70(11), 1348–1350 (1997).
[CrossRef]

C. Ganzorig, K. J. Kwak, K. Yagi, and M. Fujihira, “Fine tuning work function of indium tin oxide by surface molecular design: Enhanced hole injection in organic electroluminescent devices,” Appl. Phys. Lett. 79(2), 272–274 (2001).
[CrossRef]

S. A. Van Slyke, C. H. Chen, and C. W. Tang, “Organic electroluminescent devices with improved stability,” Appl. Phys. Lett. 69(15), 2160–2162 (1996).
[CrossRef]

I. H. Hong, M. W. Lee, Y. M. Koo, H. Jeong, T. S. Kim, and O. K. Song, “Effective hole injection of organic light-emitting diodes by introducing buckminsterfullerene on the indium tin oxide anode,” Appl. Phys. Lett. 87(6), 063502 (2005).
[CrossRef]

J. Kido and T. Matsumoto, “Bright organic electroluminescent devices having a metal-doped electron-injecting layer,” Appl. Phys. Lett. 73(20), 2866–2868 (1998).
[CrossRef]

T. Matsushima, Y. Kinoshita, and H. Murata, “Formation of Ohmic hole injection by inserting an ultrathin layer of molybdenum trioxide between indium tin oxide and organic hole-transporting layers,” Appl. Phys. Lett. 91(25), 253504 (2007).
[CrossRef]

B. J. Chen, X. W. Sun, B. K. Tay, L. Ke, and S. J. Chua, “Improvement of efficiency and stability of polymer light-emitting devices by modifying indium tin oxide anode surface with ultrathin tetrahedral amorphous carbon film,” Appl. Phys. Lett. 86(6), 063506 (2005).
[CrossRef]

C. Hosokawa, H. Tokailin, H. Higashi, and T. Kusumoto, “Transient-behavior of organic thin-film electroluminescence,” Appl. Phys. Lett. 60(10), 1220–1222 (1992).
[CrossRef]

Appl. Surf. Sci. (1)

J. X. Guo, Z. Sun, B. K. Tay, and X. W. Sun, “Field emission from modified nanocomposite carbon films prepared by filtered cathodic vacuum arc at high negative pulsed bias,” Appl. Surf. Sci. 214(1–4), 351–358 (2003).
[CrossRef]

Chem. Phys. Lett. (1)

E. Ito, H. Oji, H. Ishii, K. Oichi, Y. Ouchi, and K. Seki, “Interfacial electronic structure of long-chain alkane/metal systems studied by UV-photoelectron and metastable atom electron spectroscopies,” Chem. Phys. Lett. 287(1–2), 137–142 (1998).
[CrossRef]

J. Appl. Phys. (5)

J. Kalinowski, L. C. Palilis, W. H. Kim, and Z. H. Kafafi, “Determination of the width of the carrier recombination zone in organic light-emitting diodes,” J. Appl. Phys. 94(12), 7764–7767 (2003).
[CrossRef]

T. Matsushima and C. Adachi, “Enhanced hole injection and transport in molybdenum-dioxide-doped organic hole-transporting layers,” J. Appl. Phys. 103(3), 034501 (2008).
[CrossRef]

H. You, Y. F. Dai, Z. Q. Zhang, and D. G. Ma, “Improved performances of organic light-emitting diodes with metal oxide as anode buffer,” J. Appl. Phys. 101(2), 026105 (2007).
[CrossRef]

E. Tutiŝ, D. Berner, and L. Zuppiroli, “Internal electric field and charge distribution in multilayer organic light-emitting diodes,” J. Appl. Phys. 93(8), 4594–4602 (2003).
[CrossRef]

T. Matsushima, G. H. Jin, and H. Murata, “Marked improvement in electroluminescence characteristics of organic light-emitting diodes using an ultrathin hole-injection layer of molybdenum oxide,” J. Appl. Phys. 104(5), 054501 (2008).
[CrossRef]

J. Lumin. (1)

Y. Zou, Z. B. Deng, Z. Y. Lv, Z. Chen, D. H. Xu, Y. L. Chen, Y. H. Yin, H. L. Du, and Y. S. Wang, “Reduction of driving voltage in organic light-emitting diodes with molybdenum trioxide in CuPc/NPB interface,” J. Lumin. 130(6), 959–962 (2010).
[CrossRef]

J. Phys. D Appl. Phys. (2)

X.-Y. Jiang, Z.-L. Zhang, J. Cao, M. A. Khan, Khizar-ul-Haq, and W.-Q. Zhu, “White OLED with high stability and low driving voltage based on a novel buffer layer MoOx,” J. Phys. D Appl. Phys. 40(18), 5553–5557 (2007).
[CrossRef]

S. Tokito, K. Noda, and Y. Taga, “Metal oxides as a hole-injecting layer for an organic electroluminescent device,” J. Phys. D Appl. Phys. 29(11), 2750–2753 (1996).
[CrossRef]

J. Vac. Sci. Technol. A (1)

M. M. Hawkeye and M. J. Brett, “Glancing angle deposition: fabrication, properties, and applications of micro- and nanostructured thin films,” J. Vac. Sci. Technol. A 25(5), 1317–1335 (2007).
[CrossRef]

Jpn. J. Appl. Phys. (1)

R. Satoh, S. Naka, M. Shibata, H. Okada, H. Onnagawa, T. Miyabayashi, and T. Inoue, “Top-emission organic light-emitting diodes with ink-jet printed self-aligned emission zones,” Jpn. J. Appl. Phys. 45(3A), 1829–1831 (2006).
[CrossRef]

Nature (1)

S. R. Forrest, “The path to ubiquitous and low-cost organic electronic appliances on plastic,” Nature 428(6986), 911–918 (2004).
[CrossRef] [PubMed]

Org. Electron. (1)

W. J. Shin, J. Y. Lee, J. C. Kim, T. H. Yoon, T. S. Kim, and O. K. Song, “Bulk and interface properties of molybdenum trioxide-doped hole transporting layer in organic light-emitting diodes,” Org. Electron. 9(3), 333–338 (2008).
[CrossRef]

Science (1)

H. Aziz, Z. D. Popovic, N. X. Hu, A. M. Hor, and G. Xu, “Degradation mechanism of small molecule-based organic light-emitting devices,” Science 283(5409), 1900–1902 (1999).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Current density vs. voltage and (b) luminance vs. current density for the ITO/MoO3(θ)/NPB/Alq3/Mg:Ag structures parameterized with respect to θ, the deposition angle of MoO3. The inset in (a) shows the applied voltage vs. deposition angle at a current density of 35 mA/cm2. The inset in (b) illustrates the orientation of the substrate placed at a deposition angle (θ) with respect to the surface normal during MoO3 evaporation.

Fig. 2
Fig. 2

(a) Current efficiency vs. current density and (b) power efficiency vs. current density for the ITO/MoO3(θ)/NPB/Alq3/Mg:Ag structures parameterized with respect to θ, the deposition angle of MoO3. The inset in (a) shows the current density vs. voltage for the “hole only” devices with MoO3 deposited at 0° with different film thickness of 3.5 nm, 10 nm, 14.1 nm, 17.3 nm and 20 nm. The inset in (b) shows the EQE vs. current density.

Fig. 3
Fig. 3

Current density vs. voltage characteristics of the ‘hole only’ devices (ITO/MoO3(θ)/NPB/Mg:Ag structures) parameterized with respect to θ, the deposition angle of MoO3. The inset shows the RMS roughness vs. deposition angle.

Tables (1)

Tables Icon

Table 1 Summary of Surface Roughness of MoO3 Films Deposited at Different Angles

Metrics