Abstract

In this paper we perform an optimization of Brillouin optical time-domain analysis (BOTDA) sensors for achieving high resolution over long sensing ranges using distributed Raman amplification. By employing an optimized first-order bi-directional Raman amplification scheme and combining high-power fiber-Raman lasers and Fabry-Pérot lasers with low relative-intensity-noise (RIN), we demonstrate distributed sensing over 120 km of standard single-mode fiber with 2 meter spatial resolution and with a strain/temperature accuracy of 45με/2.1°C respectively.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Niklès, L. Thévenaz, and P. A. Robert, “Simple distributed fiber sensor based on Brillouin gain spectrum analysis,” Opt. Lett. 21(10), 758–760 (1996).
    [CrossRef] [PubMed]
  2. M. A. Soto, G. Bolognini, F. Di Pasquale, and L. Thévenaz, “Simplex-coded BOTDA fiber sensor with 1 m spatial resolution over a 50 km range,” Opt. Lett. 35(2), 259–261 (2010).
    [CrossRef] [PubMed]
  3. F. Rodríguez-Barrios, S. Martín-López, A. Carrasco-Sanz, P. Corredera, J. D. Ania-Castañón, L. Thévenaz, and M. González-Herráez, “Distributed Brillouin fiber sensor assisted by first-order Raman amplification,” J. Lightwave Technol. 28(15), 2162–2172 (2010).
    [CrossRef]
  4. S. Martín-Lopez, M. Alcon-Camas, F. Rodríguez, P. Corredera, J. D. Ania-Castañon, L. Thévenaz, and M. González-Herraez, “Brillouin optical time-domain analysis assisted by second-order Raman amplification,” Opt. Express 18(18), 18769–18778 (2010).
    [CrossRef] [PubMed]
  5. X.-H. Jia, Y.-J. Rao, L. Chang, C. Zhang, and Z.-L. Ran, “Enhanced sensing performance in long distance Brillouin optical time-domain analyzer based on Raman amplification: theoretical and experimental investigation,” J. Lightwave Technol. 28(11), 1624–1630 (2010).
    [CrossRef]
  6. M. N. Alahbabi, Y. T. Cho, and T. P. Newson, “150-km-range distributed temperature sensor based on coherent detection of spontaneous Brillouin backscatter and in-line Raman amplification,” J. Opt. Soc. Am. B 22(6), 1321–1324 (2005).
    [CrossRef]
  7. C. R. S. Fludger, V. Handerek, and R. J. Mears, “Pump to signal RIN transfer in Raman fiber amplifiers,” J. Lightwave Technol. 19(8), 1140–1148 (2001).
    [CrossRef]
  8. D. Alasia, M. González Herráez, L. Abrardi, S. Martin-López, and L. Thévenaz, “Detrimental effect of modulation instability on distributed optical fiber sensors using stimulated Brillouin scattering,” Proc. SPIE 5855, 587–590 (2005).
    [CrossRef]
  9. S. M. Foaleng, F. Rodríguez, S. Martín López, M. González Herráez, and L. Thévenaz, “Impact of self phase modulation on the performance of Brillouin distributed fibre sensors,” Proc. SPIE 7653, 76532U, 76532U-5 (2010).
    [CrossRef]
  10. A. Minardo, R. Bernini, L. Zeni, L. Thévenaz, and F. Briffod, “A reconstruction technique for long-range stimulated Brillouin scattering distributed fibre-optic sensors: experimental results,” Meas. Sci. Technol. 16(4), 900–908 (2005).
    [CrossRef]
  11. A. Minardo, R. Bernini, and L. Zeni, “A simple technique for reducing pump depletion in long-range distributed Brillouin fiber sensors,” IEEE Sens. J. 9(6), 633–634 (2009).
    [CrossRef]
  12. R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic Press, 2008), Chap. 9.
  13. A. Fellay, L. Thévenaz, M. Facchini, M. Nikles, and P. Robert, “Distributed sensing using stimulated Brillouin scattering: towards ultimate resolution,” in 12th International Conference on Optical Fibre Sensors. Technical Digest., 324–327, (1997).
  14. S. Faralli and F. Di Pasquale, “Impact of double Rayleigh scattering noise in distributed higher order Raman pumping schemes,” IEEE Photon. Technol. Lett. 15(6), 804–806 (2003).
    [CrossRef]
  15. M. N. Islam, Raman Amplifiers for Telecommunications 1 (Springer-Verlag, 2004).
  16. V. E. Perlin and H. G. Winful, “Optimizing the Noise Performance of Broad-Band WDM Systems With Distributed Raman Amplification,” IEEE Photon. Technol. Lett. 14(8), 1199–1201 (2002).
    [CrossRef]
  17. S. Faralli, G. Bolognini, M. A. Andrade, and F. Di Pasquale, “Unrepeated WDM Transmission systems based on advanced first-order and higher order Raman-copumping technologies,” J. Lightwave Technol. 25(11), 3519–3527 (2007).
    [CrossRef]
  18. J. Zhou, J. Chen, Y. Jaouën, L. Yi, X. Li, H. Petit, and P. Gallion, “A new frequency model for pump-to-signal RIN transfer in Brillouin fiber amplifiers,” IEEE Photon. Technol. Lett. 19(13), 978–980 (2007).
    [CrossRef]
  19. J. Zhou, L. Yi, Y. Jaouën, J. Chen, and P. Gallion, “Pump-to-Stokes relative intensity noise transfer in Brillouin amplifiers,” in Proceedings of 33rd European Conference and Exhibition of Optical Communication (ECOC), Berlin, Germany (2007), paper 2.4.3.

2010 (5)

2009 (1)

A. Minardo, R. Bernini, and L. Zeni, “A simple technique for reducing pump depletion in long-range distributed Brillouin fiber sensors,” IEEE Sens. J. 9(6), 633–634 (2009).
[CrossRef]

2007 (2)

S. Faralli, G. Bolognini, M. A. Andrade, and F. Di Pasquale, “Unrepeated WDM Transmission systems based on advanced first-order and higher order Raman-copumping technologies,” J. Lightwave Technol. 25(11), 3519–3527 (2007).
[CrossRef]

J. Zhou, J. Chen, Y. Jaouën, L. Yi, X. Li, H. Petit, and P. Gallion, “A new frequency model for pump-to-signal RIN transfer in Brillouin fiber amplifiers,” IEEE Photon. Technol. Lett. 19(13), 978–980 (2007).
[CrossRef]

2005 (3)

A. Minardo, R. Bernini, L. Zeni, L. Thévenaz, and F. Briffod, “A reconstruction technique for long-range stimulated Brillouin scattering distributed fibre-optic sensors: experimental results,” Meas. Sci. Technol. 16(4), 900–908 (2005).
[CrossRef]

D. Alasia, M. González Herráez, L. Abrardi, S. Martin-López, and L. Thévenaz, “Detrimental effect of modulation instability on distributed optical fiber sensors using stimulated Brillouin scattering,” Proc. SPIE 5855, 587–590 (2005).
[CrossRef]

M. N. Alahbabi, Y. T. Cho, and T. P. Newson, “150-km-range distributed temperature sensor based on coherent detection of spontaneous Brillouin backscatter and in-line Raman amplification,” J. Opt. Soc. Am. B 22(6), 1321–1324 (2005).
[CrossRef]

2003 (1)

S. Faralli and F. Di Pasquale, “Impact of double Rayleigh scattering noise in distributed higher order Raman pumping schemes,” IEEE Photon. Technol. Lett. 15(6), 804–806 (2003).
[CrossRef]

2002 (1)

V. E. Perlin and H. G. Winful, “Optimizing the Noise Performance of Broad-Band WDM Systems With Distributed Raman Amplification,” IEEE Photon. Technol. Lett. 14(8), 1199–1201 (2002).
[CrossRef]

2001 (1)

1996 (1)

Abrardi, L.

D. Alasia, M. González Herráez, L. Abrardi, S. Martin-López, and L. Thévenaz, “Detrimental effect of modulation instability on distributed optical fiber sensors using stimulated Brillouin scattering,” Proc. SPIE 5855, 587–590 (2005).
[CrossRef]

Alahbabi, M. N.

Alasia, D.

D. Alasia, M. González Herráez, L. Abrardi, S. Martin-López, and L. Thévenaz, “Detrimental effect of modulation instability on distributed optical fiber sensors using stimulated Brillouin scattering,” Proc. SPIE 5855, 587–590 (2005).
[CrossRef]

Alcon-Camas, M.

Andrade, M. A.

Ania-Castañon, J. D.

Ania-Castañón, J. D.

Bernini, R.

A. Minardo, R. Bernini, and L. Zeni, “A simple technique for reducing pump depletion in long-range distributed Brillouin fiber sensors,” IEEE Sens. J. 9(6), 633–634 (2009).
[CrossRef]

A. Minardo, R. Bernini, L. Zeni, L. Thévenaz, and F. Briffod, “A reconstruction technique for long-range stimulated Brillouin scattering distributed fibre-optic sensors: experimental results,” Meas. Sci. Technol. 16(4), 900–908 (2005).
[CrossRef]

Bolognini, G.

Briffod, F.

A. Minardo, R. Bernini, L. Zeni, L. Thévenaz, and F. Briffod, “A reconstruction technique for long-range stimulated Brillouin scattering distributed fibre-optic sensors: experimental results,” Meas. Sci. Technol. 16(4), 900–908 (2005).
[CrossRef]

Carrasco-Sanz, A.

Chang, L.

Chen, J.

J. Zhou, J. Chen, Y. Jaouën, L. Yi, X. Li, H. Petit, and P. Gallion, “A new frequency model for pump-to-signal RIN transfer in Brillouin fiber amplifiers,” IEEE Photon. Technol. Lett. 19(13), 978–980 (2007).
[CrossRef]

Cho, Y. T.

Corredera, P.

Di Pasquale, F.

Faralli, S.

S. Faralli, G. Bolognini, M. A. Andrade, and F. Di Pasquale, “Unrepeated WDM Transmission systems based on advanced first-order and higher order Raman-copumping technologies,” J. Lightwave Technol. 25(11), 3519–3527 (2007).
[CrossRef]

S. Faralli and F. Di Pasquale, “Impact of double Rayleigh scattering noise in distributed higher order Raman pumping schemes,” IEEE Photon. Technol. Lett. 15(6), 804–806 (2003).
[CrossRef]

Fludger, C. R. S.

Foaleng, S. M.

S. M. Foaleng, F. Rodríguez, S. Martín López, M. González Herráez, and L. Thévenaz, “Impact of self phase modulation on the performance of Brillouin distributed fibre sensors,” Proc. SPIE 7653, 76532U, 76532U-5 (2010).
[CrossRef]

Gallion, P.

J. Zhou, J. Chen, Y. Jaouën, L. Yi, X. Li, H. Petit, and P. Gallion, “A new frequency model for pump-to-signal RIN transfer in Brillouin fiber amplifiers,” IEEE Photon. Technol. Lett. 19(13), 978–980 (2007).
[CrossRef]

González Herráez, M.

S. M. Foaleng, F. Rodríguez, S. Martín López, M. González Herráez, and L. Thévenaz, “Impact of self phase modulation on the performance of Brillouin distributed fibre sensors,” Proc. SPIE 7653, 76532U, 76532U-5 (2010).
[CrossRef]

D. Alasia, M. González Herráez, L. Abrardi, S. Martin-López, and L. Thévenaz, “Detrimental effect of modulation instability on distributed optical fiber sensors using stimulated Brillouin scattering,” Proc. SPIE 5855, 587–590 (2005).
[CrossRef]

González-Herraez, M.

González-Herráez, M.

Handerek, V.

Jaouën, Y.

J. Zhou, J. Chen, Y. Jaouën, L. Yi, X. Li, H. Petit, and P. Gallion, “A new frequency model for pump-to-signal RIN transfer in Brillouin fiber amplifiers,” IEEE Photon. Technol. Lett. 19(13), 978–980 (2007).
[CrossRef]

Jia, X.-H.

Li, X.

J. Zhou, J. Chen, Y. Jaouën, L. Yi, X. Li, H. Petit, and P. Gallion, “A new frequency model for pump-to-signal RIN transfer in Brillouin fiber amplifiers,” IEEE Photon. Technol. Lett. 19(13), 978–980 (2007).
[CrossRef]

Martín López, S.

S. M. Foaleng, F. Rodríguez, S. Martín López, M. González Herráez, and L. Thévenaz, “Impact of self phase modulation on the performance of Brillouin distributed fibre sensors,” Proc. SPIE 7653, 76532U, 76532U-5 (2010).
[CrossRef]

Martin-López, S.

D. Alasia, M. González Herráez, L. Abrardi, S. Martin-López, and L. Thévenaz, “Detrimental effect of modulation instability on distributed optical fiber sensors using stimulated Brillouin scattering,” Proc. SPIE 5855, 587–590 (2005).
[CrossRef]

Martín-Lopez, S.

Martín-López, S.

Mears, R. J.

Minardo, A.

A. Minardo, R. Bernini, and L. Zeni, “A simple technique for reducing pump depletion in long-range distributed Brillouin fiber sensors,” IEEE Sens. J. 9(6), 633–634 (2009).
[CrossRef]

A. Minardo, R. Bernini, L. Zeni, L. Thévenaz, and F. Briffod, “A reconstruction technique for long-range stimulated Brillouin scattering distributed fibre-optic sensors: experimental results,” Meas. Sci. Technol. 16(4), 900–908 (2005).
[CrossRef]

Newson, T. P.

Niklès, M.

Perlin, V. E.

V. E. Perlin and H. G. Winful, “Optimizing the Noise Performance of Broad-Band WDM Systems With Distributed Raman Amplification,” IEEE Photon. Technol. Lett. 14(8), 1199–1201 (2002).
[CrossRef]

Petit, H.

J. Zhou, J. Chen, Y. Jaouën, L. Yi, X. Li, H. Petit, and P. Gallion, “A new frequency model for pump-to-signal RIN transfer in Brillouin fiber amplifiers,” IEEE Photon. Technol. Lett. 19(13), 978–980 (2007).
[CrossRef]

Ran, Z.-L.

Rao, Y.-J.

Robert, P. A.

Rodríguez, F.

S. Martín-Lopez, M. Alcon-Camas, F. Rodríguez, P. Corredera, J. D. Ania-Castañon, L. Thévenaz, and M. González-Herraez, “Brillouin optical time-domain analysis assisted by second-order Raman amplification,” Opt. Express 18(18), 18769–18778 (2010).
[CrossRef] [PubMed]

S. M. Foaleng, F. Rodríguez, S. Martín López, M. González Herráez, and L. Thévenaz, “Impact of self phase modulation on the performance of Brillouin distributed fibre sensors,” Proc. SPIE 7653, 76532U, 76532U-5 (2010).
[CrossRef]

Rodríguez-Barrios, F.

Soto, M. A.

Thévenaz, L.

M. A. Soto, G. Bolognini, F. Di Pasquale, and L. Thévenaz, “Simplex-coded BOTDA fiber sensor with 1 m spatial resolution over a 50 km range,” Opt. Lett. 35(2), 259–261 (2010).
[CrossRef] [PubMed]

F. Rodríguez-Barrios, S. Martín-López, A. Carrasco-Sanz, P. Corredera, J. D. Ania-Castañón, L. Thévenaz, and M. González-Herráez, “Distributed Brillouin fiber sensor assisted by first-order Raman amplification,” J. Lightwave Technol. 28(15), 2162–2172 (2010).
[CrossRef]

S. Martín-Lopez, M. Alcon-Camas, F. Rodríguez, P. Corredera, J. D. Ania-Castañon, L. Thévenaz, and M. González-Herraez, “Brillouin optical time-domain analysis assisted by second-order Raman amplification,” Opt. Express 18(18), 18769–18778 (2010).
[CrossRef] [PubMed]

S. M. Foaleng, F. Rodríguez, S. Martín López, M. González Herráez, and L. Thévenaz, “Impact of self phase modulation on the performance of Brillouin distributed fibre sensors,” Proc. SPIE 7653, 76532U, 76532U-5 (2010).
[CrossRef]

A. Minardo, R. Bernini, L. Zeni, L. Thévenaz, and F. Briffod, “A reconstruction technique for long-range stimulated Brillouin scattering distributed fibre-optic sensors: experimental results,” Meas. Sci. Technol. 16(4), 900–908 (2005).
[CrossRef]

D. Alasia, M. González Herráez, L. Abrardi, S. Martin-López, and L. Thévenaz, “Detrimental effect of modulation instability on distributed optical fiber sensors using stimulated Brillouin scattering,” Proc. SPIE 5855, 587–590 (2005).
[CrossRef]

M. Niklès, L. Thévenaz, and P. A. Robert, “Simple distributed fiber sensor based on Brillouin gain spectrum analysis,” Opt. Lett. 21(10), 758–760 (1996).
[CrossRef] [PubMed]

Winful, H. G.

V. E. Perlin and H. G. Winful, “Optimizing the Noise Performance of Broad-Band WDM Systems With Distributed Raman Amplification,” IEEE Photon. Technol. Lett. 14(8), 1199–1201 (2002).
[CrossRef]

Yi, L.

J. Zhou, J. Chen, Y. Jaouën, L. Yi, X. Li, H. Petit, and P. Gallion, “A new frequency model for pump-to-signal RIN transfer in Brillouin fiber amplifiers,” IEEE Photon. Technol. Lett. 19(13), 978–980 (2007).
[CrossRef]

Zeni, L.

A. Minardo, R. Bernini, and L. Zeni, “A simple technique for reducing pump depletion in long-range distributed Brillouin fiber sensors,” IEEE Sens. J. 9(6), 633–634 (2009).
[CrossRef]

A. Minardo, R. Bernini, L. Zeni, L. Thévenaz, and F. Briffod, “A reconstruction technique for long-range stimulated Brillouin scattering distributed fibre-optic sensors: experimental results,” Meas. Sci. Technol. 16(4), 900–908 (2005).
[CrossRef]

Zhang, C.

Zhou, J.

J. Zhou, J. Chen, Y. Jaouën, L. Yi, X. Li, H. Petit, and P. Gallion, “A new frequency model for pump-to-signal RIN transfer in Brillouin fiber amplifiers,” IEEE Photon. Technol. Lett. 19(13), 978–980 (2007).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

S. Faralli and F. Di Pasquale, “Impact of double Rayleigh scattering noise in distributed higher order Raman pumping schemes,” IEEE Photon. Technol. Lett. 15(6), 804–806 (2003).
[CrossRef]

V. E. Perlin and H. G. Winful, “Optimizing the Noise Performance of Broad-Band WDM Systems With Distributed Raman Amplification,” IEEE Photon. Technol. Lett. 14(8), 1199–1201 (2002).
[CrossRef]

J. Zhou, J. Chen, Y. Jaouën, L. Yi, X. Li, H. Petit, and P. Gallion, “A new frequency model for pump-to-signal RIN transfer in Brillouin fiber amplifiers,” IEEE Photon. Technol. Lett. 19(13), 978–980 (2007).
[CrossRef]

IEEE Sens. J. (1)

A. Minardo, R. Bernini, and L. Zeni, “A simple technique for reducing pump depletion in long-range distributed Brillouin fiber sensors,” IEEE Sens. J. 9(6), 633–634 (2009).
[CrossRef]

J. Lightwave Technol. (4)

J. Opt. Soc. Am. B (1)

Meas. Sci. Technol. (1)

A. Minardo, R. Bernini, L. Zeni, L. Thévenaz, and F. Briffod, “A reconstruction technique for long-range stimulated Brillouin scattering distributed fibre-optic sensors: experimental results,” Meas. Sci. Technol. 16(4), 900–908 (2005).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Proc. SPIE (2)

D. Alasia, M. González Herráez, L. Abrardi, S. Martin-López, and L. Thévenaz, “Detrimental effect of modulation instability on distributed optical fiber sensors using stimulated Brillouin scattering,” Proc. SPIE 5855, 587–590 (2005).
[CrossRef]

S. M. Foaleng, F. Rodríguez, S. Martín López, M. González Herráez, and L. Thévenaz, “Impact of self phase modulation on the performance of Brillouin distributed fibre sensors,” Proc. SPIE 7653, 76532U, 76532U-5 (2010).
[CrossRef]

Other (4)

R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic Press, 2008), Chap. 9.

A. Fellay, L. Thévenaz, M. Facchini, M. Nikles, and P. Robert, “Distributed sensing using stimulated Brillouin scattering: towards ultimate resolution,” in 12th International Conference on Optical Fibre Sensors. Technical Digest., 324–327, (1997).

J. Zhou, L. Yi, Y. Jaouën, J. Chen, and P. Gallion, “Pump-to-Stokes relative intensity noise transfer in Brillouin amplifiers,” in Proceedings of 33rd European Conference and Exhibition of Optical Communication (ECOC), Berlin, Germany (2007), paper 2.4.3.

M. N. Islam, Raman Amplifiers for Telecommunications 1 (Springer-Verlag, 2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Simulation results for optimization of the power level of both Brillouin and forward-propagating Raman pumps. Contour plot for output (dotted lines) and maximum (solid lines) Brillouin pump powers.

Fig. 2
Fig. 2

Simulation results for optimization of the power level of both probe signal and backward-propagating Raman pump. Contour plot for the probe OSNR (dotted lines) and the minimum power difference between Brillouin pump and probe signals (solid lines).

Fig. 3
Fig. 3

Power evolution of the optimized bi-directional Raman-amplified BOTDA sensor, using the following input power levels: Brillouin pump: 10 dBm, probe signal: −20 dBm, forward-propagating Raman pump: 400 mW, and backward-propagating Raman pump: 300 mW.

Fig. 4
Fig. 4

Pump RIN transfer function in both co- and counter-pumping schemes, for (a) forward-propagating Raman pump, and (b) backward-propagating Raman pump.

Fig. 5
Fig. 5

Experimental setup of implemented Raman-amplified BOTDA sensor with first-order bi-directional pumping configuration.

Fig. 6
Fig. 6

Measured Brillouin gain spectrum as a function of the distance.

Fig. 7
Fig. 7

Brillouin linewidth of the measured BGS as a function of the distance.

Fig. 8
Fig. 8

(a) Brillouin frequency shift as a function of the distance. (b) Brillouin gain spectrum near 120-km distance

Fig. 9
Fig. 9

Detection of a 2-m hot-spot near 120-km distance. (a) Brillouin gain spectrum and (b) temperature profile in the last 25 m of fiber (the rest of the sensing fiber is omitted for clarity)

Fig. 10
Fig. 10

Measured spectral RIN characteristics for fiber Raman laser (FRL) and polarization-multiplexed Fabry Perot (FP) lasers, respectively.

Fig. 11
Fig. 11

Raman-amplified BOTDA traces measured near the peak Brillouin gain, using FRL and polarization-multiplexed FP lasers as backward-propagating Raman pump, respectively.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

Δ I C W ( t , Δ ν ) = I C W L exp ( α L ) { exp [ υ g t / 2 + Δ z υ g t / 2 g B ( ξ , Δ ν ) I p ( ξ , Δ ν ) d ξ ] 1 } ,
d d z P i ± ( z ) = α i P i ± ( z ) ± γ i P i ± ( z ) ± j C i j P i ± ( z ) [ P j + ( z ) + P j ( z ) ] ± 2 h ν i ± Δ ν j C i j [ P j + ( z ) + P j ( z ) ] ,
C i j = g i j A e f f K e f f
C i j = g i j A e f f K e f f λ j λ i
S N R S = I 2 σ S 2 ,
S N R S = I 2 σ S 2 + σ R I N 2 ,
σ R I N 2 = I 2 X T R I N ,
X T R I N = f 1 f 2 r S ( f ) d f .
σ R I N 2 = I 2 f 1 f 2 r S ( f ) d f = I 2 f 1 f 2 r P ( f ) H R I N ( f ) d f ,
Δ S N R = 10 log ( 1 + σ R I N 2 σ S 2 ) = 10 log ( 1 + S N R S X T R I N ) .

Metrics