Abstract

Down-conversion of a high-frequency beat note to an intermediate frequency is realized by a Mach-Zehnder intensity modulator. Optically-carried microwave signals in the 10–60 GHz range are synthesized by using a two-frequency solid-state microchip laser as a voltage-controlled oscillator inside a digital phase-locked loop. We report an in-loop relative frequency stability better than 2.5 × 10−11. The principle is applicable to beat notes in the millimeter-wave range.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Capmany, and D. Novak, "Microwave photonics combines two worlds," Nat. Photonics 1, 319-330 (2007).
    [CrossRef]
  2. J. Yao, "Microwave photonics," J. Lightwave Technol. 27(3), 314-335 (2009).
    [CrossRef]
  3. M. Alouini, B. Benazet, M. Vallet, M. Brunel, P. Di Bin, F. Bretenaker, A. Le Floch, and P. Thony, "Offset phase locking of Er:Yb:glass laser eigenstates for RF photonics applications," IEEE Photon. Technol. Lett. 13(4), 367-369 (2001).
    [CrossRef]
  4. G. Pillet, L. Morvan, M. Brunel, F. Bretenaker, D. Dolfi, M. Vallet, J.-P. Huignard, and A. Le Floch, "Dual-frequency laser at 1.5 μm for optical distribution and generation of high-purity microwave signals," J. Lightwave Technol. 26(15), 2764-2773 (2008).
    [CrossRef]
  5. M. Brunel, A. Amon, and M. Vallet, "Dual-polarization microchip laser at 1.53 μm," Opt. Lett. 30(18), 2418-2420 (2005).
    [CrossRef] [PubMed]
  6. A. McKay, and J. M. Dawes, "Tunable terahertz signals using a helicoidally polarized ceramic microchip laser," IEEE Photon. Technol. Lett. 21(7), 480-482 (2009).
    [CrossRef]
  7. R. Wang, and Y. Li, "Dual-polarization spatial-hole-burning-free microchip laser," IEEE Photon. Technol. Lett. 21(17), 1214-1216 (2009).
    [CrossRef]
  8. M. Vallet, M. Brunel, and M. Oger, "RF photonic synthesizer," Electron. Lett. 43(25), 1437-1438 (2007).
    [CrossRef]
  9. A. Rolland, L. Frein, M. Vallet, M. Brunel, F. Bondu, and T. Merlet, "40 GHz photonic synthesizer using a dual-polarization microlaser," IEEE Photon. Technol. Lett. 22(23), 1738-1740 (2010).
    [CrossRef]
  10. K. J. Williams, L. Goldberg, R. D. Esman, M. Dagenais, and J. F. Weller, "6-34 GHz offset phase-locking of Nd:YAG 1319 nm nonplanar ring lasers," Electron. Lett. 25(18), 1242-1243 (1989).
    [CrossRef]
  11. Y. Li, J. C. Vieira, S. M. Goldwasser, and P. R. Herczfeld, "Rapidly tunable millimeter-wave optical transmitter for Lidar-Radar," IEEE Trans. Microw. Theory Tech. 49(10), 2048-2054 (2001).
    [CrossRef]
  12. H. R. Rideout, J. S. Seregelyi, S. Paquet, and J. Yao, "Discriminator-aided optical phase-lock loop incorporating a frequency down-conversion module," IEEE Photon. Technol. Lett. 18(22), 2344-2346 (2006).
    [CrossRef]
  13. S. Hisatake, Y. Nakase, K. Shibuya, and T. Kobayashi, "Generation of flat power-envelope terahertz-wide modulation sidebands from a continuous-wave laser based on an external electro-optic phase modulator," Opt. Lett. 30(7), 777-779 (2005).
    [CrossRef] [PubMed]
  14. G. Qi, J. Yao, J. Seregelyi, S. Paquet, and C. Bélisle, "Generation and distribution of a wide-band continuously tunable millimeter-wave signal with an optical external modulation technique," IEEE Trans. Microw. Theory Tech. 53(10), 3090-3097 (2005).
    [CrossRef]

2010 (1)

A. Rolland, L. Frein, M. Vallet, M. Brunel, F. Bondu, and T. Merlet, "40 GHz photonic synthesizer using a dual-polarization microlaser," IEEE Photon. Technol. Lett. 22(23), 1738-1740 (2010).
[CrossRef]

2009 (3)

A. McKay, and J. M. Dawes, "Tunable terahertz signals using a helicoidally polarized ceramic microchip laser," IEEE Photon. Technol. Lett. 21(7), 480-482 (2009).
[CrossRef]

R. Wang, and Y. Li, "Dual-polarization spatial-hole-burning-free microchip laser," IEEE Photon. Technol. Lett. 21(17), 1214-1216 (2009).
[CrossRef]

J. Yao, "Microwave photonics," J. Lightwave Technol. 27(3), 314-335 (2009).
[CrossRef]

2008 (1)

2007 (2)

M. Vallet, M. Brunel, and M. Oger, "RF photonic synthesizer," Electron. Lett. 43(25), 1437-1438 (2007).
[CrossRef]

J. Capmany, and D. Novak, "Microwave photonics combines two worlds," Nat. Photonics 1, 319-330 (2007).
[CrossRef]

2006 (1)

H. R. Rideout, J. S. Seregelyi, S. Paquet, and J. Yao, "Discriminator-aided optical phase-lock loop incorporating a frequency down-conversion module," IEEE Photon. Technol. Lett. 18(22), 2344-2346 (2006).
[CrossRef]

2005 (3)

2001 (2)

Y. Li, J. C. Vieira, S. M. Goldwasser, and P. R. Herczfeld, "Rapidly tunable millimeter-wave optical transmitter for Lidar-Radar," IEEE Trans. Microw. Theory Tech. 49(10), 2048-2054 (2001).
[CrossRef]

M. Alouini, B. Benazet, M. Vallet, M. Brunel, P. Di Bin, F. Bretenaker, A. Le Floch, and P. Thony, "Offset phase locking of Er:Yb:glass laser eigenstates for RF photonics applications," IEEE Photon. Technol. Lett. 13(4), 367-369 (2001).
[CrossRef]

1989 (1)

K. J. Williams, L. Goldberg, R. D. Esman, M. Dagenais, and J. F. Weller, "6-34 GHz offset phase-locking of Nd:YAG 1319 nm nonplanar ring lasers," Electron. Lett. 25(18), 1242-1243 (1989).
[CrossRef]

Alouini, M.

M. Alouini, B. Benazet, M. Vallet, M. Brunel, P. Di Bin, F. Bretenaker, A. Le Floch, and P. Thony, "Offset phase locking of Er:Yb:glass laser eigenstates for RF photonics applications," IEEE Photon. Technol. Lett. 13(4), 367-369 (2001).
[CrossRef]

Amon, A.

Bélisle, C.

G. Qi, J. Yao, J. Seregelyi, S. Paquet, and C. Bélisle, "Generation and distribution of a wide-band continuously tunable millimeter-wave signal with an optical external modulation technique," IEEE Trans. Microw. Theory Tech. 53(10), 3090-3097 (2005).
[CrossRef]

Benazet, B.

M. Alouini, B. Benazet, M. Vallet, M. Brunel, P. Di Bin, F. Bretenaker, A. Le Floch, and P. Thony, "Offset phase locking of Er:Yb:glass laser eigenstates for RF photonics applications," IEEE Photon. Technol. Lett. 13(4), 367-369 (2001).
[CrossRef]

Bondu, F.

A. Rolland, L. Frein, M. Vallet, M. Brunel, F. Bondu, and T. Merlet, "40 GHz photonic synthesizer using a dual-polarization microlaser," IEEE Photon. Technol. Lett. 22(23), 1738-1740 (2010).
[CrossRef]

Bretenaker, F.

G. Pillet, L. Morvan, M. Brunel, F. Bretenaker, D. Dolfi, M. Vallet, J.-P. Huignard, and A. Le Floch, "Dual-frequency laser at 1.5 μm for optical distribution and generation of high-purity microwave signals," J. Lightwave Technol. 26(15), 2764-2773 (2008).
[CrossRef]

M. Alouini, B. Benazet, M. Vallet, M. Brunel, P. Di Bin, F. Bretenaker, A. Le Floch, and P. Thony, "Offset phase locking of Er:Yb:glass laser eigenstates for RF photonics applications," IEEE Photon. Technol. Lett. 13(4), 367-369 (2001).
[CrossRef]

Brunel, M.

A. Rolland, L. Frein, M. Vallet, M. Brunel, F. Bondu, and T. Merlet, "40 GHz photonic synthesizer using a dual-polarization microlaser," IEEE Photon. Technol. Lett. 22(23), 1738-1740 (2010).
[CrossRef]

G. Pillet, L. Morvan, M. Brunel, F. Bretenaker, D. Dolfi, M. Vallet, J.-P. Huignard, and A. Le Floch, "Dual-frequency laser at 1.5 μm for optical distribution and generation of high-purity microwave signals," J. Lightwave Technol. 26(15), 2764-2773 (2008).
[CrossRef]

M. Vallet, M. Brunel, and M. Oger, "RF photonic synthesizer," Electron. Lett. 43(25), 1437-1438 (2007).
[CrossRef]

M. Brunel, A. Amon, and M. Vallet, "Dual-polarization microchip laser at 1.53 μm," Opt. Lett. 30(18), 2418-2420 (2005).
[CrossRef] [PubMed]

M. Alouini, B. Benazet, M. Vallet, M. Brunel, P. Di Bin, F. Bretenaker, A. Le Floch, and P. Thony, "Offset phase locking of Er:Yb:glass laser eigenstates for RF photonics applications," IEEE Photon. Technol. Lett. 13(4), 367-369 (2001).
[CrossRef]

Capmany, J.

J. Capmany, and D. Novak, "Microwave photonics combines two worlds," Nat. Photonics 1, 319-330 (2007).
[CrossRef]

Dagenais, M.

K. J. Williams, L. Goldberg, R. D. Esman, M. Dagenais, and J. F. Weller, "6-34 GHz offset phase-locking of Nd:YAG 1319 nm nonplanar ring lasers," Electron. Lett. 25(18), 1242-1243 (1989).
[CrossRef]

Dawes, J. M.

A. McKay, and J. M. Dawes, "Tunable terahertz signals using a helicoidally polarized ceramic microchip laser," IEEE Photon. Technol. Lett. 21(7), 480-482 (2009).
[CrossRef]

Di Bin, P.

M. Alouini, B. Benazet, M. Vallet, M. Brunel, P. Di Bin, F. Bretenaker, A. Le Floch, and P. Thony, "Offset phase locking of Er:Yb:glass laser eigenstates for RF photonics applications," IEEE Photon. Technol. Lett. 13(4), 367-369 (2001).
[CrossRef]

Dolfi, D.

Esman, R. D.

K. J. Williams, L. Goldberg, R. D. Esman, M. Dagenais, and J. F. Weller, "6-34 GHz offset phase-locking of Nd:YAG 1319 nm nonplanar ring lasers," Electron. Lett. 25(18), 1242-1243 (1989).
[CrossRef]

Frein, L.

A. Rolland, L. Frein, M. Vallet, M. Brunel, F. Bondu, and T. Merlet, "40 GHz photonic synthesizer using a dual-polarization microlaser," IEEE Photon. Technol. Lett. 22(23), 1738-1740 (2010).
[CrossRef]

Goldberg, L.

K. J. Williams, L. Goldberg, R. D. Esman, M. Dagenais, and J. F. Weller, "6-34 GHz offset phase-locking of Nd:YAG 1319 nm nonplanar ring lasers," Electron. Lett. 25(18), 1242-1243 (1989).
[CrossRef]

Goldwasser, S. M.

Y. Li, J. C. Vieira, S. M. Goldwasser, and P. R. Herczfeld, "Rapidly tunable millimeter-wave optical transmitter for Lidar-Radar," IEEE Trans. Microw. Theory Tech. 49(10), 2048-2054 (2001).
[CrossRef]

Herczfeld, P. R.

Y. Li, J. C. Vieira, S. M. Goldwasser, and P. R. Herczfeld, "Rapidly tunable millimeter-wave optical transmitter for Lidar-Radar," IEEE Trans. Microw. Theory Tech. 49(10), 2048-2054 (2001).
[CrossRef]

Hisatake, S.

Huignard, J.-P.

Kobayashi, T.

Le Floch, A.

G. Pillet, L. Morvan, M. Brunel, F. Bretenaker, D. Dolfi, M. Vallet, J.-P. Huignard, and A. Le Floch, "Dual-frequency laser at 1.5 μm for optical distribution and generation of high-purity microwave signals," J. Lightwave Technol. 26(15), 2764-2773 (2008).
[CrossRef]

M. Alouini, B. Benazet, M. Vallet, M. Brunel, P. Di Bin, F. Bretenaker, A. Le Floch, and P. Thony, "Offset phase locking of Er:Yb:glass laser eigenstates for RF photonics applications," IEEE Photon. Technol. Lett. 13(4), 367-369 (2001).
[CrossRef]

Li, Y.

R. Wang, and Y. Li, "Dual-polarization spatial-hole-burning-free microchip laser," IEEE Photon. Technol. Lett. 21(17), 1214-1216 (2009).
[CrossRef]

Y. Li, J. C. Vieira, S. M. Goldwasser, and P. R. Herczfeld, "Rapidly tunable millimeter-wave optical transmitter for Lidar-Radar," IEEE Trans. Microw. Theory Tech. 49(10), 2048-2054 (2001).
[CrossRef]

McKay, A.

A. McKay, and J. M. Dawes, "Tunable terahertz signals using a helicoidally polarized ceramic microchip laser," IEEE Photon. Technol. Lett. 21(7), 480-482 (2009).
[CrossRef]

Merlet, T.

A. Rolland, L. Frein, M. Vallet, M. Brunel, F. Bondu, and T. Merlet, "40 GHz photonic synthesizer using a dual-polarization microlaser," IEEE Photon. Technol. Lett. 22(23), 1738-1740 (2010).
[CrossRef]

Morvan, L.

Nakase, Y.

Novak, D.

J. Capmany, and D. Novak, "Microwave photonics combines two worlds," Nat. Photonics 1, 319-330 (2007).
[CrossRef]

Oger, M.

M. Vallet, M. Brunel, and M. Oger, "RF photonic synthesizer," Electron. Lett. 43(25), 1437-1438 (2007).
[CrossRef]

Paquet, S.

H. R. Rideout, J. S. Seregelyi, S. Paquet, and J. Yao, "Discriminator-aided optical phase-lock loop incorporating a frequency down-conversion module," IEEE Photon. Technol. Lett. 18(22), 2344-2346 (2006).
[CrossRef]

G. Qi, J. Yao, J. Seregelyi, S. Paquet, and C. Bélisle, "Generation and distribution of a wide-band continuously tunable millimeter-wave signal with an optical external modulation technique," IEEE Trans. Microw. Theory Tech. 53(10), 3090-3097 (2005).
[CrossRef]

Pillet, G.

Qi, G.

G. Qi, J. Yao, J. Seregelyi, S. Paquet, and C. Bélisle, "Generation and distribution of a wide-band continuously tunable millimeter-wave signal with an optical external modulation technique," IEEE Trans. Microw. Theory Tech. 53(10), 3090-3097 (2005).
[CrossRef]

Rideout, H. R.

H. R. Rideout, J. S. Seregelyi, S. Paquet, and J. Yao, "Discriminator-aided optical phase-lock loop incorporating a frequency down-conversion module," IEEE Photon. Technol. Lett. 18(22), 2344-2346 (2006).
[CrossRef]

Rolland, A.

A. Rolland, L. Frein, M. Vallet, M. Brunel, F. Bondu, and T. Merlet, "40 GHz photonic synthesizer using a dual-polarization microlaser," IEEE Photon. Technol. Lett. 22(23), 1738-1740 (2010).
[CrossRef]

Seregelyi, J.

G. Qi, J. Yao, J. Seregelyi, S. Paquet, and C. Bélisle, "Generation and distribution of a wide-band continuously tunable millimeter-wave signal with an optical external modulation technique," IEEE Trans. Microw. Theory Tech. 53(10), 3090-3097 (2005).
[CrossRef]

Seregelyi, J. S.

H. R. Rideout, J. S. Seregelyi, S. Paquet, and J. Yao, "Discriminator-aided optical phase-lock loop incorporating a frequency down-conversion module," IEEE Photon. Technol. Lett. 18(22), 2344-2346 (2006).
[CrossRef]

Shibuya, K.

Thony, P.

M. Alouini, B. Benazet, M. Vallet, M. Brunel, P. Di Bin, F. Bretenaker, A. Le Floch, and P. Thony, "Offset phase locking of Er:Yb:glass laser eigenstates for RF photonics applications," IEEE Photon. Technol. Lett. 13(4), 367-369 (2001).
[CrossRef]

Vallet, M.

A. Rolland, L. Frein, M. Vallet, M. Brunel, F. Bondu, and T. Merlet, "40 GHz photonic synthesizer using a dual-polarization microlaser," IEEE Photon. Technol. Lett. 22(23), 1738-1740 (2010).
[CrossRef]

G. Pillet, L. Morvan, M. Brunel, F. Bretenaker, D. Dolfi, M. Vallet, J.-P. Huignard, and A. Le Floch, "Dual-frequency laser at 1.5 μm for optical distribution and generation of high-purity microwave signals," J. Lightwave Technol. 26(15), 2764-2773 (2008).
[CrossRef]

M. Vallet, M. Brunel, and M. Oger, "RF photonic synthesizer," Electron. Lett. 43(25), 1437-1438 (2007).
[CrossRef]

M. Brunel, A. Amon, and M. Vallet, "Dual-polarization microchip laser at 1.53 μm," Opt. Lett. 30(18), 2418-2420 (2005).
[CrossRef] [PubMed]

M. Alouini, B. Benazet, M. Vallet, M. Brunel, P. Di Bin, F. Bretenaker, A. Le Floch, and P. Thony, "Offset phase locking of Er:Yb:glass laser eigenstates for RF photonics applications," IEEE Photon. Technol. Lett. 13(4), 367-369 (2001).
[CrossRef]

Vieira, J. C.

Y. Li, J. C. Vieira, S. M. Goldwasser, and P. R. Herczfeld, "Rapidly tunable millimeter-wave optical transmitter for Lidar-Radar," IEEE Trans. Microw. Theory Tech. 49(10), 2048-2054 (2001).
[CrossRef]

Wang, R.

R. Wang, and Y. Li, "Dual-polarization spatial-hole-burning-free microchip laser," IEEE Photon. Technol. Lett. 21(17), 1214-1216 (2009).
[CrossRef]

Weller, J. F.

K. J. Williams, L. Goldberg, R. D. Esman, M. Dagenais, and J. F. Weller, "6-34 GHz offset phase-locking of Nd:YAG 1319 nm nonplanar ring lasers," Electron. Lett. 25(18), 1242-1243 (1989).
[CrossRef]

Williams, K. J.

K. J. Williams, L. Goldberg, R. D. Esman, M. Dagenais, and J. F. Weller, "6-34 GHz offset phase-locking of Nd:YAG 1319 nm nonplanar ring lasers," Electron. Lett. 25(18), 1242-1243 (1989).
[CrossRef]

Yao, J.

J. Yao, "Microwave photonics," J. Lightwave Technol. 27(3), 314-335 (2009).
[CrossRef]

H. R. Rideout, J. S. Seregelyi, S. Paquet, and J. Yao, "Discriminator-aided optical phase-lock loop incorporating a frequency down-conversion module," IEEE Photon. Technol. Lett. 18(22), 2344-2346 (2006).
[CrossRef]

G. Qi, J. Yao, J. Seregelyi, S. Paquet, and C. Bélisle, "Generation and distribution of a wide-band continuously tunable millimeter-wave signal with an optical external modulation technique," IEEE Trans. Microw. Theory Tech. 53(10), 3090-3097 (2005).
[CrossRef]

Electron. Lett. (2)

M. Vallet, M. Brunel, and M. Oger, "RF photonic synthesizer," Electron. Lett. 43(25), 1437-1438 (2007).
[CrossRef]

K. J. Williams, L. Goldberg, R. D. Esman, M. Dagenais, and J. F. Weller, "6-34 GHz offset phase-locking of Nd:YAG 1319 nm nonplanar ring lasers," Electron. Lett. 25(18), 1242-1243 (1989).
[CrossRef]

IEEE Photon. Technol. Lett. (5)

H. R. Rideout, J. S. Seregelyi, S. Paquet, and J. Yao, "Discriminator-aided optical phase-lock loop incorporating a frequency down-conversion module," IEEE Photon. Technol. Lett. 18(22), 2344-2346 (2006).
[CrossRef]

A. Rolland, L. Frein, M. Vallet, M. Brunel, F. Bondu, and T. Merlet, "40 GHz photonic synthesizer using a dual-polarization microlaser," IEEE Photon. Technol. Lett. 22(23), 1738-1740 (2010).
[CrossRef]

A. McKay, and J. M. Dawes, "Tunable terahertz signals using a helicoidally polarized ceramic microchip laser," IEEE Photon. Technol. Lett. 21(7), 480-482 (2009).
[CrossRef]

R. Wang, and Y. Li, "Dual-polarization spatial-hole-burning-free microchip laser," IEEE Photon. Technol. Lett. 21(17), 1214-1216 (2009).
[CrossRef]

M. Alouini, B. Benazet, M. Vallet, M. Brunel, P. Di Bin, F. Bretenaker, A. Le Floch, and P. Thony, "Offset phase locking of Er:Yb:glass laser eigenstates for RF photonics applications," IEEE Photon. Technol. Lett. 13(4), 367-369 (2001).
[CrossRef]

IEEE Trans. Microw. Theory Tech. (2)

G. Qi, J. Yao, J. Seregelyi, S. Paquet, and C. Bélisle, "Generation and distribution of a wide-band continuously tunable millimeter-wave signal with an optical external modulation technique," IEEE Trans. Microw. Theory Tech. 53(10), 3090-3097 (2005).
[CrossRef]

Y. Li, J. C. Vieira, S. M. Goldwasser, and P. R. Herczfeld, "Rapidly tunable millimeter-wave optical transmitter for Lidar-Radar," IEEE Trans. Microw. Theory Tech. 49(10), 2048-2054 (2001).
[CrossRef]

J. Lightwave Technol. (2)

Nat. Photonics (1)

J. Capmany, and D. Novak, "Microwave photonics combines two worlds," Nat. Photonics 1, 319-330 (2007).
[CrossRef]

Opt. Lett. (2)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Optical down-conversion. (a) Set-up: dual-frequency microchip laser; P, polarizer; MZM, intensity modulator. (b) MZM transmission when Vbias = Vπ/2, leading to the output spectrum (c). (d) MZM transmission when Vbias =0 leading to the output spectrum (e).

Fig. 2
Fig. 2

Schematic of the experiemental setup. See text for details

Fig. 3
Fig. 3

Illustration of the optical down-conversion. Electrical spectrum of the photocurrent with Δν = 21 GHz and fRF = 8.5 GHz, yielding fi = 4 GHz.

Fig. 4
Fig. 4

(a) Free-running beat fluctuation over 10 minutes, measured with the MaxHold function of the electrical spectrum analyzer. (b) Thermo-optic tuning of the beat note. (c)–(d) Stabilized IF signals when the servo-loop is closed. Resolution bandwidth 1 Hz, video averaging 10. In (c), Δν = 20 GHz, fRF = 9.75 GHz, a = 0.5 (quadrature) ). In (d), Δν = 40 GHz, fRF = 9.875 GHz, a = 1 (phase).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I out ( t ) = I in 2 I in [ J 1 ( b π ) sin ( ω R F t ) + J 3 ( b π ) sin ( 3 ω R F t ) + J 5 ( b π ) sin ( 5 ω R F t ) + ] ,
I out ( t ) = I in 2 + I in 2 J 0 ( b π ) + I in [ J 2 ( b π ) cos ( 2 ω R F t ) + J 4 ( b π ) cos ( 4 ω R F t ) + ] .

Metrics