Abstract

A scheme to achieve a wideband linearized silicon Mach-Zehnder (MZ) modulator is proposed. The modulator consists of a single MZ interferometer with identical reverse-biased silicon diode phase shifters in both arms, driven in a push-pull configuration. It is shown that the 3rd order nonlinearity of the modulator can be eliminated by canceling the nonlinearities from the silicon phase shifters and the MZ transfer function against each other. The 2nd order nonlinearity is simultaneously eliminated by differential detection or operation away from the quadrature point. As a result, the linearity of the proposed silicon modulator greatly exceeds the linearity of a conventional MZ modulator with ideal, linear (e.g. LiNbO3) phase shifters. The simplicity and large optical and RF bandwidth of the proposed modulator make it attractive for analog photonic applications.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. H. Cox III, Analog optical link: Theory and practice (Cambridge University Press, 2004).
  2. C. Chang, ed., RF photonics technology fiber links (Cambridge University Press, 2002).
  3. A. J. Seeds and K. J. Williams, “Microwave photonics,” J. Lightwave Technol. 24(12), 4628–4641 (2006).
    [CrossRef]
  4. J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
    [CrossRef]
  5. R. C. Williamson and R. D. Esman, “RF Photonics,” J. Lightwave Technol. 26(9), 1145–1153 (2008).
    [CrossRef]
  6. P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O’Donnell, K. G. Ray, and R. C. Williamson, “Optically sampled analog-to-digital converters,” IEEE Trans. Microw. Theory Tech. 49(10), 1840–1853 (2001).
    [CrossRef]
  7. G. C. Valley, “Photonic analog-to-digital converters,” Opt. Express 15(5), 1955–1982 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-5-1955 .
    [CrossRef] [PubMed]
  8. R. A. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1678–1687 (2006).
    [CrossRef]
  9. B. Jalali and S. Fathpour, “Silicon photonics,” J. Lightwave Technol. 24(12), 4600–4615 (2006).
    [CrossRef]
  10. G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
    [CrossRef]
  11. B. G. Lee, A. Biberman, J. Chan, and K. Bergman, “High-performance modulators and switches for silicon photonic networks-on-chip,” IEEE J. Sel. Top. Quantum Electron. 16(1), 6–22 (2010).
    [CrossRef]
  12. J. Michel, J. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics 4(8), 527–534 (2010).
    [CrossRef]
  13. W. B. Bridges and J. H. Schaffner, “Distortion in linearized electrooptic modulators,” IEEE Trans. Microw. Theory Tech. 43(9), 2184–2197 (1995).
    [CrossRef]
  14. U. V. Cummings and W. B. Bridges, “Bandwidth of linearized electrooptic modulators,” J. Lightwave Technol. 16(8), 1482–1490 (1998).
    [CrossRef]
  15. R. B. Childs and V. A. O’Byrne, “Multichannel AM video transmission using a high-power Nd:YAG laser and linearized external modulator,” IEEE J. Sel. Areas Comm. 8(7), 1369–1376 (1990).
    [CrossRef]
  16. M. Nazarathy, J. Berger, A. Ley, I. Levi, and Y. Kagan, “Progress in externally modulated AM CATV transmission systems,” J. Lightwave Technol. 11(1), 82–105 (1993).
    [CrossRef]
  17. G. C. Wilson, T. H. Wood, M. Gans, J. L. Zyskind, J. W. Sulhoff, J. E. Johnson, T. Tanbun-Ek, and P. A. Morton, “Predistortion of electroabsorption modulators for analog CATV systems at 1.55 µm,” J. Lightwave Technol. 15(9), 1654–1662 (1997).
    [CrossRef]
  18. Y. Chiu, B. Jalali, S. Garner, and W. Steier, “Broad-band electronic linearizer for externally modulated analog fiber-optic links,” IEEE Photon. Technol. Lett. 11(1), 48–50 (1999).
    [CrossRef]
  19. V. Magoon, and B. Jalali, “Electronic linearization and bias control for externally modulated fiber optic link,” in IEEE Int. Microw. Photon. Meeting, Oxford, U.K., Sep. 2000, 145–147.
  20. R. Sadhwani and B. Jalali, “Adaptive CMOS predistortion linearizer for fiber-optic links,” J. Lightwave Technol. 21(12), 3180–3193 (2003).
    [CrossRef]
  21. A. Katz, W. Jemison, M. Kubak, and J. Dragone, “Improved radio over fiber performance using predistortion linearization,” in IEEE MTT-S Int. Microw. Symp. Dig., Philadelphia, PA, Jun. 2003, 1403–1406.
  22. V. J. Urick, M. S. Rogge, P. F. Knapp, L. Swingen, and F. Bucholtz, “Wide-band predistortion linearization for externally modulated long-haul analog fiber-optic links,” IEEE Trans. Microw. Theory Tech. 54(4), 1458–1463 (2006).
    [CrossRef]
  23. S. K. Korotky and R. M. DeRidder, “Dual parallel modulation schemes for low-distortion analog optical transmission,” IEEE J. Sel. Areas Comm. 8(7), 1377–1381 (1990).
    [CrossRef]
  24. J. L. Brooks, G. S. Maurer, and R. A. Becker, “Implementation and evaluation of a dual parallel linearization system for AM-SCM video transmission,” J. Lightwave Technol. 11(1), 34–41 (1993).
    [CrossRef]
  25. H. Skeie and R. Johnson, “Linearization of electro-optic modulators by a cascade coupling of phase modulating electrodes,” Proc. SPIE 1583, 153–164 (1991).
    [CrossRef]
  26. G. Betts, “Linearized modulator for suboctave-bandpass optical analog links,” IEEE Trans. Microw. Theory Tech. 42(12), 2642–2649 (1994).
    [CrossRef]
  27. M. L. Farwell, Z. Q. Lin, E. Wooten, and W. S. C. Chang, “An electrooptic intensity modulator with improved linearity,” IEEE Photon. Technol. Lett. 3(9), 792–795 (1991).
    [CrossRef]
  28. E. Ackerman, “Broad-band linearization of a Mach-Zehnder electrooptic modulator,” IEEE Trans. Microw. Theory Tech. 47(12), 2271–2279 (1999).
    [CrossRef]
  29. L. M. Johnson and H. V. Roussell, “Reduction intermodulation distortion in interferometric optical modulators,” Opt. Lett. 13(10), 928–930 (1988).
    [CrossRef] [PubMed]
  30. L. M. Johnson and H. V. Roussell, “Linearization of an interferometric modulator at microwave frequencies by polarization mixing,” IEEE Photon. Technol. Lett. 2(11), 810–811 (1990).
    [CrossRef]
  31. F. Gan and F. X. Kärtner, “High-speed silicon electrooptic modulator design,” IEEE Photon. Technol. Lett. 17(5), 1007–1009 (2005).
    [CrossRef]
  32. F. Y. Gardes, G. T. Reed, N. G. Emerson, and C. E. Png, “A sub-micron depletion-type photonic modulator in Silicon On Insulator,” Opt. Express 13(22), 8845–8854 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-22-8845 .
    [CrossRef] [PubMed]
  33. A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, and M. Paniccia, “High-speed optical modulation based on carrier depletion in a silicon waveguide,” Opt. Express 15(2), 660–668 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-2-660 .
    [CrossRef] [PubMed]
  34. L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, “40 Gbit/s silicon optical modulator for high-speed applications,” Electron. Lett. 43(22), 1196–1197 (2007).
    [CrossRef]
  35. S. J. Spector, M. W. Geis, G. R. Zhou, M. E. Grein, F. Gan, M. A. Popovic, J. U. Yoon, D. M. Lennon, E. P. Ippen, F. Z. Kärtner, and T. M. Lyszczarz, “CMOS-compatible dual-output silicon modulator for analog signal processing,” Opt. Express 16(15), 11027–11031 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-15-11027 .
    [CrossRef] [PubMed]
  36. M. R. Watts, D. C. Trotter, R. W. Young, and A. L. Lentine, “Ultralow power silicon microdisk modulators and switches,” in 5th IEEE International Conference on Group IV Photonics, 4–6 (2008).
  37. M. R. Watts, W. A. Zortman, D. C. Trotter, R. W. Young, and A. L. Lentine, “Low-voltage, compact, depletion-mode, silicon Mach–Zehnder modulator,” IEEE J. Sel. Top. Quantum Electron. 16(1), 159–164 (2010).
    [CrossRef]
  38. N. N. Feng, S. Liao, D. Feng, P. Dong, D. Zheng, H. Liang, R. Shafiiha, G. Li, J. E. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “High speed carrier-depletion modulators with 1.4V-cm VπL integrated on 0.25μm silicon-on-insulator waveguides,” Opt. Express 18(8), 7994–7999 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-8-7994 .
    [CrossRef] [PubMed]
  39. X. Zheng, J. Lexau, Y. Luo, H. Thacker, T. Pinguet, A. Mekis, G. Li, J. Shi, P. Amberg, N. Pinckney, K. Raj, R. Ho, J. E. Cunningham, and A. V. Krishnamoorthy, “Ultra-low-energy all-CMOS modulator integrated with driver,” Opt. Express 18(3), 3059–3070 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-3-3059 .
    [CrossRef] [PubMed]
  40. D. M. Gill, M. Rasras, K.-Y. Tu, Y.-K. Chen, A. E. White, S. S. Patel, D. Carothers, A. Pomerene, R. Kamocsai, C. Hill, and J. Beattie, “Internal bandwidth equalization in a CMOS compatible Si-ring modulator,” IEEE Photon. Technol. Lett. 21(4), 200–202 (2009).
    [CrossRef]
  41. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
    [CrossRef] [PubMed]
  42. W. M. Green, M. J. Rooks, L. Sekaric, and Y. A. Vlasov, “Ultra-compact, low RF power, 10 Gb/s silicon Mach-Zehnder modulator,” Opt. Express 15(25), 17106–17113 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-25-17106 .
    [CrossRef] [PubMed]
  43. Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, “12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators,” Opt. Express 15(2), 430–436 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-2-430 .
    [CrossRef] [PubMed]
  44. S. Manipatruni, X. Qianfan, B. Schmidt, J. Shakya, and M. Lipson, “High speed carrier injection 18 Gb/s silicon micro-ring electro-optic modulator,” IEEE Proc. Lasers and Electro-Optics Soc. 537–538 (2007).
  45. S. Manipatruni, K. Preston, L. Chen, and M. Lipson, “Ultra-low voltage, ultra-small mode volume silicon microring modulator,” Opt. Express 18(17), 18235–18242 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-17-18235 .
    [CrossRef] [PubMed]
  46. A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
    [CrossRef] [PubMed]
  47. L. Liao, D. Samara-Rubio, M. Morse, A. Liu, D. Hodge, D. Rubin, U. Keil, and T. Franck, “High speed silicon Mach-Zehnder modulator,” Opt. Express 13(8), 3129–3135 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-8-3129 .
    [CrossRef] [PubMed]
  48. Y. H. Kuo, Y. K. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. Harris, “Strong quantum-confined Stark effect in germanium quantum-well structures on silicon,” Nature 437(7063), 1334–1336 (2005).
    [CrossRef] [PubMed]
  49. J. E. Roth, O. Fidaner, R. K. Schaevitz, Y.-H. Kuo, T. I. Kamins, J. S. Harris, and D. A. B. Miller, “Optical modulator on silicon employing germanium quantum wells,” Opt. Express 15(9), 5851–5859 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-9-5851 .
    [CrossRef] [PubMed]
  50. J. Liu, M. Beals, A. Pomerene, S. Bernardis, R. Sun, J. Cheng, L. C. Kimerling, and J. Michel, “Waveguide-integrated, ultralow-energy GeSi electro-absorption modulators,” Nat. Photonics 2(7), 433–437 (2008).
    [CrossRef]
  51. C. C. Sorace, A. Khilo, and F. X. Kärtner, “Broadband linear silicon Mach-Zehnder modulators,” in Integrated Photonics Research (IPR), Silicon and Nanophotonics, 2010, paper IWA4.
  52. Synopsys, Sentaurus Device User Guide, Z-2010.03 ed., March 2010.
  53. R. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
    [CrossRef]
  54. M. Popović, “Complex-frequency leaky mode computations using PML boundary layers for dielectric resonant structures,” in Integrated Photonics Research 2003, Washington, DC, June 17, 2003, paper ITuD4.
  55. S. J. Spector, C. M. Sorace, M. W. Geis, M. E. Grein, J. U. Yoon, T. M. Lyszczarz, E. P. Ippen, and F. X. Kärtner, “Operation and Optimization of Silicon-Diode-Based Optical Modulators,” IEEE J. Sel. Top. Quantum Electron. 16(1), 165–172 (2010).
    [CrossRef]

2010 (8)

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[CrossRef]

B. G. Lee, A. Biberman, J. Chan, and K. Bergman, “High-performance modulators and switches for silicon photonic networks-on-chip,” IEEE J. Sel. Top. Quantum Electron. 16(1), 6–22 (2010).
[CrossRef]

J. Michel, J. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics 4(8), 527–534 (2010).
[CrossRef]

M. R. Watts, W. A. Zortman, D. C. Trotter, R. W. Young, and A. L. Lentine, “Low-voltage, compact, depletion-mode, silicon Mach–Zehnder modulator,” IEEE J. Sel. Top. Quantum Electron. 16(1), 159–164 (2010).
[CrossRef]

N. N. Feng, S. Liao, D. Feng, P. Dong, D. Zheng, H. Liang, R. Shafiiha, G. Li, J. E. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “High speed carrier-depletion modulators with 1.4V-cm VπL integrated on 0.25μm silicon-on-insulator waveguides,” Opt. Express 18(8), 7994–7999 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-8-7994 .
[CrossRef] [PubMed]

X. Zheng, J. Lexau, Y. Luo, H. Thacker, T. Pinguet, A. Mekis, G. Li, J. Shi, P. Amberg, N. Pinckney, K. Raj, R. Ho, J. E. Cunningham, and A. V. Krishnamoorthy, “Ultra-low-energy all-CMOS modulator integrated with driver,” Opt. Express 18(3), 3059–3070 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-3-3059 .
[CrossRef] [PubMed]

S. Manipatruni, K. Preston, L. Chen, and M. Lipson, “Ultra-low voltage, ultra-small mode volume silicon microring modulator,” Opt. Express 18(17), 18235–18242 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-17-18235 .
[CrossRef] [PubMed]

S. J. Spector, C. M. Sorace, M. W. Geis, M. E. Grein, J. U. Yoon, T. M. Lyszczarz, E. P. Ippen, and F. X. Kärtner, “Operation and Optimization of Silicon-Diode-Based Optical Modulators,” IEEE J. Sel. Top. Quantum Electron. 16(1), 165–172 (2010).
[CrossRef]

2009 (1)

D. M. Gill, M. Rasras, K.-Y. Tu, Y.-K. Chen, A. E. White, S. S. Patel, D. Carothers, A. Pomerene, R. Kamocsai, C. Hill, and J. Beattie, “Internal bandwidth equalization in a CMOS compatible Si-ring modulator,” IEEE Photon. Technol. Lett. 21(4), 200–202 (2009).
[CrossRef]

2008 (3)

2007 (7)

W. M. Green, M. J. Rooks, L. Sekaric, and Y. A. Vlasov, “Ultra-compact, low RF power, 10 Gb/s silicon Mach-Zehnder modulator,” Opt. Express 15(25), 17106–17113 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-25-17106 .
[CrossRef] [PubMed]

Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, “12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators,” Opt. Express 15(2), 430–436 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-2-430 .
[CrossRef] [PubMed]

J. E. Roth, O. Fidaner, R. K. Schaevitz, Y.-H. Kuo, T. I. Kamins, J. S. Harris, and D. A. B. Miller, “Optical modulator on silicon employing germanium quantum wells,” Opt. Express 15(9), 5851–5859 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-9-5851 .
[CrossRef] [PubMed]

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[CrossRef]

G. C. Valley, “Photonic analog-to-digital converters,” Opt. Express 15(5), 1955–1982 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-5-1955 .
[CrossRef] [PubMed]

A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, and M. Paniccia, “High-speed optical modulation based on carrier depletion in a silicon waveguide,” Opt. Express 15(2), 660–668 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-2-660 .
[CrossRef] [PubMed]

L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, “40 Gbit/s silicon optical modulator for high-speed applications,” Electron. Lett. 43(22), 1196–1197 (2007).
[CrossRef]

2006 (4)

V. J. Urick, M. S. Rogge, P. F. Knapp, L. Swingen, and F. Bucholtz, “Wide-band predistortion linearization for externally modulated long-haul analog fiber-optic links,” IEEE Trans. Microw. Theory Tech. 54(4), 1458–1463 (2006).
[CrossRef]

R. A. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1678–1687 (2006).
[CrossRef]

B. Jalali and S. Fathpour, “Silicon photonics,” J. Lightwave Technol. 24(12), 4600–4615 (2006).
[CrossRef]

A. J. Seeds and K. J. Williams, “Microwave photonics,” J. Lightwave Technol. 24(12), 4628–4641 (2006).
[CrossRef]

2005 (5)

F. Gan and F. X. Kärtner, “High-speed silicon electrooptic modulator design,” IEEE Photon. Technol. Lett. 17(5), 1007–1009 (2005).
[CrossRef]

F. Y. Gardes, G. T. Reed, N. G. Emerson, and C. E. Png, “A sub-micron depletion-type photonic modulator in Silicon On Insulator,” Opt. Express 13(22), 8845–8854 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-22-8845 .
[CrossRef] [PubMed]

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[CrossRef] [PubMed]

L. Liao, D. Samara-Rubio, M. Morse, A. Liu, D. Hodge, D. Rubin, U. Keil, and T. Franck, “High speed silicon Mach-Zehnder modulator,” Opt. Express 13(8), 3129–3135 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-8-3129 .
[CrossRef] [PubMed]

Y. H. Kuo, Y. K. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. Harris, “Strong quantum-confined Stark effect in germanium quantum-well structures on silicon,” Nature 437(7063), 1334–1336 (2005).
[CrossRef] [PubMed]

2004 (1)

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[CrossRef] [PubMed]

2003 (1)

2001 (1)

P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O’Donnell, K. G. Ray, and R. C. Williamson, “Optically sampled analog-to-digital converters,” IEEE Trans. Microw. Theory Tech. 49(10), 1840–1853 (2001).
[CrossRef]

1999 (2)

Y. Chiu, B. Jalali, S. Garner, and W. Steier, “Broad-band electronic linearizer for externally modulated analog fiber-optic links,” IEEE Photon. Technol. Lett. 11(1), 48–50 (1999).
[CrossRef]

E. Ackerman, “Broad-band linearization of a Mach-Zehnder electrooptic modulator,” IEEE Trans. Microw. Theory Tech. 47(12), 2271–2279 (1999).
[CrossRef]

1998 (1)

1997 (1)

G. C. Wilson, T. H. Wood, M. Gans, J. L. Zyskind, J. W. Sulhoff, J. E. Johnson, T. Tanbun-Ek, and P. A. Morton, “Predistortion of electroabsorption modulators for analog CATV systems at 1.55 µm,” J. Lightwave Technol. 15(9), 1654–1662 (1997).
[CrossRef]

1995 (1)

W. B. Bridges and J. H. Schaffner, “Distortion in linearized electrooptic modulators,” IEEE Trans. Microw. Theory Tech. 43(9), 2184–2197 (1995).
[CrossRef]

1994 (1)

G. Betts, “Linearized modulator for suboctave-bandpass optical analog links,” IEEE Trans. Microw. Theory Tech. 42(12), 2642–2649 (1994).
[CrossRef]

1993 (2)

J. L. Brooks, G. S. Maurer, and R. A. Becker, “Implementation and evaluation of a dual parallel linearization system for AM-SCM video transmission,” J. Lightwave Technol. 11(1), 34–41 (1993).
[CrossRef]

M. Nazarathy, J. Berger, A. Ley, I. Levi, and Y. Kagan, “Progress in externally modulated AM CATV transmission systems,” J. Lightwave Technol. 11(1), 82–105 (1993).
[CrossRef]

1991 (2)

H. Skeie and R. Johnson, “Linearization of electro-optic modulators by a cascade coupling of phase modulating electrodes,” Proc. SPIE 1583, 153–164 (1991).
[CrossRef]

M. L. Farwell, Z. Q. Lin, E. Wooten, and W. S. C. Chang, “An electrooptic intensity modulator with improved linearity,” IEEE Photon. Technol. Lett. 3(9), 792–795 (1991).
[CrossRef]

1990 (3)

S. K. Korotky and R. M. DeRidder, “Dual parallel modulation schemes for low-distortion analog optical transmission,” IEEE J. Sel. Areas Comm. 8(7), 1377–1381 (1990).
[CrossRef]

R. B. Childs and V. A. O’Byrne, “Multichannel AM video transmission using a high-power Nd:YAG laser and linearized external modulator,” IEEE J. Sel. Areas Comm. 8(7), 1369–1376 (1990).
[CrossRef]

L. M. Johnson and H. V. Roussell, “Linearization of an interferometric modulator at microwave frequencies by polarization mixing,” IEEE Photon. Technol. Lett. 2(11), 810–811 (1990).
[CrossRef]

1988 (1)

1987 (1)

R. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
[CrossRef]

Ackerman, E.

E. Ackerman, “Broad-band linearization of a Mach-Zehnder electrooptic modulator,” IEEE Trans. Microw. Theory Tech. 47(12), 2271–2279 (1999).
[CrossRef]

Amberg, P.

Asghari, M.

Basak, J.

L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, “40 Gbit/s silicon optical modulator for high-speed applications,” Electron. Lett. 43(22), 1196–1197 (2007).
[CrossRef]

Beals, M.

J. Liu, M. Beals, A. Pomerene, S. Bernardis, R. Sun, J. Cheng, L. C. Kimerling, and J. Michel, “Waveguide-integrated, ultralow-energy GeSi electro-absorption modulators,” Nat. Photonics 2(7), 433–437 (2008).
[CrossRef]

Beattie, J.

D. M. Gill, M. Rasras, K.-Y. Tu, Y.-K. Chen, A. E. White, S. S. Patel, D. Carothers, A. Pomerene, R. Kamocsai, C. Hill, and J. Beattie, “Internal bandwidth equalization in a CMOS compatible Si-ring modulator,” IEEE Photon. Technol. Lett. 21(4), 200–202 (2009).
[CrossRef]

Becker, R. A.

J. L. Brooks, G. S. Maurer, and R. A. Becker, “Implementation and evaluation of a dual parallel linearization system for AM-SCM video transmission,” J. Lightwave Technol. 11(1), 34–41 (1993).
[CrossRef]

Bennett, B.

R. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
[CrossRef]

Berger, J.

M. Nazarathy, J. Berger, A. Ley, I. Levi, and Y. Kagan, “Progress in externally modulated AM CATV transmission systems,” J. Lightwave Technol. 11(1), 82–105 (1993).
[CrossRef]

Bergman, K.

B. G. Lee, A. Biberman, J. Chan, and K. Bergman, “High-performance modulators and switches for silicon photonic networks-on-chip,” IEEE J. Sel. Top. Quantum Electron. 16(1), 6–22 (2010).
[CrossRef]

Bernardis, S.

J. Liu, M. Beals, A. Pomerene, S. Bernardis, R. Sun, J. Cheng, L. C. Kimerling, and J. Michel, “Waveguide-integrated, ultralow-energy GeSi electro-absorption modulators,” Nat. Photonics 2(7), 433–437 (2008).
[CrossRef]

Betts, G.

G. Betts, “Linearized modulator for suboctave-bandpass optical analog links,” IEEE Trans. Microw. Theory Tech. 42(12), 2642–2649 (1994).
[CrossRef]

Betts, G. E.

P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O’Donnell, K. G. Ray, and R. C. Williamson, “Optically sampled analog-to-digital converters,” IEEE Trans. Microw. Theory Tech. 49(10), 1840–1853 (2001).
[CrossRef]

Biberman, A.

B. G. Lee, A. Biberman, J. Chan, and K. Bergman, “High-performance modulators and switches for silicon photonic networks-on-chip,” IEEE J. Sel. Top. Quantum Electron. 16(1), 6–22 (2010).
[CrossRef]

Bridges, W. B.

U. V. Cummings and W. B. Bridges, “Bandwidth of linearized electrooptic modulators,” J. Lightwave Technol. 16(8), 1482–1490 (1998).
[CrossRef]

W. B. Bridges and J. H. Schaffner, “Distortion in linearized electrooptic modulators,” IEEE Trans. Microw. Theory Tech. 43(9), 2184–2197 (1995).
[CrossRef]

Brooks, J. L.

J. L. Brooks, G. S. Maurer, and R. A. Becker, “Implementation and evaluation of a dual parallel linearization system for AM-SCM video transmission,” J. Lightwave Technol. 11(1), 34–41 (1993).
[CrossRef]

Bucholtz, F.

V. J. Urick, M. S. Rogge, P. F. Knapp, L. Swingen, and F. Bucholtz, “Wide-band predistortion linearization for externally modulated long-haul analog fiber-optic links,” IEEE Trans. Microw. Theory Tech. 54(4), 1458–1463 (2006).
[CrossRef]

Capmany, J.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[CrossRef]

Carothers, D.

D. M. Gill, M. Rasras, K.-Y. Tu, Y.-K. Chen, A. E. White, S. S. Patel, D. Carothers, A. Pomerene, R. Kamocsai, C. Hill, and J. Beattie, “Internal bandwidth equalization in a CMOS compatible Si-ring modulator,” IEEE Photon. Technol. Lett. 21(4), 200–202 (2009).
[CrossRef]

Chan, J.

B. G. Lee, A. Biberman, J. Chan, and K. Bergman, “High-performance modulators and switches for silicon photonic networks-on-chip,” IEEE J. Sel. Top. Quantum Electron. 16(1), 6–22 (2010).
[CrossRef]

Chang, W. S. C.

M. L. Farwell, Z. Q. Lin, E. Wooten, and W. S. C. Chang, “An electrooptic intensity modulator with improved linearity,” IEEE Photon. Technol. Lett. 3(9), 792–795 (1991).
[CrossRef]

Chen, L.

Chen, Y.-K.

D. M. Gill, M. Rasras, K.-Y. Tu, Y.-K. Chen, A. E. White, S. S. Patel, D. Carothers, A. Pomerene, R. Kamocsai, C. Hill, and J. Beattie, “Internal bandwidth equalization in a CMOS compatible Si-ring modulator,” IEEE Photon. Technol. Lett. 21(4), 200–202 (2009).
[CrossRef]

Cheng, J.

J. Liu, M. Beals, A. Pomerene, S. Bernardis, R. Sun, J. Cheng, L. C. Kimerling, and J. Michel, “Waveguide-integrated, ultralow-energy GeSi electro-absorption modulators,” Nat. Photonics 2(7), 433–437 (2008).
[CrossRef]

Chetrit, Y.

L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, “40 Gbit/s silicon optical modulator for high-speed applications,” Electron. Lett. 43(22), 1196–1197 (2007).
[CrossRef]

A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, and M. Paniccia, “High-speed optical modulation based on carrier depletion in a silicon waveguide,” Opt. Express 15(2), 660–668 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-2-660 .
[CrossRef] [PubMed]

Childs, R. B.

R. B. Childs and V. A. O’Byrne, “Multichannel AM video transmission using a high-power Nd:YAG laser and linearized external modulator,” IEEE J. Sel. Areas Comm. 8(7), 1369–1376 (1990).
[CrossRef]

Chiu, Y.

Y. Chiu, B. Jalali, S. Garner, and W. Steier, “Broad-band electronic linearizer for externally modulated analog fiber-optic links,” IEEE Photon. Technol. Lett. 11(1), 48–50 (1999).
[CrossRef]

Ciftcioglu, B.

Cohen, O.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[CrossRef] [PubMed]

Cohen, R.

L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, “40 Gbit/s silicon optical modulator for high-speed applications,” Electron. Lett. 43(22), 1196–1197 (2007).
[CrossRef]

Cummings, U. V.

Cunningham, J. E.

DeRidder, R. M.

S. K. Korotky and R. M. DeRidder, “Dual parallel modulation schemes for low-distortion analog optical transmission,” IEEE J. Sel. Areas Comm. 8(7), 1377–1381 (1990).
[CrossRef]

Dong, P.

Emerson, N. G.

Esman, R. D.

Farwell, M. L.

M. L. Farwell, Z. Q. Lin, E. Wooten, and W. S. C. Chang, “An electrooptic intensity modulator with improved linearity,” IEEE Photon. Technol. Lett. 3(9), 792–795 (1991).
[CrossRef]

Fathpour, S.

Feng, D.

Feng, N. N.

Fidaner, O.

Franck, T.

Gan, F.

Gans, M.

G. C. Wilson, T. H. Wood, M. Gans, J. L. Zyskind, J. W. Sulhoff, J. E. Johnson, T. Tanbun-Ek, and P. A. Morton, “Predistortion of electroabsorption modulators for analog CATV systems at 1.55 µm,” J. Lightwave Technol. 15(9), 1654–1662 (1997).
[CrossRef]

Gardes, F. Y.

Garner, S.

Y. Chiu, B. Jalali, S. Garner, and W. Steier, “Broad-band electronic linearizer for externally modulated analog fiber-optic links,” IEEE Photon. Technol. Lett. 11(1), 48–50 (1999).
[CrossRef]

Ge, Y.

Y. H. Kuo, Y. K. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. Harris, “Strong quantum-confined Stark effect in germanium quantum-well structures on silicon,” Nature 437(7063), 1334–1336 (2005).
[CrossRef] [PubMed]

Geis, M. W.

S. J. Spector, C. M. Sorace, M. W. Geis, M. E. Grein, J. U. Yoon, T. M. Lyszczarz, E. P. Ippen, and F. X. Kärtner, “Operation and Optimization of Silicon-Diode-Based Optical Modulators,” IEEE J. Sel. Top. Quantum Electron. 16(1), 165–172 (2010).
[CrossRef]

S. J. Spector, M. W. Geis, G. R. Zhou, M. E. Grein, F. Gan, M. A. Popovic, J. U. Yoon, D. M. Lennon, E. P. Ippen, F. Z. Kärtner, and T. M. Lyszczarz, “CMOS-compatible dual-output silicon modulator for analog signal processing,” Opt. Express 16(15), 11027–11031 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-15-11027 .
[CrossRef] [PubMed]

Gill, D. M.

D. M. Gill, M. Rasras, K.-Y. Tu, Y.-K. Chen, A. E. White, S. S. Patel, D. Carothers, A. Pomerene, R. Kamocsai, C. Hill, and J. Beattie, “Internal bandwidth equalization in a CMOS compatible Si-ring modulator,” IEEE Photon. Technol. Lett. 21(4), 200–202 (2009).
[CrossRef]

Green, W. M.

Grein, M. E.

S. J. Spector, C. M. Sorace, M. W. Geis, M. E. Grein, J. U. Yoon, T. M. Lyszczarz, E. P. Ippen, and F. X. Kärtner, “Operation and Optimization of Silicon-Diode-Based Optical Modulators,” IEEE J. Sel. Top. Quantum Electron. 16(1), 165–172 (2010).
[CrossRef]

S. J. Spector, M. W. Geis, G. R. Zhou, M. E. Grein, F. Gan, M. A. Popovic, J. U. Yoon, D. M. Lennon, E. P. Ippen, F. Z. Kärtner, and T. M. Lyszczarz, “CMOS-compatible dual-output silicon modulator for analog signal processing,” Opt. Express 16(15), 11027–11031 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-15-11027 .
[CrossRef] [PubMed]

Hargreaves, J. J.

P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O’Donnell, K. G. Ray, and R. C. Williamson, “Optically sampled analog-to-digital converters,” IEEE Trans. Microw. Theory Tech. 49(10), 1840–1853 (2001).
[CrossRef]

Harris, J. S.

J. E. Roth, O. Fidaner, R. K. Schaevitz, Y.-H. Kuo, T. I. Kamins, J. S. Harris, and D. A. B. Miller, “Optical modulator on silicon employing germanium quantum wells,” Opt. Express 15(9), 5851–5859 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-9-5851 .
[CrossRef] [PubMed]

Y. H. Kuo, Y. K. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. Harris, “Strong quantum-confined Stark effect in germanium quantum-well structures on silicon,” Nature 437(7063), 1334–1336 (2005).
[CrossRef] [PubMed]

Hill, C.

D. M. Gill, M. Rasras, K.-Y. Tu, Y.-K. Chen, A. E. White, S. S. Patel, D. Carothers, A. Pomerene, R. Kamocsai, C. Hill, and J. Beattie, “Internal bandwidth equalization in a CMOS compatible Si-ring modulator,” IEEE Photon. Technol. Lett. 21(4), 200–202 (2009).
[CrossRef]

Ho, R.

Hodge, D.

Ippen, E. P.

S. J. Spector, C. M. Sorace, M. W. Geis, M. E. Grein, J. U. Yoon, T. M. Lyszczarz, E. P. Ippen, and F. X. Kärtner, “Operation and Optimization of Silicon-Diode-Based Optical Modulators,” IEEE J. Sel. Top. Quantum Electron. 16(1), 165–172 (2010).
[CrossRef]

S. J. Spector, M. W. Geis, G. R. Zhou, M. E. Grein, F. Gan, M. A. Popovic, J. U. Yoon, D. M. Lennon, E. P. Ippen, F. Z. Kärtner, and T. M. Lyszczarz, “CMOS-compatible dual-output silicon modulator for analog signal processing,” Opt. Express 16(15), 11027–11031 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-15-11027 .
[CrossRef] [PubMed]

Izhaky, N.

L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, “40 Gbit/s silicon optical modulator for high-speed applications,” Electron. Lett. 43(22), 1196–1197 (2007).
[CrossRef]

A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, and M. Paniccia, “High-speed optical modulation based on carrier depletion in a silicon waveguide,” Opt. Express 15(2), 660–668 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-2-660 .
[CrossRef] [PubMed]

Jalali, B.

B. Jalali and S. Fathpour, “Silicon photonics,” J. Lightwave Technol. 24(12), 4600–4615 (2006).
[CrossRef]

R. Sadhwani and B. Jalali, “Adaptive CMOS predistortion linearizer for fiber-optic links,” J. Lightwave Technol. 21(12), 3180–3193 (2003).
[CrossRef]

Y. Chiu, B. Jalali, S. Garner, and W. Steier, “Broad-band electronic linearizer for externally modulated analog fiber-optic links,” IEEE Photon. Technol. Lett. 11(1), 48–50 (1999).
[CrossRef]

Johnson, J. E.

G. C. Wilson, T. H. Wood, M. Gans, J. L. Zyskind, J. W. Sulhoff, J. E. Johnson, T. Tanbun-Ek, and P. A. Morton, “Predistortion of electroabsorption modulators for analog CATV systems at 1.55 µm,” J. Lightwave Technol. 15(9), 1654–1662 (1997).
[CrossRef]

Johnson, L. M.

L. M. Johnson and H. V. Roussell, “Linearization of an interferometric modulator at microwave frequencies by polarization mixing,” IEEE Photon. Technol. Lett. 2(11), 810–811 (1990).
[CrossRef]

L. M. Johnson and H. V. Roussell, “Reduction intermodulation distortion in interferometric optical modulators,” Opt. Lett. 13(10), 928–930 (1988).
[CrossRef] [PubMed]

Johnson, R.

H. Skeie and R. Johnson, “Linearization of electro-optic modulators by a cascade coupling of phase modulating electrodes,” Proc. SPIE 1583, 153–164 (1991).
[CrossRef]

Jones, R.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[CrossRef] [PubMed]

Juodawlkis, P. W.

P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O’Donnell, K. G. Ray, and R. C. Williamson, “Optically sampled analog-to-digital converters,” IEEE Trans. Microw. Theory Tech. 49(10), 1840–1853 (2001).
[CrossRef]

Kagan, Y.

M. Nazarathy, J. Berger, A. Ley, I. Levi, and Y. Kagan, “Progress in externally modulated AM CATV transmission systems,” J. Lightwave Technol. 11(1), 82–105 (1993).
[CrossRef]

Kamins, T. I.

J. E. Roth, O. Fidaner, R. K. Schaevitz, Y.-H. Kuo, T. I. Kamins, J. S. Harris, and D. A. B. Miller, “Optical modulator on silicon employing germanium quantum wells,” Opt. Express 15(9), 5851–5859 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-9-5851 .
[CrossRef] [PubMed]

Y. H. Kuo, Y. K. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. Harris, “Strong quantum-confined Stark effect in germanium quantum-well structures on silicon,” Nature 437(7063), 1334–1336 (2005).
[CrossRef] [PubMed]

Kamocsai, R.

D. M. Gill, M. Rasras, K.-Y. Tu, Y.-K. Chen, A. E. White, S. S. Patel, D. Carothers, A. Pomerene, R. Kamocsai, C. Hill, and J. Beattie, “Internal bandwidth equalization in a CMOS compatible Si-ring modulator,” IEEE Photon. Technol. Lett. 21(4), 200–202 (2009).
[CrossRef]

Kärtner, F. X.

S. J. Spector, C. M. Sorace, M. W. Geis, M. E. Grein, J. U. Yoon, T. M. Lyszczarz, E. P. Ippen, and F. X. Kärtner, “Operation and Optimization of Silicon-Diode-Based Optical Modulators,” IEEE J. Sel. Top. Quantum Electron. 16(1), 165–172 (2010).
[CrossRef]

F. Gan and F. X. Kärtner, “High-speed silicon electrooptic modulator design,” IEEE Photon. Technol. Lett. 17(5), 1007–1009 (2005).
[CrossRef]

Kärtner, F. Z.

Keil, U.

Kimerling, L. C.

J. Michel, J. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics 4(8), 527–534 (2010).
[CrossRef]

J. Liu, M. Beals, A. Pomerene, S. Bernardis, R. Sun, J. Cheng, L. C. Kimerling, and J. Michel, “Waveguide-integrated, ultralow-energy GeSi electro-absorption modulators,” Nat. Photonics 2(7), 433–437 (2008).
[CrossRef]

Knapp, P. F.

V. J. Urick, M. S. Rogge, P. F. Knapp, L. Swingen, and F. Bucholtz, “Wide-band predistortion linearization for externally modulated long-haul analog fiber-optic links,” IEEE Trans. Microw. Theory Tech. 54(4), 1458–1463 (2006).
[CrossRef]

Korotky, S. K.

S. K. Korotky and R. M. DeRidder, “Dual parallel modulation schemes for low-distortion analog optical transmission,” IEEE J. Sel. Areas Comm. 8(7), 1377–1381 (1990).
[CrossRef]

Krishnamoorthy, A. V.

Kuo, Y. H.

Y. H. Kuo, Y. K. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. Harris, “Strong quantum-confined Stark effect in germanium quantum-well structures on silicon,” Nature 437(7063), 1334–1336 (2005).
[CrossRef] [PubMed]

Kuo, Y.-H.

Lee, B. G.

B. G. Lee, A. Biberman, J. Chan, and K. Bergman, “High-performance modulators and switches for silicon photonic networks-on-chip,” IEEE J. Sel. Top. Quantum Electron. 16(1), 6–22 (2010).
[CrossRef]

Lee, Y. K.

Y. H. Kuo, Y. K. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. Harris, “Strong quantum-confined Stark effect in germanium quantum-well structures on silicon,” Nature 437(7063), 1334–1336 (2005).
[CrossRef] [PubMed]

Lennon, D. M.

Lentine, A. L.

M. R. Watts, W. A. Zortman, D. C. Trotter, R. W. Young, and A. L. Lentine, “Low-voltage, compact, depletion-mode, silicon Mach–Zehnder modulator,” IEEE J. Sel. Top. Quantum Electron. 16(1), 159–164 (2010).
[CrossRef]

Levi, I.

M. Nazarathy, J. Berger, A. Ley, I. Levi, and Y. Kagan, “Progress in externally modulated AM CATV transmission systems,” J. Lightwave Technol. 11(1), 82–105 (1993).
[CrossRef]

Lexau, J.

Ley, A.

M. Nazarathy, J. Berger, A. Ley, I. Levi, and Y. Kagan, “Progress in externally modulated AM CATV transmission systems,” J. Lightwave Technol. 11(1), 82–105 (1993).
[CrossRef]

Li, G.

Liang, H.

Liao, L.

A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, and M. Paniccia, “High-speed optical modulation based on carrier depletion in a silicon waveguide,” Opt. Express 15(2), 660–668 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-2-660 .
[CrossRef] [PubMed]

L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, “40 Gbit/s silicon optical modulator for high-speed applications,” Electron. Lett. 43(22), 1196–1197 (2007).
[CrossRef]

L. Liao, D. Samara-Rubio, M. Morse, A. Liu, D. Hodge, D. Rubin, U. Keil, and T. Franck, “High speed silicon Mach-Zehnder modulator,” Opt. Express 13(8), 3129–3135 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-8-3129 .
[CrossRef] [PubMed]

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[CrossRef] [PubMed]

Liao, S.

Lin, Z. Q.

M. L. Farwell, Z. Q. Lin, E. Wooten, and W. S. C. Chang, “An electrooptic intensity modulator with improved linearity,” IEEE Photon. Technol. Lett. 3(9), 792–795 (1991).
[CrossRef]

Lipson, M.

Liu, A.

L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, “40 Gbit/s silicon optical modulator for high-speed applications,” Electron. Lett. 43(22), 1196–1197 (2007).
[CrossRef]

A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, and M. Paniccia, “High-speed optical modulation based on carrier depletion in a silicon waveguide,” Opt. Express 15(2), 660–668 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-2-660 .
[CrossRef] [PubMed]

L. Liao, D. Samara-Rubio, M. Morse, A. Liu, D. Hodge, D. Rubin, U. Keil, and T. Franck, “High speed silicon Mach-Zehnder modulator,” Opt. Express 13(8), 3129–3135 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-8-3129 .
[CrossRef] [PubMed]

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[CrossRef] [PubMed]

Liu, J.

J. Michel, J. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics 4(8), 527–534 (2010).
[CrossRef]

J. Liu, M. Beals, A. Pomerene, S. Bernardis, R. Sun, J. Cheng, L. C. Kimerling, and J. Michel, “Waveguide-integrated, ultralow-energy GeSi electro-absorption modulators,” Nat. Photonics 2(7), 433–437 (2008).
[CrossRef]

Luo, Y.

Lyszczarz, T. M.

S. J. Spector, C. M. Sorace, M. W. Geis, M. E. Grein, J. U. Yoon, T. M. Lyszczarz, E. P. Ippen, and F. X. Kärtner, “Operation and Optimization of Silicon-Diode-Based Optical Modulators,” IEEE J. Sel. Top. Quantum Electron. 16(1), 165–172 (2010).
[CrossRef]

S. J. Spector, M. W. Geis, G. R. Zhou, M. E. Grein, F. Gan, M. A. Popovic, J. U. Yoon, D. M. Lennon, E. P. Ippen, F. Z. Kärtner, and T. M. Lyszczarz, “CMOS-compatible dual-output silicon modulator for analog signal processing,” Opt. Express 16(15), 11027–11031 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-15-11027 .
[CrossRef] [PubMed]

Manipatruni, S.

Mashanovich, G.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[CrossRef]

Maurer, G. S.

J. L. Brooks, G. S. Maurer, and R. A. Becker, “Implementation and evaluation of a dual parallel linearization system for AM-SCM video transmission,” J. Lightwave Technol. 11(1), 34–41 (1993).
[CrossRef]

Mekis, A.

Michel, J.

J. Michel, J. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics 4(8), 527–534 (2010).
[CrossRef]

J. Liu, M. Beals, A. Pomerene, S. Bernardis, R. Sun, J. Cheng, L. C. Kimerling, and J. Michel, “Waveguide-integrated, ultralow-energy GeSi electro-absorption modulators,” Nat. Photonics 2(7), 433–437 (2008).
[CrossRef]

Miller, D. A. B.

J. E. Roth, O. Fidaner, R. K. Schaevitz, Y.-H. Kuo, T. I. Kamins, J. S. Harris, and D. A. B. Miller, “Optical modulator on silicon employing germanium quantum wells,” Opt. Express 15(9), 5851–5859 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-9-5851 .
[CrossRef] [PubMed]

Y. H. Kuo, Y. K. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. Harris, “Strong quantum-confined Stark effect in germanium quantum-well structures on silicon,” Nature 437(7063), 1334–1336 (2005).
[CrossRef] [PubMed]

Morse, M.

Morton, P. A.

G. C. Wilson, T. H. Wood, M. Gans, J. L. Zyskind, J. W. Sulhoff, J. E. Johnson, T. Tanbun-Ek, and P. A. Morton, “Predistortion of electroabsorption modulators for analog CATV systems at 1.55 µm,” J. Lightwave Technol. 15(9), 1654–1662 (1997).
[CrossRef]

Nazarathy, M.

M. Nazarathy, J. Berger, A. Ley, I. Levi, and Y. Kagan, “Progress in externally modulated AM CATV transmission systems,” J. Lightwave Technol. 11(1), 82–105 (1993).
[CrossRef]

Nguyen, H.

A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, and M. Paniccia, “High-speed optical modulation based on carrier depletion in a silicon waveguide,” Opt. Express 15(2), 660–668 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-2-660 .
[CrossRef] [PubMed]

L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, “40 Gbit/s silicon optical modulator for high-speed applications,” Electron. Lett. 43(22), 1196–1197 (2007).
[CrossRef]

Nicolaescu, R.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[CrossRef] [PubMed]

Novak, D.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[CrossRef]

O’Byrne, V. A.

R. B. Childs and V. A. O’Byrne, “Multichannel AM video transmission using a high-power Nd:YAG laser and linearized external modulator,” IEEE J. Sel. Areas Comm. 8(7), 1369–1376 (1990).
[CrossRef]

O’Donnell, F. J.

P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O’Donnell, K. G. Ray, and R. C. Williamson, “Optically sampled analog-to-digital converters,” IEEE Trans. Microw. Theory Tech. 49(10), 1840–1853 (2001).
[CrossRef]

Paniccia, M.

A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, and M. Paniccia, “High-speed optical modulation based on carrier depletion in a silicon waveguide,” Opt. Express 15(2), 660–668 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-2-660 .
[CrossRef] [PubMed]

L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, “40 Gbit/s silicon optical modulator for high-speed applications,” Electron. Lett. 43(22), 1196–1197 (2007).
[CrossRef]

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[CrossRef] [PubMed]

Patel, S. S.

D. M. Gill, M. Rasras, K.-Y. Tu, Y.-K. Chen, A. E. White, S. S. Patel, D. Carothers, A. Pomerene, R. Kamocsai, C. Hill, and J. Beattie, “Internal bandwidth equalization in a CMOS compatible Si-ring modulator,” IEEE Photon. Technol. Lett. 21(4), 200–202 (2009).
[CrossRef]

Pinckney, N.

Pinguet, T.

Png, C. E.

Pomerene, A.

D. M. Gill, M. Rasras, K.-Y. Tu, Y.-K. Chen, A. E. White, S. S. Patel, D. Carothers, A. Pomerene, R. Kamocsai, C. Hill, and J. Beattie, “Internal bandwidth equalization in a CMOS compatible Si-ring modulator,” IEEE Photon. Technol. Lett. 21(4), 200–202 (2009).
[CrossRef]

J. Liu, M. Beals, A. Pomerene, S. Bernardis, R. Sun, J. Cheng, L. C. Kimerling, and J. Michel, “Waveguide-integrated, ultralow-energy GeSi electro-absorption modulators,” Nat. Photonics 2(7), 433–437 (2008).
[CrossRef]

Popovic, M. A.

Pradhan, S.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[CrossRef] [PubMed]

Preston, K.

Raj, K.

Rasras, M.

D. M. Gill, M. Rasras, K.-Y. Tu, Y.-K. Chen, A. E. White, S. S. Patel, D. Carothers, A. Pomerene, R. Kamocsai, C. Hill, and J. Beattie, “Internal bandwidth equalization in a CMOS compatible Si-ring modulator,” IEEE Photon. Technol. Lett. 21(4), 200–202 (2009).
[CrossRef]

Ray, K. G.

P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O’Donnell, K. G. Ray, and R. C. Williamson, “Optically sampled analog-to-digital converters,” IEEE Trans. Microw. Theory Tech. 49(10), 1840–1853 (2001).
[CrossRef]

Reed, G. T.

Ren, S.

Y. H. Kuo, Y. K. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. Harris, “Strong quantum-confined Stark effect in germanium quantum-well structures on silicon,” Nature 437(7063), 1334–1336 (2005).
[CrossRef] [PubMed]

Rogge, M. S.

V. J. Urick, M. S. Rogge, P. F. Knapp, L. Swingen, and F. Bucholtz, “Wide-band predistortion linearization for externally modulated long-haul analog fiber-optic links,” IEEE Trans. Microw. Theory Tech. 54(4), 1458–1463 (2006).
[CrossRef]

Rooks, M. J.

Roth, J. E.

J. E. Roth, O. Fidaner, R. K. Schaevitz, Y.-H. Kuo, T. I. Kamins, J. S. Harris, and D. A. B. Miller, “Optical modulator on silicon employing germanium quantum wells,” Opt. Express 15(9), 5851–5859 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-9-5851 .
[CrossRef] [PubMed]

Y. H. Kuo, Y. K. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. Harris, “Strong quantum-confined Stark effect in germanium quantum-well structures on silicon,” Nature 437(7063), 1334–1336 (2005).
[CrossRef] [PubMed]

Roussell, H. V.

L. M. Johnson and H. V. Roussell, “Linearization of an interferometric modulator at microwave frequencies by polarization mixing,” IEEE Photon. Technol. Lett. 2(11), 810–811 (1990).
[CrossRef]

L. M. Johnson and H. V. Roussell, “Reduction intermodulation distortion in interferometric optical modulators,” Opt. Lett. 13(10), 928–930 (1988).
[CrossRef] [PubMed]

Rubin, D.

A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, and M. Paniccia, “High-speed optical modulation based on carrier depletion in a silicon waveguide,” Opt. Express 15(2), 660–668 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-2-660 .
[CrossRef] [PubMed]

L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, “40 Gbit/s silicon optical modulator for high-speed applications,” Electron. Lett. 43(22), 1196–1197 (2007).
[CrossRef]

L. Liao, D. Samara-Rubio, M. Morse, A. Liu, D. Hodge, D. Rubin, U. Keil, and T. Franck, “High speed silicon Mach-Zehnder modulator,” Opt. Express 13(8), 3129–3135 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-8-3129 .
[CrossRef] [PubMed]

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[CrossRef] [PubMed]

Sadhwani, R.

Samara-Rubio, D.

L. Liao, D. Samara-Rubio, M. Morse, A. Liu, D. Hodge, D. Rubin, U. Keil, and T. Franck, “High speed silicon Mach-Zehnder modulator,” Opt. Express 13(8), 3129–3135 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-8-3129 .
[CrossRef] [PubMed]

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[CrossRef] [PubMed]

Schaevitz, R. K.

Schaffner, J. H.

W. B. Bridges and J. H. Schaffner, “Distortion in linearized electrooptic modulators,” IEEE Trans. Microw. Theory Tech. 43(9), 2184–2197 (1995).
[CrossRef]

Schmidt, B.

Seeds, A. J.

Sekaric, L.

Shafiiha, R.

Shakya, J.

Shi, J.

Skeie, H.

H. Skeie and R. Johnson, “Linearization of electro-optic modulators by a cascade coupling of phase modulating electrodes,” Proc. SPIE 1583, 153–164 (1991).
[CrossRef]

Sorace, C. M.

S. J. Spector, C. M. Sorace, M. W. Geis, M. E. Grein, J. U. Yoon, T. M. Lyszczarz, E. P. Ippen, and F. X. Kärtner, “Operation and Optimization of Silicon-Diode-Based Optical Modulators,” IEEE J. Sel. Top. Quantum Electron. 16(1), 165–172 (2010).
[CrossRef]

Soref, R.

R. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
[CrossRef]

Soref, R. A.

R. A. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1678–1687 (2006).
[CrossRef]

Spector, S. J.

S. J. Spector, C. M. Sorace, M. W. Geis, M. E. Grein, J. U. Yoon, T. M. Lyszczarz, E. P. Ippen, and F. X. Kärtner, “Operation and Optimization of Silicon-Diode-Based Optical Modulators,” IEEE J. Sel. Top. Quantum Electron. 16(1), 165–172 (2010).
[CrossRef]

S. J. Spector, M. W. Geis, G. R. Zhou, M. E. Grein, F. Gan, M. A. Popovic, J. U. Yoon, D. M. Lennon, E. P. Ippen, F. Z. Kärtner, and T. M. Lyszczarz, “CMOS-compatible dual-output silicon modulator for analog signal processing,” Opt. Express 16(15), 11027–11031 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-15-11027 .
[CrossRef] [PubMed]

Steier, W.

Y. Chiu, B. Jalali, S. Garner, and W. Steier, “Broad-band electronic linearizer for externally modulated analog fiber-optic links,” IEEE Photon. Technol. Lett. 11(1), 48–50 (1999).
[CrossRef]

Sulhoff, J. W.

G. C. Wilson, T. H. Wood, M. Gans, J. L. Zyskind, J. W. Sulhoff, J. E. Johnson, T. Tanbun-Ek, and P. A. Morton, “Predistortion of electroabsorption modulators for analog CATV systems at 1.55 µm,” J. Lightwave Technol. 15(9), 1654–1662 (1997).
[CrossRef]

Sun, R.

J. Liu, M. Beals, A. Pomerene, S. Bernardis, R. Sun, J. Cheng, L. C. Kimerling, and J. Michel, “Waveguide-integrated, ultralow-energy GeSi electro-absorption modulators,” Nat. Photonics 2(7), 433–437 (2008).
[CrossRef]

Swingen, L.

V. J. Urick, M. S. Rogge, P. F. Knapp, L. Swingen, and F. Bucholtz, “Wide-band predistortion linearization for externally modulated long-haul analog fiber-optic links,” IEEE Trans. Microw. Theory Tech. 54(4), 1458–1463 (2006).
[CrossRef]

Tanbun-Ek, T.

G. C. Wilson, T. H. Wood, M. Gans, J. L. Zyskind, J. W. Sulhoff, J. E. Johnson, T. Tanbun-Ek, and P. A. Morton, “Predistortion of electroabsorption modulators for analog CATV systems at 1.55 µm,” J. Lightwave Technol. 15(9), 1654–1662 (1997).
[CrossRef]

Thacker, H.

Thomson, D. J.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[CrossRef]

Trotter, D. C.

M. R. Watts, W. A. Zortman, D. C. Trotter, R. W. Young, and A. L. Lentine, “Low-voltage, compact, depletion-mode, silicon Mach–Zehnder modulator,” IEEE J. Sel. Top. Quantum Electron. 16(1), 159–164 (2010).
[CrossRef]

Tu, K.-Y.

D. M. Gill, M. Rasras, K.-Y. Tu, Y.-K. Chen, A. E. White, S. S. Patel, D. Carothers, A. Pomerene, R. Kamocsai, C. Hill, and J. Beattie, “Internal bandwidth equalization in a CMOS compatible Si-ring modulator,” IEEE Photon. Technol. Lett. 21(4), 200–202 (2009).
[CrossRef]

Twichell, J. C.

P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O’Donnell, K. G. Ray, and R. C. Williamson, “Optically sampled analog-to-digital converters,” IEEE Trans. Microw. Theory Tech. 49(10), 1840–1853 (2001).
[CrossRef]

Urick, V. J.

V. J. Urick, M. S. Rogge, P. F. Knapp, L. Swingen, and F. Bucholtz, “Wide-band predistortion linearization for externally modulated long-haul analog fiber-optic links,” IEEE Trans. Microw. Theory Tech. 54(4), 1458–1463 (2006).
[CrossRef]

Valley, G. C.

Vlasov, Y. A.

Wasserman, J. L.

P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O’Donnell, K. G. Ray, and R. C. Williamson, “Optically sampled analog-to-digital converters,” IEEE Trans. Microw. Theory Tech. 49(10), 1840–1853 (2001).
[CrossRef]

Watts, M. R.

M. R. Watts, W. A. Zortman, D. C. Trotter, R. W. Young, and A. L. Lentine, “Low-voltage, compact, depletion-mode, silicon Mach–Zehnder modulator,” IEEE J. Sel. Top. Quantum Electron. 16(1), 159–164 (2010).
[CrossRef]

White, A. E.

D. M. Gill, M. Rasras, K.-Y. Tu, Y.-K. Chen, A. E. White, S. S. Patel, D. Carothers, A. Pomerene, R. Kamocsai, C. Hill, and J. Beattie, “Internal bandwidth equalization in a CMOS compatible Si-ring modulator,” IEEE Photon. Technol. Lett. 21(4), 200–202 (2009).
[CrossRef]

Williams, K. J.

Williamson, R. C.

R. C. Williamson and R. D. Esman, “RF Photonics,” J. Lightwave Technol. 26(9), 1145–1153 (2008).
[CrossRef]

P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O’Donnell, K. G. Ray, and R. C. Williamson, “Optically sampled analog-to-digital converters,” IEEE Trans. Microw. Theory Tech. 49(10), 1840–1853 (2001).
[CrossRef]

Wilson, G. C.

G. C. Wilson, T. H. Wood, M. Gans, J. L. Zyskind, J. W. Sulhoff, J. E. Johnson, T. Tanbun-Ek, and P. A. Morton, “Predistortion of electroabsorption modulators for analog CATV systems at 1.55 µm,” J. Lightwave Technol. 15(9), 1654–1662 (1997).
[CrossRef]

Wood, T. H.

G. C. Wilson, T. H. Wood, M. Gans, J. L. Zyskind, J. W. Sulhoff, J. E. Johnson, T. Tanbun-Ek, and P. A. Morton, “Predistortion of electroabsorption modulators for analog CATV systems at 1.55 µm,” J. Lightwave Technol. 15(9), 1654–1662 (1997).
[CrossRef]

Wooten, E.

M. L. Farwell, Z. Q. Lin, E. Wooten, and W. S. C. Chang, “An electrooptic intensity modulator with improved linearity,” IEEE Photon. Technol. Lett. 3(9), 792–795 (1991).
[CrossRef]

Xu, Q.

Yoon, J. U.

S. J. Spector, C. M. Sorace, M. W. Geis, M. E. Grein, J. U. Yoon, T. M. Lyszczarz, E. P. Ippen, and F. X. Kärtner, “Operation and Optimization of Silicon-Diode-Based Optical Modulators,” IEEE J. Sel. Top. Quantum Electron. 16(1), 165–172 (2010).
[CrossRef]

S. J. Spector, M. W. Geis, G. R. Zhou, M. E. Grein, F. Gan, M. A. Popovic, J. U. Yoon, D. M. Lennon, E. P. Ippen, F. Z. Kärtner, and T. M. Lyszczarz, “CMOS-compatible dual-output silicon modulator for analog signal processing,” Opt. Express 16(15), 11027–11031 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-15-11027 .
[CrossRef] [PubMed]

Young, R. W.

M. R. Watts, W. A. Zortman, D. C. Trotter, R. W. Young, and A. L. Lentine, “Low-voltage, compact, depletion-mode, silicon Mach–Zehnder modulator,” IEEE J. Sel. Top. Quantum Electron. 16(1), 159–164 (2010).
[CrossRef]

Younger, R. D.

P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O’Donnell, K. G. Ray, and R. C. Williamson, “Optically sampled analog-to-digital converters,” IEEE Trans. Microw. Theory Tech. 49(10), 1840–1853 (2001).
[CrossRef]

Zheng, D.

Zheng, X.

Zhou, G. R.

Zortman, W. A.

M. R. Watts, W. A. Zortman, D. C. Trotter, R. W. Young, and A. L. Lentine, “Low-voltage, compact, depletion-mode, silicon Mach–Zehnder modulator,” IEEE J. Sel. Top. Quantum Electron. 16(1), 159–164 (2010).
[CrossRef]

Zyskind, J. L.

G. C. Wilson, T. H. Wood, M. Gans, J. L. Zyskind, J. W. Sulhoff, J. E. Johnson, T. Tanbun-Ek, and P. A. Morton, “Predistortion of electroabsorption modulators for analog CATV systems at 1.55 µm,” J. Lightwave Technol. 15(9), 1654–1662 (1997).
[CrossRef]

Electron. Lett. (1)

L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, “40 Gbit/s silicon optical modulator for high-speed applications,” Electron. Lett. 43(22), 1196–1197 (2007).
[CrossRef]

IEEE J. Quantum Electron. (1)

R. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
[CrossRef]

IEEE J. Sel. Areas Comm. (2)

R. B. Childs and V. A. O’Byrne, “Multichannel AM video transmission using a high-power Nd:YAG laser and linearized external modulator,” IEEE J. Sel. Areas Comm. 8(7), 1369–1376 (1990).
[CrossRef]

S. K. Korotky and R. M. DeRidder, “Dual parallel modulation schemes for low-distortion analog optical transmission,” IEEE J. Sel. Areas Comm. 8(7), 1377–1381 (1990).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (4)

R. A. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1678–1687 (2006).
[CrossRef]

B. G. Lee, A. Biberman, J. Chan, and K. Bergman, “High-performance modulators and switches for silicon photonic networks-on-chip,” IEEE J. Sel. Top. Quantum Electron. 16(1), 6–22 (2010).
[CrossRef]

M. R. Watts, W. A. Zortman, D. C. Trotter, R. W. Young, and A. L. Lentine, “Low-voltage, compact, depletion-mode, silicon Mach–Zehnder modulator,” IEEE J. Sel. Top. Quantum Electron. 16(1), 159–164 (2010).
[CrossRef]

S. J. Spector, C. M. Sorace, M. W. Geis, M. E. Grein, J. U. Yoon, T. M. Lyszczarz, E. P. Ippen, and F. X. Kärtner, “Operation and Optimization of Silicon-Diode-Based Optical Modulators,” IEEE J. Sel. Top. Quantum Electron. 16(1), 165–172 (2010).
[CrossRef]

IEEE Photon. Technol. Lett. (5)

D. M. Gill, M. Rasras, K.-Y. Tu, Y.-K. Chen, A. E. White, S. S. Patel, D. Carothers, A. Pomerene, R. Kamocsai, C. Hill, and J. Beattie, “Internal bandwidth equalization in a CMOS compatible Si-ring modulator,” IEEE Photon. Technol. Lett. 21(4), 200–202 (2009).
[CrossRef]

M. L. Farwell, Z. Q. Lin, E. Wooten, and W. S. C. Chang, “An electrooptic intensity modulator with improved linearity,” IEEE Photon. Technol. Lett. 3(9), 792–795 (1991).
[CrossRef]

L. M. Johnson and H. V. Roussell, “Linearization of an interferometric modulator at microwave frequencies by polarization mixing,” IEEE Photon. Technol. Lett. 2(11), 810–811 (1990).
[CrossRef]

F. Gan and F. X. Kärtner, “High-speed silicon electrooptic modulator design,” IEEE Photon. Technol. Lett. 17(5), 1007–1009 (2005).
[CrossRef]

Y. Chiu, B. Jalali, S. Garner, and W. Steier, “Broad-band electronic linearizer for externally modulated analog fiber-optic links,” IEEE Photon. Technol. Lett. 11(1), 48–50 (1999).
[CrossRef]

IEEE Trans. Microw. Theory Tech. (5)

W. B. Bridges and J. H. Schaffner, “Distortion in linearized electrooptic modulators,” IEEE Trans. Microw. Theory Tech. 43(9), 2184–2197 (1995).
[CrossRef]

V. J. Urick, M. S. Rogge, P. F. Knapp, L. Swingen, and F. Bucholtz, “Wide-band predistortion linearization for externally modulated long-haul analog fiber-optic links,” IEEE Trans. Microw. Theory Tech. 54(4), 1458–1463 (2006).
[CrossRef]

P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O’Donnell, K. G. Ray, and R. C. Williamson, “Optically sampled analog-to-digital converters,” IEEE Trans. Microw. Theory Tech. 49(10), 1840–1853 (2001).
[CrossRef]

E. Ackerman, “Broad-band linearization of a Mach-Zehnder electrooptic modulator,” IEEE Trans. Microw. Theory Tech. 47(12), 2271–2279 (1999).
[CrossRef]

G. Betts, “Linearized modulator for suboctave-bandpass optical analog links,” IEEE Trans. Microw. Theory Tech. 42(12), 2642–2649 (1994).
[CrossRef]

J. Lightwave Technol. (8)

J. L. Brooks, G. S. Maurer, and R. A. Becker, “Implementation and evaluation of a dual parallel linearization system for AM-SCM video transmission,” J. Lightwave Technol. 11(1), 34–41 (1993).
[CrossRef]

M. Nazarathy, J. Berger, A. Ley, I. Levi, and Y. Kagan, “Progress in externally modulated AM CATV transmission systems,” J. Lightwave Technol. 11(1), 82–105 (1993).
[CrossRef]

G. C. Wilson, T. H. Wood, M. Gans, J. L. Zyskind, J. W. Sulhoff, J. E. Johnson, T. Tanbun-Ek, and P. A. Morton, “Predistortion of electroabsorption modulators for analog CATV systems at 1.55 µm,” J. Lightwave Technol. 15(9), 1654–1662 (1997).
[CrossRef]

R. C. Williamson and R. D. Esman, “RF Photonics,” J. Lightwave Technol. 26(9), 1145–1153 (2008).
[CrossRef]

U. V. Cummings and W. B. Bridges, “Bandwidth of linearized electrooptic modulators,” J. Lightwave Technol. 16(8), 1482–1490 (1998).
[CrossRef]

R. Sadhwani and B. Jalali, “Adaptive CMOS predistortion linearizer for fiber-optic links,” J. Lightwave Technol. 21(12), 3180–3193 (2003).
[CrossRef]

B. Jalali and S. Fathpour, “Silicon photonics,” J. Lightwave Technol. 24(12), 4600–4615 (2006).
[CrossRef]

A. J. Seeds and K. J. Williams, “Microwave photonics,” J. Lightwave Technol. 24(12), 4628–4641 (2006).
[CrossRef]

Nat. Photonics (4)

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[CrossRef]

J. Michel, J. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics 4(8), 527–534 (2010).
[CrossRef]

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[CrossRef]

J. Liu, M. Beals, A. Pomerene, S. Bernardis, R. Sun, J. Cheng, L. C. Kimerling, and J. Michel, “Waveguide-integrated, ultralow-energy GeSi electro-absorption modulators,” Nat. Photonics 2(7), 433–437 (2008).
[CrossRef]

Nature (3)

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[CrossRef] [PubMed]

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[CrossRef] [PubMed]

Y. H. Kuo, Y. K. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. Harris, “Strong quantum-confined Stark effect in germanium quantum-well structures on silicon,” Nature 437(7063), 1334–1336 (2005).
[CrossRef] [PubMed]

Opt. Express (11)

S. J. Spector, M. W. Geis, G. R. Zhou, M. E. Grein, F. Gan, M. A. Popovic, J. U. Yoon, D. M. Lennon, E. P. Ippen, F. Z. Kärtner, and T. M. Lyszczarz, “CMOS-compatible dual-output silicon modulator for analog signal processing,” Opt. Express 16(15), 11027–11031 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-15-11027 .
[CrossRef] [PubMed]

X. Zheng, J. Lexau, Y. Luo, H. Thacker, T. Pinguet, A. Mekis, G. Li, J. Shi, P. Amberg, N. Pinckney, K. Raj, R. Ho, J. E. Cunningham, and A. V. Krishnamoorthy, “Ultra-low-energy all-CMOS modulator integrated with driver,” Opt. Express 18(3), 3059–3070 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-3-3059 .
[CrossRef] [PubMed]

N. N. Feng, S. Liao, D. Feng, P. Dong, D. Zheng, H. Liang, R. Shafiiha, G. Li, J. E. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “High speed carrier-depletion modulators with 1.4V-cm VπL integrated on 0.25μm silicon-on-insulator waveguides,” Opt. Express 18(8), 7994–7999 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-8-7994 .
[CrossRef] [PubMed]

S. Manipatruni, K. Preston, L. Chen, and M. Lipson, “Ultra-low voltage, ultra-small mode volume silicon microring modulator,” Opt. Express 18(17), 18235–18242 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-17-18235 .
[CrossRef] [PubMed]

J. E. Roth, O. Fidaner, R. K. Schaevitz, Y.-H. Kuo, T. I. Kamins, J. S. Harris, and D. A. B. Miller, “Optical modulator on silicon employing germanium quantum wells,” Opt. Express 15(9), 5851–5859 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-9-5851 .
[CrossRef] [PubMed]

W. M. Green, M. J. Rooks, L. Sekaric, and Y. A. Vlasov, “Ultra-compact, low RF power, 10 Gb/s silicon Mach-Zehnder modulator,” Opt. Express 15(25), 17106–17113 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-25-17106 .
[CrossRef] [PubMed]

L. Liao, D. Samara-Rubio, M. Morse, A. Liu, D. Hodge, D. Rubin, U. Keil, and T. Franck, “High speed silicon Mach-Zehnder modulator,” Opt. Express 13(8), 3129–3135 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-8-3129 .
[CrossRef] [PubMed]

F. Y. Gardes, G. T. Reed, N. G. Emerson, and C. E. Png, “A sub-micron depletion-type photonic modulator in Silicon On Insulator,” Opt. Express 13(22), 8845–8854 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-22-8845 .
[CrossRef] [PubMed]

Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, “12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators,” Opt. Express 15(2), 430–436 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-2-430 .
[CrossRef] [PubMed]

A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, and M. Paniccia, “High-speed optical modulation based on carrier depletion in a silicon waveguide,” Opt. Express 15(2), 660–668 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-2-660 .
[CrossRef] [PubMed]

G. C. Valley, “Photonic analog-to-digital converters,” Opt. Express 15(5), 1955–1982 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-5-1955 .
[CrossRef] [PubMed]

Opt. Lett. (1)

Proc. SPIE (1)

H. Skeie and R. Johnson, “Linearization of electro-optic modulators by a cascade coupling of phase modulating electrodes,” Proc. SPIE 1583, 153–164 (1991).
[CrossRef]

Other (9)

V. Magoon, and B. Jalali, “Electronic linearization and bias control for externally modulated fiber optic link,” in IEEE Int. Microw. Photon. Meeting, Oxford, U.K., Sep. 2000, 145–147.

A. Katz, W. Jemison, M. Kubak, and J. Dragone, “Improved radio over fiber performance using predistortion linearization,” in IEEE MTT-S Int. Microw. Symp. Dig., Philadelphia, PA, Jun. 2003, 1403–1406.

C. H. Cox III, Analog optical link: Theory and practice (Cambridge University Press, 2004).

C. Chang, ed., RF photonics technology fiber links (Cambridge University Press, 2002).

S. Manipatruni, X. Qianfan, B. Schmidt, J. Shakya, and M. Lipson, “High speed carrier injection 18 Gb/s silicon micro-ring electro-optic modulator,” IEEE Proc. Lasers and Electro-Optics Soc. 537–538 (2007).

M. R. Watts, D. C. Trotter, R. W. Young, and A. L. Lentine, “Ultralow power silicon microdisk modulators and switches,” in 5th IEEE International Conference on Group IV Photonics, 4–6 (2008).

C. C. Sorace, A. Khilo, and F. X. Kärtner, “Broadband linear silicon Mach-Zehnder modulators,” in Integrated Photonics Research (IPR), Silicon and Nanophotonics, 2010, paper IWA4.

Synopsys, Sentaurus Device User Guide, Z-2010.03 ed., March 2010.

M. Popović, “Complex-frequency leaky mode computations using PML boundary layers for dielectric resonant structures,” in Integrated Photonics Research 2003, Washington, DC, June 17, 2003, paper ITuD4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

The configuration of the MZ modulator studied in this work. The two arms have identical nonlinear phase shifters biased with DC bias voltage ν DC, driven in a push-pull mode with the RF signal ν(t). The 90° phase shifter biases the MZ modulator at quadrature; it will be shown that biasing the modulator slightly away from the quadrature point is one of the ways to improve the linearity.

Fig. 2
Fig. 2

Cross-section of the reverse-biased silicon diode phase shifter studied in this work. This diode was designed to maximize the modulator sensitivity without regards to its linearity.

Fig. 3
Fig. 3

(a) Phase shift and (b) change in the modal loss per centimeter of a silicon diode phase shifter length versus applied voltage. The diode cross-section is shown in Fig. 2. The circles represent simulation data points, and the curves an 8th-order polynomial fit to these points. 1.55μm light is assumed.

Fig. 4
Fig. 4

Harmonic distortions in the linearized silicon modulator and a conventional MZ modulator as a function of modulation depth. The curves “HD3, lin MZM” and “HD5, lin MZM” represent the 3rd and 5th harmonic distortions in the linearized silicon modulator, and the curve “HD3, conv. MZM” is the 3rd harmonic distortion in a conventional MZ modulator with ideal, linear phase shifters. The curve “loss-induced HD2” illustrates the amount of the 2nd harmonic distortion due to voltage-dependent loss, which can be completely eliminated by shifting the MZ bias away from quadrature or by using differential detection. The length is selected (a) to completely eliminate the cubic nonlinearity, (b) to achieve the largest modulation depth while keeping HD3 below the −80dBc level; (c) to achieve the largest modulation depth while keeping HD3 below the −60dBc level (see Table 2). The silicon diode reverse bias voltage was 4V; see Fig. 6 for the performance at arbitrary reverse bias voltages.

Fig. 5
Fig. 5

The length of the silicon diodes optimized for the three cases of Table 2: (1) full cancellation of cubic nonlinearity, (2) −80dBc level optimization, and (3) −60dBc level optimization.

Fig. 6
Fig. 6

Third harmonic distortion, HD3, in dBc, as a function of the silicon diode bias voltage and modulation depth. At each bias voltage, the length of the silicon diode was optimized (shown in Fig. 5). Three criteria of length optimization have been used (see Table 2): (a) full cancellation of the cubic nonlinearity, (b) maximization of the modulation depth with HD3 below the −80dBc level, (c) maximization of the modulation depth with HD3 below the −60dBc level. The white areas in the plots correspond to modulation depths not achievable at given phase shifter length and bias voltage. For comparison, a plot of the HD3 in a conventional MZ modulator with ideal, linear phase shifters is shown in Fig. 7 (see also the curves labeled “HD3, conv. MZM” in Fig. 4). Note that the minus sign in front of the HD3 values has been omitted; in reality, the HD3 is, of course, negative.

Fig. 7
Fig. 7

Third harmonic distortion, HD3, in dBc, present in a conventional MZ modulator with ideal linear (e.g. LiNbO3) phase shifters. The minus sign in front of the HD3 values has been omitted.

Fig. 8
Fig. 8

Maximum third harmonic distortion, HD3, with up to 20% modulation depth as a function of optical wavelength. The length was L = 348μm, selected to minimize HD3 at 1.55μm. The bias voltage was 2V. For comparison, HD3 in a modulator with ideally linear phase shifters at 20% modulation depth is −55dBc.

Fig. 9
Fig. 9

The optical bandwidth over which the third harmonic distortion, HD3, is below the level shown along the x-axis. For each curve, the modulation depth is fixed and is indicated next to the curve. The silicon diode is reverse biased at (a) 2V, (b) 3V, (c) 4V, (d) 5V. The length was optimized for each bias voltage and modulation depth to achieve the smallest HD3 at 1.55μm. The length values, from the smallest to the largest modulation depths, were (a) 349, 349, 348, 344, 336, (b) 293, 294, 297, 305, 312, (c) 263, 265, 272, 291, 308, (d) 348, 348, 349, 351, 354, and 353 microns. For comparison, the HD3 in a modulator with ideal, linear phase shifters is plotted in (e).

Tables (2)

Tables Icon

Table 1 Different Nonlinear Terms and the Ways to Cancel Them as Described in Section 2

Tables Icon

Table 2 Three Criteria for Modulator Linearization Considered in Section 3

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

P A = P i n exp [ α A + α B 2 ] sin 2 ( π 4 + ϕ A ϕ B 2 ) + P i n 4 [ exp ( α A 2 ) exp ( α B 2 ) ] 2 ,
P B = P i n exp [ α A + α B 2 ] cos 2 ( π 4 + ϕ A ϕ B 2 ) + P i n 4 [ exp ( α A 2 ) exp ( α B 2 ) ] 2 ,
ϕ ( v D C + v ) = ( ϕ D C + ϕ 1 v + ϕ 2 v 2 + ϕ 3 v 3 + ) L ,
α ( v D C + v ) = ( α D C + α 1 v + α 2 v 2 + α 3 v 3 + ) L ,
ϕ A ϕ B = ϕ ( v D C + v ) ϕ ( v D C v ) = 2 ( ϕ 1 v + ϕ 3 v 3 + ) L .
P A = P i n e α D C L [ 1 2 + ( ϕ 1 L ) v + ( α 1 2 L 2 α 2 L ) v 2 + ( 2 3 ϕ 1 3 L 3 + ϕ 3 L 2 ϕ 1 α 2 L 2 ) v 3 + ] ,
P B = P i n e α D C L [ 1 2 ( ϕ 1 L ) v + ( α 1 2 L 2 α 2 L ) v 2 ( 2 3 ϕ 1 3 L 3 + ϕ 3 L 2 ϕ 1 α 2 L 2 ) v 3 + ] .
2 3 ϕ 1 3 L 2 + 2 ϕ 1 α 2 L ϕ 3 = 0.
ϕ ( v ) ~ v D C ( 1 + 1 2 v v D C 1 8 ( v v D C ) 2 + 1 16 ( v v D C ) 3 + ... ) .

Metrics