Abstract

We constructed a widely and continuously tunable terahertz frequency synthesizer traceable to a hydrogen maser linked to coordinated universal time. Photomixing of two optical frequency synthesizers, linked to the hydrogen maser via dual optical frequency combs, gave this THz synthesizer frequency uncertainty of 10−12. To demonstrate the potential of wide and continuous tunability in the THz synthesizer, we tuned its output frequency up to 50 GHz discretely and 1.26 GHz continuously in the F-band while maintaining the unprecedented frequency uncertainty by using a uni-traveling-carrier photodiode as a photomixer. This THz synthesizer will be a powerful tool for broadband, high-precision THz spectroscopy and THz frequency metrology.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Yasui, S. Yokoyama, H. Inaba, K. Minoshima, T. Nagatsuma, and T. Araki, “Terahertz frequency metrology based on frequency comb,” IEEE J. Sel. Top. Quantum Electron. 17(1), 191–201 (2011).
    [CrossRef]
  2. T. Nagatsuma, H. Ito, and T. Ishibashi, “High-power RF photodiodes and their applications,” Laser Photonics Rev. 3(1-2), 123–137 (2009).
    [CrossRef]
  3. A. J. Deninger, T. Göbel, D. Schönherr, T. Kinder, A. Roggenbuck, M. Köberle, F. Lison, T. Müller-Wirts, and P. Meissner, “Precisely tunable continuous-wave terahertz source with interferometric frequency control,” Rev. Sci. Instrum. 79(4), 044702 (2008).
    [CrossRef] [PubMed]
  4. K. Kawase, J. Shikata, and H. Ito, “Terahertz wave parametric source,” J. Phys. D Appl. Phys. 35(3), R1–R14 (2002).
    [CrossRef]
  5. J. Ward, E. Schlecht, G. Chattopadhyay, A. Maestrini, J. Gill, F. Maiwald, H. Javadi, and I. Mehdi, “Capability of THz sources based on Schottky diode frequency multiplier chains,” in Proceedings of IEEE MTT-S International Microwave Symposium (Institute of Electrical and Electronics Engineers, Fort Worth, 2004), pp. 1587–1590.
  6. Th. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
    [CrossRef] [PubMed]
  7. T. Yasui, Y. Kabetani, E. Saneyoshi, S. Yokoyama, and T. Araki, “Terahertz frequency comb by multi-frequency-heterodyning photoconductive detection for high-accuracy, high-resolution terahertz spectroscopy,” Appl. Phys. Lett. 88(24), 241104 (2006).
    [CrossRef]
  8. S. Barbieri, P. Gellie, G. Santarelli, L. Ding, W. Maineult, C. Sirtori, R. Colombelli, H. Beere, and D. Ritchie, “Phase-locking of a 2.7-THz quantum cascade laser to a mode-locked erbium-doped fibre laser,” Nat. Photonics 4(9), 636–640 (2010).
    [CrossRef]
  9. S. P. Khanna, M. Salih, P. Dean, A. G. Davies, and E. H. Linfield, “Electrically tunable terahertz quantum-cascade laser with a heterogeneous active region,” Appl. Phys. Lett. 95(18), 181101 (2009).
    [CrossRef]
  10. Q. Quraishi, M. Griebel, T. Kleine-Ostmann, and R. Bratschitsch, “Generation of phase-locked and tunable continuous-wave radiation in the terahertz regime,” Opt. Lett. 30(23), 3231–3233 (2005).
    [CrossRef] [PubMed]
  11. G. Mouret, F. Hindle, A. Cuisset, C. Yang, R. Bocquet, M. Lours, and D. Rovera, “THz photomixing synthesizer based on a fiber frequency comb,” Opt. Express 17(24), 22031–22040 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-24-22031 .
    [CrossRef] [PubMed]
  12. H. Takahashi, Y. Nakajima, H. Inaba, and K. Minoshima, “Ultra-broad absolute-frequency tunable light source locked to a fiber-based frequency comb,” in Conference on Lasers and Electro-Optics (CLEO)2009, Technical Digest (CD) (Optical Society of America, 2009), paper CTuK4.
  13. T. Yasui, H. Takahashi, Y. Iwamoto, H. Inaba, and K. Minoshima, “Continuously tunable, phase-locked, continuous-wave terahertz generator based on photomixing of two continuous-wave lasers locked to two independent optical combs,” J. Appl. Phys. 107, 033111 (2010).
  14. H. Inaba, Y. Daimon, F.-L. Hong, A. Onae, K. Minoshima, T. R. Schibli, H. Matsumoto, M. Hirano, T. Okuno, M. Onishi, and M. Nakazawa, “Long-term measurement of optical frequencies using a simple, robust and low-noise fiber based frequency comb,” Opt. Express 14(12), 5223–5231 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-12-5223 .
    [CrossRef] [PubMed]
  15. S. Yokoyama, R. Nakamura, M. Nose, T. Araki, and T. Yasui, “Terahertz spectrum analyzer based on a terahertz frequency comb,” Opt. Express 16(17), 13052–13061 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?&uri=oe-16-17-13052 .
    [CrossRef] [PubMed]
  16. T. Yasui, R. Nakamura, K. Kawamoto, A. Ihara, Y. Fujimoto, S. Yokoyama, H. Inaba, K. Minoshima, T. Nagatsuma, and T. Araki, “Real-time monitoring of continuous-wave terahertz radiation using a fiber-based, terahertz-comb-referenced spectrum analyzer,” Opt. Express 17(19), 17034–17043 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-19-17034 .
    [CrossRef] [PubMed]
  17. D. W. Allan, “Statistics of atomic frequency standards,” Proc. IEEE 54(2), 221–230 (1966).
    [CrossRef]
  18. S. Matsuura, M. Tani, and K. Sakai, “Generation of coherent terahertz radiation by photomixing in dipole photoconductive antennas,” Appl. Phys. Lett. 70(5), 559–561 (1997).
    [CrossRef]
  19. D. Bigourd, A. Cuisset, F. Hindle, S. Matton, E. Fertein, R. Bocquet, and G. Mouret, “Detection and quantification of multiple molecular species in mainstream cigarette smoke by continuous-wave terahertz spectroscopy,” Opt. Lett. 31(15), 2356–2358 (2006).
    [CrossRef] [PubMed]

2011 (1)

T. Yasui, S. Yokoyama, H. Inaba, K. Minoshima, T. Nagatsuma, and T. Araki, “Terahertz frequency metrology based on frequency comb,” IEEE J. Sel. Top. Quantum Electron. 17(1), 191–201 (2011).
[CrossRef]

2010 (2)

S. Barbieri, P. Gellie, G. Santarelli, L. Ding, W. Maineult, C. Sirtori, R. Colombelli, H. Beere, and D. Ritchie, “Phase-locking of a 2.7-THz quantum cascade laser to a mode-locked erbium-doped fibre laser,” Nat. Photonics 4(9), 636–640 (2010).
[CrossRef]

T. Yasui, H. Takahashi, Y. Iwamoto, H. Inaba, and K. Minoshima, “Continuously tunable, phase-locked, continuous-wave terahertz generator based on photomixing of two continuous-wave lasers locked to two independent optical combs,” J. Appl. Phys. 107, 033111 (2010).

2009 (4)

2008 (2)

S. Yokoyama, R. Nakamura, M. Nose, T. Araki, and T. Yasui, “Terahertz spectrum analyzer based on a terahertz frequency comb,” Opt. Express 16(17), 13052–13061 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?&uri=oe-16-17-13052 .
[CrossRef] [PubMed]

A. J. Deninger, T. Göbel, D. Schönherr, T. Kinder, A. Roggenbuck, M. Köberle, F. Lison, T. Müller-Wirts, and P. Meissner, “Precisely tunable continuous-wave terahertz source with interferometric frequency control,” Rev. Sci. Instrum. 79(4), 044702 (2008).
[CrossRef] [PubMed]

2006 (3)

2005 (1)

2002 (2)

K. Kawase, J. Shikata, and H. Ito, “Terahertz wave parametric source,” J. Phys. D Appl. Phys. 35(3), R1–R14 (2002).
[CrossRef]

Th. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[CrossRef] [PubMed]

1997 (1)

S. Matsuura, M. Tani, and K. Sakai, “Generation of coherent terahertz radiation by photomixing in dipole photoconductive antennas,” Appl. Phys. Lett. 70(5), 559–561 (1997).
[CrossRef]

1966 (1)

D. W. Allan, “Statistics of atomic frequency standards,” Proc. IEEE 54(2), 221–230 (1966).
[CrossRef]

Allan, D. W.

D. W. Allan, “Statistics of atomic frequency standards,” Proc. IEEE 54(2), 221–230 (1966).
[CrossRef]

Araki, T.

T. Yasui, S. Yokoyama, H. Inaba, K. Minoshima, T. Nagatsuma, and T. Araki, “Terahertz frequency metrology based on frequency comb,” IEEE J. Sel. Top. Quantum Electron. 17(1), 191–201 (2011).
[CrossRef]

T. Yasui, R. Nakamura, K. Kawamoto, A. Ihara, Y. Fujimoto, S. Yokoyama, H. Inaba, K. Minoshima, T. Nagatsuma, and T. Araki, “Real-time monitoring of continuous-wave terahertz radiation using a fiber-based, terahertz-comb-referenced spectrum analyzer,” Opt. Express 17(19), 17034–17043 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-19-17034 .
[CrossRef] [PubMed]

S. Yokoyama, R. Nakamura, M. Nose, T. Araki, and T. Yasui, “Terahertz spectrum analyzer based on a terahertz frequency comb,” Opt. Express 16(17), 13052–13061 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?&uri=oe-16-17-13052 .
[CrossRef] [PubMed]

T. Yasui, Y. Kabetani, E. Saneyoshi, S. Yokoyama, and T. Araki, “Terahertz frequency comb by multi-frequency-heterodyning photoconductive detection for high-accuracy, high-resolution terahertz spectroscopy,” Appl. Phys. Lett. 88(24), 241104 (2006).
[CrossRef]

Barbieri, S.

S. Barbieri, P. Gellie, G. Santarelli, L. Ding, W. Maineult, C. Sirtori, R. Colombelli, H. Beere, and D. Ritchie, “Phase-locking of a 2.7-THz quantum cascade laser to a mode-locked erbium-doped fibre laser,” Nat. Photonics 4(9), 636–640 (2010).
[CrossRef]

Beere, H.

S. Barbieri, P. Gellie, G. Santarelli, L. Ding, W. Maineult, C. Sirtori, R. Colombelli, H. Beere, and D. Ritchie, “Phase-locking of a 2.7-THz quantum cascade laser to a mode-locked erbium-doped fibre laser,” Nat. Photonics 4(9), 636–640 (2010).
[CrossRef]

Bigourd, D.

Bocquet, R.

Bratschitsch, R.

Colombelli, R.

S. Barbieri, P. Gellie, G. Santarelli, L. Ding, W. Maineult, C. Sirtori, R. Colombelli, H. Beere, and D. Ritchie, “Phase-locking of a 2.7-THz quantum cascade laser to a mode-locked erbium-doped fibre laser,” Nat. Photonics 4(9), 636–640 (2010).
[CrossRef]

Cuisset, A.

Daimon, Y.

Davies, A. G.

S. P. Khanna, M. Salih, P. Dean, A. G. Davies, and E. H. Linfield, “Electrically tunable terahertz quantum-cascade laser with a heterogeneous active region,” Appl. Phys. Lett. 95(18), 181101 (2009).
[CrossRef]

Dean, P.

S. P. Khanna, M. Salih, P. Dean, A. G. Davies, and E. H. Linfield, “Electrically tunable terahertz quantum-cascade laser with a heterogeneous active region,” Appl. Phys. Lett. 95(18), 181101 (2009).
[CrossRef]

Deninger, A. J.

A. J. Deninger, T. Göbel, D. Schönherr, T. Kinder, A. Roggenbuck, M. Köberle, F. Lison, T. Müller-Wirts, and P. Meissner, “Precisely tunable continuous-wave terahertz source with interferometric frequency control,” Rev. Sci. Instrum. 79(4), 044702 (2008).
[CrossRef] [PubMed]

Ding, L.

S. Barbieri, P. Gellie, G. Santarelli, L. Ding, W. Maineult, C. Sirtori, R. Colombelli, H. Beere, and D. Ritchie, “Phase-locking of a 2.7-THz quantum cascade laser to a mode-locked erbium-doped fibre laser,” Nat. Photonics 4(9), 636–640 (2010).
[CrossRef]

Fertein, E.

Fujimoto, Y.

Gellie, P.

S. Barbieri, P. Gellie, G. Santarelli, L. Ding, W. Maineult, C. Sirtori, R. Colombelli, H. Beere, and D. Ritchie, “Phase-locking of a 2.7-THz quantum cascade laser to a mode-locked erbium-doped fibre laser,” Nat. Photonics 4(9), 636–640 (2010).
[CrossRef]

Göbel, T.

A. J. Deninger, T. Göbel, D. Schönherr, T. Kinder, A. Roggenbuck, M. Köberle, F. Lison, T. Müller-Wirts, and P. Meissner, “Precisely tunable continuous-wave terahertz source with interferometric frequency control,” Rev. Sci. Instrum. 79(4), 044702 (2008).
[CrossRef] [PubMed]

Griebel, M.

Hänsch, T. W.

Th. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[CrossRef] [PubMed]

Hindle, F.

Hirano, M.

Holzwarth, R.

Th. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[CrossRef] [PubMed]

Hong, F.-L.

Ihara, A.

Inaba, H.

Ishibashi, T.

T. Nagatsuma, H. Ito, and T. Ishibashi, “High-power RF photodiodes and their applications,” Laser Photonics Rev. 3(1-2), 123–137 (2009).
[CrossRef]

Ito, H.

T. Nagatsuma, H. Ito, and T. Ishibashi, “High-power RF photodiodes and their applications,” Laser Photonics Rev. 3(1-2), 123–137 (2009).
[CrossRef]

K. Kawase, J. Shikata, and H. Ito, “Terahertz wave parametric source,” J. Phys. D Appl. Phys. 35(3), R1–R14 (2002).
[CrossRef]

Iwamoto, Y.

T. Yasui, H. Takahashi, Y. Iwamoto, H. Inaba, and K. Minoshima, “Continuously tunable, phase-locked, continuous-wave terahertz generator based on photomixing of two continuous-wave lasers locked to two independent optical combs,” J. Appl. Phys. 107, 033111 (2010).

Kabetani, Y.

T. Yasui, Y. Kabetani, E. Saneyoshi, S. Yokoyama, and T. Araki, “Terahertz frequency comb by multi-frequency-heterodyning photoconductive detection for high-accuracy, high-resolution terahertz spectroscopy,” Appl. Phys. Lett. 88(24), 241104 (2006).
[CrossRef]

Kawamoto, K.

Kawase, K.

K. Kawase, J. Shikata, and H. Ito, “Terahertz wave parametric source,” J. Phys. D Appl. Phys. 35(3), R1–R14 (2002).
[CrossRef]

Khanna, S. P.

S. P. Khanna, M. Salih, P. Dean, A. G. Davies, and E. H. Linfield, “Electrically tunable terahertz quantum-cascade laser with a heterogeneous active region,” Appl. Phys. Lett. 95(18), 181101 (2009).
[CrossRef]

Kinder, T.

A. J. Deninger, T. Göbel, D. Schönherr, T. Kinder, A. Roggenbuck, M. Köberle, F. Lison, T. Müller-Wirts, and P. Meissner, “Precisely tunable continuous-wave terahertz source with interferometric frequency control,” Rev. Sci. Instrum. 79(4), 044702 (2008).
[CrossRef] [PubMed]

Kleine-Ostmann, T.

Köberle, M.

A. J. Deninger, T. Göbel, D. Schönherr, T. Kinder, A. Roggenbuck, M. Köberle, F. Lison, T. Müller-Wirts, and P. Meissner, “Precisely tunable continuous-wave terahertz source with interferometric frequency control,” Rev. Sci. Instrum. 79(4), 044702 (2008).
[CrossRef] [PubMed]

Linfield, E. H.

S. P. Khanna, M. Salih, P. Dean, A. G. Davies, and E. H. Linfield, “Electrically tunable terahertz quantum-cascade laser with a heterogeneous active region,” Appl. Phys. Lett. 95(18), 181101 (2009).
[CrossRef]

Lison, F.

A. J. Deninger, T. Göbel, D. Schönherr, T. Kinder, A. Roggenbuck, M. Köberle, F. Lison, T. Müller-Wirts, and P. Meissner, “Precisely tunable continuous-wave terahertz source with interferometric frequency control,” Rev. Sci. Instrum. 79(4), 044702 (2008).
[CrossRef] [PubMed]

Lours, M.

Maineult, W.

S. Barbieri, P. Gellie, G. Santarelli, L. Ding, W. Maineult, C. Sirtori, R. Colombelli, H. Beere, and D. Ritchie, “Phase-locking of a 2.7-THz quantum cascade laser to a mode-locked erbium-doped fibre laser,” Nat. Photonics 4(9), 636–640 (2010).
[CrossRef]

Matsumoto, H.

Matsuura, S.

S. Matsuura, M. Tani, and K. Sakai, “Generation of coherent terahertz radiation by photomixing in dipole photoconductive antennas,” Appl. Phys. Lett. 70(5), 559–561 (1997).
[CrossRef]

Matton, S.

Meissner, P.

A. J. Deninger, T. Göbel, D. Schönherr, T. Kinder, A. Roggenbuck, M. Köberle, F. Lison, T. Müller-Wirts, and P. Meissner, “Precisely tunable continuous-wave terahertz source with interferometric frequency control,” Rev. Sci. Instrum. 79(4), 044702 (2008).
[CrossRef] [PubMed]

Minoshima, K.

Mouret, G.

Müller-Wirts, T.

A. J. Deninger, T. Göbel, D. Schönherr, T. Kinder, A. Roggenbuck, M. Köberle, F. Lison, T. Müller-Wirts, and P. Meissner, “Precisely tunable continuous-wave terahertz source with interferometric frequency control,” Rev. Sci. Instrum. 79(4), 044702 (2008).
[CrossRef] [PubMed]

Nagatsuma, T.

T. Yasui, S. Yokoyama, H. Inaba, K. Minoshima, T. Nagatsuma, and T. Araki, “Terahertz frequency metrology based on frequency comb,” IEEE J. Sel. Top. Quantum Electron. 17(1), 191–201 (2011).
[CrossRef]

T. Nagatsuma, H. Ito, and T. Ishibashi, “High-power RF photodiodes and their applications,” Laser Photonics Rev. 3(1-2), 123–137 (2009).
[CrossRef]

T. Yasui, R. Nakamura, K. Kawamoto, A. Ihara, Y. Fujimoto, S. Yokoyama, H. Inaba, K. Minoshima, T. Nagatsuma, and T. Araki, “Real-time monitoring of continuous-wave terahertz radiation using a fiber-based, terahertz-comb-referenced spectrum analyzer,” Opt. Express 17(19), 17034–17043 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-19-17034 .
[CrossRef] [PubMed]

Nakamura, R.

Nakazawa, M.

Nose, M.

Okuno, T.

Onae, A.

Onishi, M.

Quraishi, Q.

Ritchie, D.

S. Barbieri, P. Gellie, G. Santarelli, L. Ding, W. Maineult, C. Sirtori, R. Colombelli, H. Beere, and D. Ritchie, “Phase-locking of a 2.7-THz quantum cascade laser to a mode-locked erbium-doped fibre laser,” Nat. Photonics 4(9), 636–640 (2010).
[CrossRef]

Roggenbuck, A.

A. J. Deninger, T. Göbel, D. Schönherr, T. Kinder, A. Roggenbuck, M. Köberle, F. Lison, T. Müller-Wirts, and P. Meissner, “Precisely tunable continuous-wave terahertz source with interferometric frequency control,” Rev. Sci. Instrum. 79(4), 044702 (2008).
[CrossRef] [PubMed]

Rovera, D.

Sakai, K.

S. Matsuura, M. Tani, and K. Sakai, “Generation of coherent terahertz radiation by photomixing in dipole photoconductive antennas,” Appl. Phys. Lett. 70(5), 559–561 (1997).
[CrossRef]

Salih, M.

S. P. Khanna, M. Salih, P. Dean, A. G. Davies, and E. H. Linfield, “Electrically tunable terahertz quantum-cascade laser with a heterogeneous active region,” Appl. Phys. Lett. 95(18), 181101 (2009).
[CrossRef]

Saneyoshi, E.

T. Yasui, Y. Kabetani, E. Saneyoshi, S. Yokoyama, and T. Araki, “Terahertz frequency comb by multi-frequency-heterodyning photoconductive detection for high-accuracy, high-resolution terahertz spectroscopy,” Appl. Phys. Lett. 88(24), 241104 (2006).
[CrossRef]

Santarelli, G.

S. Barbieri, P. Gellie, G. Santarelli, L. Ding, W. Maineult, C. Sirtori, R. Colombelli, H. Beere, and D. Ritchie, “Phase-locking of a 2.7-THz quantum cascade laser to a mode-locked erbium-doped fibre laser,” Nat. Photonics 4(9), 636–640 (2010).
[CrossRef]

Schibli, T. R.

Schönherr, D.

A. J. Deninger, T. Göbel, D. Schönherr, T. Kinder, A. Roggenbuck, M. Köberle, F. Lison, T. Müller-Wirts, and P. Meissner, “Precisely tunable continuous-wave terahertz source with interferometric frequency control,” Rev. Sci. Instrum. 79(4), 044702 (2008).
[CrossRef] [PubMed]

Shikata, J.

K. Kawase, J. Shikata, and H. Ito, “Terahertz wave parametric source,” J. Phys. D Appl. Phys. 35(3), R1–R14 (2002).
[CrossRef]

Sirtori, C.

S. Barbieri, P. Gellie, G. Santarelli, L. Ding, W. Maineult, C. Sirtori, R. Colombelli, H. Beere, and D. Ritchie, “Phase-locking of a 2.7-THz quantum cascade laser to a mode-locked erbium-doped fibre laser,” Nat. Photonics 4(9), 636–640 (2010).
[CrossRef]

Takahashi, H.

T. Yasui, H. Takahashi, Y. Iwamoto, H. Inaba, and K. Minoshima, “Continuously tunable, phase-locked, continuous-wave terahertz generator based on photomixing of two continuous-wave lasers locked to two independent optical combs,” J. Appl. Phys. 107, 033111 (2010).

Tani, M.

S. Matsuura, M. Tani, and K. Sakai, “Generation of coherent terahertz radiation by photomixing in dipole photoconductive antennas,” Appl. Phys. Lett. 70(5), 559–561 (1997).
[CrossRef]

Udem, Th.

Th. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[CrossRef] [PubMed]

Yang, C.

Yasui, T.

T. Yasui, S. Yokoyama, H. Inaba, K. Minoshima, T. Nagatsuma, and T. Araki, “Terahertz frequency metrology based on frequency comb,” IEEE J. Sel. Top. Quantum Electron. 17(1), 191–201 (2011).
[CrossRef]

T. Yasui, H. Takahashi, Y. Iwamoto, H. Inaba, and K. Minoshima, “Continuously tunable, phase-locked, continuous-wave terahertz generator based on photomixing of two continuous-wave lasers locked to two independent optical combs,” J. Appl. Phys. 107, 033111 (2010).

T. Yasui, R. Nakamura, K. Kawamoto, A. Ihara, Y. Fujimoto, S. Yokoyama, H. Inaba, K. Minoshima, T. Nagatsuma, and T. Araki, “Real-time monitoring of continuous-wave terahertz radiation using a fiber-based, terahertz-comb-referenced spectrum analyzer,” Opt. Express 17(19), 17034–17043 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-19-17034 .
[CrossRef] [PubMed]

S. Yokoyama, R. Nakamura, M. Nose, T. Araki, and T. Yasui, “Terahertz spectrum analyzer based on a terahertz frequency comb,” Opt. Express 16(17), 13052–13061 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?&uri=oe-16-17-13052 .
[CrossRef] [PubMed]

T. Yasui, Y. Kabetani, E. Saneyoshi, S. Yokoyama, and T. Araki, “Terahertz frequency comb by multi-frequency-heterodyning photoconductive detection for high-accuracy, high-resolution terahertz spectroscopy,” Appl. Phys. Lett. 88(24), 241104 (2006).
[CrossRef]

Yokoyama, S.

T. Yasui, S. Yokoyama, H. Inaba, K. Minoshima, T. Nagatsuma, and T. Araki, “Terahertz frequency metrology based on frequency comb,” IEEE J. Sel. Top. Quantum Electron. 17(1), 191–201 (2011).
[CrossRef]

T. Yasui, R. Nakamura, K. Kawamoto, A. Ihara, Y. Fujimoto, S. Yokoyama, H. Inaba, K. Minoshima, T. Nagatsuma, and T. Araki, “Real-time monitoring of continuous-wave terahertz radiation using a fiber-based, terahertz-comb-referenced spectrum analyzer,” Opt. Express 17(19), 17034–17043 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-19-17034 .
[CrossRef] [PubMed]

S. Yokoyama, R. Nakamura, M. Nose, T. Araki, and T. Yasui, “Terahertz spectrum analyzer based on a terahertz frequency comb,” Opt. Express 16(17), 13052–13061 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?&uri=oe-16-17-13052 .
[CrossRef] [PubMed]

T. Yasui, Y. Kabetani, E. Saneyoshi, S. Yokoyama, and T. Araki, “Terahertz frequency comb by multi-frequency-heterodyning photoconductive detection for high-accuracy, high-resolution terahertz spectroscopy,” Appl. Phys. Lett. 88(24), 241104 (2006).
[CrossRef]

Appl. Phys. Lett. (3)

T. Yasui, Y. Kabetani, E. Saneyoshi, S. Yokoyama, and T. Araki, “Terahertz frequency comb by multi-frequency-heterodyning photoconductive detection for high-accuracy, high-resolution terahertz spectroscopy,” Appl. Phys. Lett. 88(24), 241104 (2006).
[CrossRef]

S. P. Khanna, M. Salih, P. Dean, A. G. Davies, and E. H. Linfield, “Electrically tunable terahertz quantum-cascade laser with a heterogeneous active region,” Appl. Phys. Lett. 95(18), 181101 (2009).
[CrossRef]

S. Matsuura, M. Tani, and K. Sakai, “Generation of coherent terahertz radiation by photomixing in dipole photoconductive antennas,” Appl. Phys. Lett. 70(5), 559–561 (1997).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

T. Yasui, S. Yokoyama, H. Inaba, K. Minoshima, T. Nagatsuma, and T. Araki, “Terahertz frequency metrology based on frequency comb,” IEEE J. Sel. Top. Quantum Electron. 17(1), 191–201 (2011).
[CrossRef]

J. Appl. Phys. (1)

T. Yasui, H. Takahashi, Y. Iwamoto, H. Inaba, and K. Minoshima, “Continuously tunable, phase-locked, continuous-wave terahertz generator based on photomixing of two continuous-wave lasers locked to two independent optical combs,” J. Appl. Phys. 107, 033111 (2010).

J. Phys. D Appl. Phys. (1)

K. Kawase, J. Shikata, and H. Ito, “Terahertz wave parametric source,” J. Phys. D Appl. Phys. 35(3), R1–R14 (2002).
[CrossRef]

Laser Photonics Rev. (1)

T. Nagatsuma, H. Ito, and T. Ishibashi, “High-power RF photodiodes and their applications,” Laser Photonics Rev. 3(1-2), 123–137 (2009).
[CrossRef]

Nat. Photonics (1)

S. Barbieri, P. Gellie, G. Santarelli, L. Ding, W. Maineult, C. Sirtori, R. Colombelli, H. Beere, and D. Ritchie, “Phase-locking of a 2.7-THz quantum cascade laser to a mode-locked erbium-doped fibre laser,” Nat. Photonics 4(9), 636–640 (2010).
[CrossRef]

Nature (1)

Th. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[CrossRef] [PubMed]

Opt. Express (4)

Opt. Lett. (2)

Proc. IEEE (1)

D. W. Allan, “Statistics of atomic frequency standards,” Proc. IEEE 54(2), 221–230 (1966).
[CrossRef]

Rev. Sci. Instrum. (1)

A. J. Deninger, T. Göbel, D. Schönherr, T. Kinder, A. Roggenbuck, M. Köberle, F. Lison, T. Müller-Wirts, and P. Meissner, “Precisely tunable continuous-wave terahertz source with interferometric frequency control,” Rev. Sci. Instrum. 79(4), 044702 (2008).
[CrossRef] [PubMed]

Other (2)

J. Ward, E. Schlecht, G. Chattopadhyay, A. Maestrini, J. Gill, F. Maiwald, H. Javadi, and I. Mehdi, “Capability of THz sources based on Schottky diode frequency multiplier chains,” in Proceedings of IEEE MTT-S International Microwave Symposium (Institute of Electrical and Electronics Engineers, Fort Worth, 2004), pp. 1587–1590.

H. Takahashi, Y. Nakajima, H. Inaba, and K. Minoshima, “Ultra-broad absolute-frequency tunable light source locked to a fiber-based frequency comb,” in Conference on Lasers and Electro-Optics (CLEO)2009, Technical Digest (CD) (Optical Society of America, 2009), paper CTuK4.

Supplementary Material (1)

» Media 1: MOV (4063 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Principle of THz synthesizer based on photomixing of two OFSs.

Fig. 2
Fig. 2

Experimental setup. FC1, FC2, and FC3: fiber combs; CWL1 and CWL2: CW near-infrared lasers; λ/2: half-wave plate; λ/4: quarter-wave plate; UTC-PD: uni-traveling-carrier photodiode for photomixing; THz-L: THz lenses; L: lens; PCA: photoconductive antenna; SHG crystal: second-harmonic-generation crystal; UTC-NMIJ: coordinated universal time operated by the National Metrology Institute of Japan.

Fig. 3
Fig. 3

Spectra of CW-THz radiation at (1) 91.97 GHz and (b) 140.0 GHz.

Fig. 4
Fig. 4

Frequency fluctuation of CW-THz radiation at 132.0 GHz with respect to gate time.

Fig. 5
Fig. 5

Incremental tuning of CW-THz radiation around 133 GHz when scanning frep2 at 0.2 Hz intervals.

Fig. 6
Fig. 6

(a) Spectra of two beat signals between CW-THz radiation and PC-THz comb and self beat signal of frep3 (Media 1). (b) Spectral configuration of CW-THz radiation and PC-THz comb before and after tuning.

Tables (2)

Tables Icon

Table 1 Parameters of OFS1 and OFS2 When fTHz = 91,974,517,201 Hz

Tables Icon

Table 2 Parameters of OFS1 and OFS2 When fTHz = 140,003,403,918 Hz

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

f o f s 1 = f c e o 1 + m 1 f r e p 1 + f b e a t 1 ,
f o f s 2 = f c e o 2 + m 2 f r e p 2 + f b e a t 2 ,
f T H z = | f o f s 2 f o f s 1 | = | ( f c e o 2 + m 2 f r e p 2 + f b e a t 2 ) ( f c e o 1 + m 1 f r e p 1 + f b e a t 1 ) | .
Δ f T H z = Δ f o f s 2 = m 2 Δ f r e p 2 .
f T H z = m T H z f r e p 3 ± f b e a t 3 ,

Metrics