Abstract

We demonstrated the feasibility of blood cell assisted in vivo Particle Image Velocimetry using confocal microscopy. Blood flow of skin vessel in a mouse was non-invasively imaged in vivo using a confocal microscopy. The video-rate confocal microscope was used to monitor the motion of the blood cells in the capillary of a live mouse ear. The home-built confocal laser scanning microscopy allowed us to take images at the acquisition rate of 30 frames per second. The individual blood cells could be distinguished from other cells and the trajectory of the each cell could be followed in the sequential images. The acquired confocal images were used to get the velocity profile of the in vivo blood flow in conjunction with the Particle Image Velocimetry (PIV), without injecting any exogenous nano/micro particles into the mouse. We were able to measure the blood velocity up to a few hundreds µm/sec for various vessels in a live mouse. Because there is no need for the injection of the exogenous tracing particles, it is expected that we could apply the current technology to the study of human capillary blood stream.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. N. Ku, “Blood flow in arteries,” Annu. Rev. Fluid Mech. 29(1), 399–434 (1997).
    [CrossRef]
  2. L. Dintenfass, “Blood rheology in pathogenesis of the coronary heart diseases,” Am. Heart J. 77(1), 139–147 (1969).
    [CrossRef] [PubMed]
  3. E. Fossum, A. Høieggen, A. Moan, G. Nordby, T. L. Velund, and S. E. Kjeldsen, “Whole blood viscosity, blood pressure and cardiovascular risk factors in healthy blood donors,” Blood Press. 6(3), 161–165 (1997).
    [CrossRef] [PubMed]
  4. A. J. Lee, P. I. Mowbray, G. D. Lowe, A. Rumley, F. G. Fowkes, and P. L. Allan, “Blood viscosity and elevated carotid intima-media thickness in men and women: the Edinburgh Artery Study,” Circulation 97(15), 1467–1473 (1998).
    [PubMed]
  5. K. Toth, G. Kesmarky, J. Vekasi, J. Nemes, L. Czopf, P. Kapronczay, R. Halmosi, E. Papp, and I. Juricskay, “Hemorheological and hemodynamic parameters in patients with essential hypertension,” Clin. Hemorheol. Microcirc. 21(3-4), 209–216 (1999).
  6. K. L. Resch, E. Ernst, A. Matrai, and H. F. Paulsen, “Fibrinogen and viscosity as risk factors for subsequent cardiovascular events in stroke survivors,” Ann. Intern. Med. 117(5), 371–375 (1992).
    [PubMed]
  7. J. R. Haywood, R. A. Shaffer, C. Fastenow, G. D. Fink, and M. J. Brody, “Regional blood flow measurement with pulsed Doppler flowmeter in conscious rat,” Am. J. Physiol. 241(2), H273–H278 (1981).
    [PubMed]
  8. H. Wayland and P. C. Johnson, “Erythrocyte velocity measurement in microvessels by a two-slit photometric method,” J. Appl. Physiol. 22(2), 333–337 (1967).
    [PubMed]
  9. T. Cochrane, J. C. Earnshaw, and A. H. G. Love, “Laser Doppler measurement of blood velocity in microvessels,” Med. Biol. Eng. Comput. 19(5), 589–596 (1981).
    [CrossRef] [PubMed]
  10. J. Seki, Y. Sasaki, T. Oyama, and J. Yamamoto, “Fiber-optic laser-Doppler anemometer microscope applied to the cerebral microcirculation in rats,” Biorheology 33(6), 463–470 (1996).
    [CrossRef] [PubMed]
  11. Y. Zhao, Z. Chen, C. Saxer, S. Xiang, J. F. de Boer, and J. S. Nelson, “Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity,” Opt. Lett. 25(2), 114–116 (2000).
    [CrossRef]
  12. Z. Chen, T. E. Milner, S. Srinivas, X. Wang, A. Malekafzali, M. J. van Gemert, and J. S. Nelson, “Noninvasive imaging of in vivo blood flow velocity using optical Doppler tomography,” Opt. Lett. 22(14), 1119–1121 (1997).
    [CrossRef] [PubMed]
  13. Y. C. Ahn, W. G. Jung, and Z. Chen, “Optical sectioning for microfluidics: secondary flow and mixing in a meandering microchannel,” Lab Chip 8(1), 125–133 (2007).
    [CrossRef] [PubMed]
  14. R. J. Adrian, “Particle-imaging techniques for experimental fluid mechanics,” Annu. Rev. Fluid Mech. 23(1), 261–304 (1991).
    [CrossRef]
  15. C. Poelma, P. Vennemann, R. Lindken, and J. Westerweel, “In vivo blood flow and wall shear stress measurements in the vitelline network,” Exp. Fluids 45(4), 703–713 (2008).
    [CrossRef]
  16. P. Vennemann, K. T. Kiger, R. Lindken, B. C. Groenendijk, S. Stekelenburg-de Vos, T. L. ten Hagen, N. T. Ursem, R. E. Poelmann, J. Westerweel, and B. P. Hierck, “In vivo micro particle image velocimetry measurements of blood-plasma in the embryonic avian heart,” J. Biomech. 39(7), 1191–1200 (2006).
    [CrossRef]
  17. C. D. Meinhart, S. T. Wereley, and J. G. Santiago, “PIV measurements of a microchannel flow,” Exp. Fluids 27(5), 414–419 (1999).
    [CrossRef]
  18. M. R. Bown, J. M. MacInnes, and R. W. K. Allen, “Micro-PIV simulation and measurement in complex microchannel geometries,” Meas. Sci. Technol. 16(3), 619–626 (2005).
    [CrossRef]
  19. R. Okuda, Y. Sugii, and K. Okamoto, “Velocity measurement of blood flow in a microtube using micro PIV system,” in Proceedings of PSFVIP-4, (Chamonix. France. Jun. 2003), pp. 1–7.
  20. Y. Sugii, S. Nishio, and K. Okamoto, “In vivo PIV measurement of red blood cell velocity field in microvessels considering mesentery motion,” Physiol. Meas. 23(2), 403–416 (2002).
    [CrossRef] [PubMed]
  21. A. Nakano, Y. Sugii, M. Minamiyama, and H. Niimi, “Measurement of red cell velocity in microvessels using particle image velocimetry (PIV),” Clin. Hemorheol. Microcirc. 29(3-4), 445–455 (2003).
  22. J. Y. Lee, H. S. Ji, and S. J. Lee, “Micro-PIV measurements of blood flow in extraembryonic blood vessels of chicken embryos,” Physiol. Meas. 28(10), 1149–1162 (2007).
    [CrossRef] [PubMed]
  23. M. Minsky, “Microscopy apparatus,” US patent 3013467 (1961).
  24. T. Wilson, and T. Confocal Microscopy, Wilson, ed. (Academic Press, 1990).
  25. J. S. Park, C. K. Choi, and K. D. Kihm, “Optically sliced micro-PIV using confocal laser scanning microscopy (CLSM),” Exp. Fluids 37(1), 105–119 (2004).
    [CrossRef]
  26. H. Kinoshita, S. Kaneda, T. Fujii, and M. Oshima, “Three-dimensional measurement and visualization of internal flow of a moving droplet using confocal micro-PIV,” Lab Chip 7(3), 338–346 (2007).
    [CrossRef] [PubMed]
  27. R. Lima, S. Wada, M. Takeda, K. Tsubota, and T. Yamaguchi, “In vitro confocal micro-PIV measurements of blood flow in a square microchannel: the effect of the haematocrit on instantaneous velocity profiles,” J. Biomech. 40(12), 2752–2757 (2007).
    [CrossRef] [PubMed]
  28. W. H. Kim, C. I. Kim, S. W. Lee, S. H. Lim, C. W. Park, H. Lee, and M. K. Park, “Particle image velocimetry of the blood flow in a micro-tube using the confocal laser scanning microscope,” J. Opt. Soc. Korea 14(1), 42–48 (2010).
    [CrossRef]
  29. I. Veilleux, J. A. Spencer, D. P. Biss, D. Côté, and C. P. Lin, “In vivo cell tracking with multimodal video rate microscopy,” IEEE J. Sel. Top. Quantum Electron. 14(1), 10–18 (2008).
    [CrossRef]
  30. R. D. Keane and R. J. Adrian, “Theory of cross-correlation analysis of PIV images,” Appl. Sci. Res. 49(3), 191–215 (1992).
    [CrossRef]

2010 (1)

2008 (2)

I. Veilleux, J. A. Spencer, D. P. Biss, D. Côté, and C. P. Lin, “In vivo cell tracking with multimodal video rate microscopy,” IEEE J. Sel. Top. Quantum Electron. 14(1), 10–18 (2008).
[CrossRef]

C. Poelma, P. Vennemann, R. Lindken, and J. Westerweel, “In vivo blood flow and wall shear stress measurements in the vitelline network,” Exp. Fluids 45(4), 703–713 (2008).
[CrossRef]

2007 (4)

Y. C. Ahn, W. G. Jung, and Z. Chen, “Optical sectioning for microfluidics: secondary flow and mixing in a meandering microchannel,” Lab Chip 8(1), 125–133 (2007).
[CrossRef] [PubMed]

H. Kinoshita, S. Kaneda, T. Fujii, and M. Oshima, “Three-dimensional measurement and visualization of internal flow of a moving droplet using confocal micro-PIV,” Lab Chip 7(3), 338–346 (2007).
[CrossRef] [PubMed]

R. Lima, S. Wada, M. Takeda, K. Tsubota, and T. Yamaguchi, “In vitro confocal micro-PIV measurements of blood flow in a square microchannel: the effect of the haematocrit on instantaneous velocity profiles,” J. Biomech. 40(12), 2752–2757 (2007).
[CrossRef] [PubMed]

J. Y. Lee, H. S. Ji, and S. J. Lee, “Micro-PIV measurements of blood flow in extraembryonic blood vessels of chicken embryos,” Physiol. Meas. 28(10), 1149–1162 (2007).
[CrossRef] [PubMed]

2006 (1)

P. Vennemann, K. T. Kiger, R. Lindken, B. C. Groenendijk, S. Stekelenburg-de Vos, T. L. ten Hagen, N. T. Ursem, R. E. Poelmann, J. Westerweel, and B. P. Hierck, “In vivo micro particle image velocimetry measurements of blood-plasma in the embryonic avian heart,” J. Biomech. 39(7), 1191–1200 (2006).
[CrossRef]

2005 (1)

M. R. Bown, J. M. MacInnes, and R. W. K. Allen, “Micro-PIV simulation and measurement in complex microchannel geometries,” Meas. Sci. Technol. 16(3), 619–626 (2005).
[CrossRef]

2004 (1)

J. S. Park, C. K. Choi, and K. D. Kihm, “Optically sliced micro-PIV using confocal laser scanning microscopy (CLSM),” Exp. Fluids 37(1), 105–119 (2004).
[CrossRef]

2003 (1)

A. Nakano, Y. Sugii, M. Minamiyama, and H. Niimi, “Measurement of red cell velocity in microvessels using particle image velocimetry (PIV),” Clin. Hemorheol. Microcirc. 29(3-4), 445–455 (2003).

2002 (1)

Y. Sugii, S. Nishio, and K. Okamoto, “In vivo PIV measurement of red blood cell velocity field in microvessels considering mesentery motion,” Physiol. Meas. 23(2), 403–416 (2002).
[CrossRef] [PubMed]

2000 (1)

1999 (2)

C. D. Meinhart, S. T. Wereley, and J. G. Santiago, “PIV measurements of a microchannel flow,” Exp. Fluids 27(5), 414–419 (1999).
[CrossRef]

K. Toth, G. Kesmarky, J. Vekasi, J. Nemes, L. Czopf, P. Kapronczay, R. Halmosi, E. Papp, and I. Juricskay, “Hemorheological and hemodynamic parameters in patients with essential hypertension,” Clin. Hemorheol. Microcirc. 21(3-4), 209–216 (1999).

1998 (1)

A. J. Lee, P. I. Mowbray, G. D. Lowe, A. Rumley, F. G. Fowkes, and P. L. Allan, “Blood viscosity and elevated carotid intima-media thickness in men and women: the Edinburgh Artery Study,” Circulation 97(15), 1467–1473 (1998).
[PubMed]

1997 (3)

E. Fossum, A. Høieggen, A. Moan, G. Nordby, T. L. Velund, and S. E. Kjeldsen, “Whole blood viscosity, blood pressure and cardiovascular risk factors in healthy blood donors,” Blood Press. 6(3), 161–165 (1997).
[CrossRef] [PubMed]

D. N. Ku, “Blood flow in arteries,” Annu. Rev. Fluid Mech. 29(1), 399–434 (1997).
[CrossRef]

Z. Chen, T. E. Milner, S. Srinivas, X. Wang, A. Malekafzali, M. J. van Gemert, and J. S. Nelson, “Noninvasive imaging of in vivo blood flow velocity using optical Doppler tomography,” Opt. Lett. 22(14), 1119–1121 (1997).
[CrossRef] [PubMed]

1996 (1)

J. Seki, Y. Sasaki, T. Oyama, and J. Yamamoto, “Fiber-optic laser-Doppler anemometer microscope applied to the cerebral microcirculation in rats,” Biorheology 33(6), 463–470 (1996).
[CrossRef] [PubMed]

1992 (2)

K. L. Resch, E. Ernst, A. Matrai, and H. F. Paulsen, “Fibrinogen and viscosity as risk factors for subsequent cardiovascular events in stroke survivors,” Ann. Intern. Med. 117(5), 371–375 (1992).
[PubMed]

R. D. Keane and R. J. Adrian, “Theory of cross-correlation analysis of PIV images,” Appl. Sci. Res. 49(3), 191–215 (1992).
[CrossRef]

1991 (1)

R. J. Adrian, “Particle-imaging techniques for experimental fluid mechanics,” Annu. Rev. Fluid Mech. 23(1), 261–304 (1991).
[CrossRef]

1981 (2)

T. Cochrane, J. C. Earnshaw, and A. H. G. Love, “Laser Doppler measurement of blood velocity in microvessels,” Med. Biol. Eng. Comput. 19(5), 589–596 (1981).
[CrossRef] [PubMed]

J. R. Haywood, R. A. Shaffer, C. Fastenow, G. D. Fink, and M. J. Brody, “Regional blood flow measurement with pulsed Doppler flowmeter in conscious rat,” Am. J. Physiol. 241(2), H273–H278 (1981).
[PubMed]

1969 (1)

L. Dintenfass, “Blood rheology in pathogenesis of the coronary heart diseases,” Am. Heart J. 77(1), 139–147 (1969).
[CrossRef] [PubMed]

1967 (1)

H. Wayland and P. C. Johnson, “Erythrocyte velocity measurement in microvessels by a two-slit photometric method,” J. Appl. Physiol. 22(2), 333–337 (1967).
[PubMed]

Adrian, R. J.

R. D. Keane and R. J. Adrian, “Theory of cross-correlation analysis of PIV images,” Appl. Sci. Res. 49(3), 191–215 (1992).
[CrossRef]

R. J. Adrian, “Particle-imaging techniques for experimental fluid mechanics,” Annu. Rev. Fluid Mech. 23(1), 261–304 (1991).
[CrossRef]

Ahn, Y. C.

Y. C. Ahn, W. G. Jung, and Z. Chen, “Optical sectioning for microfluidics: secondary flow and mixing in a meandering microchannel,” Lab Chip 8(1), 125–133 (2007).
[CrossRef] [PubMed]

Allan, P. L.

A. J. Lee, P. I. Mowbray, G. D. Lowe, A. Rumley, F. G. Fowkes, and P. L. Allan, “Blood viscosity and elevated carotid intima-media thickness in men and women: the Edinburgh Artery Study,” Circulation 97(15), 1467–1473 (1998).
[PubMed]

Allen, R. W. K.

M. R. Bown, J. M. MacInnes, and R. W. K. Allen, “Micro-PIV simulation and measurement in complex microchannel geometries,” Meas. Sci. Technol. 16(3), 619–626 (2005).
[CrossRef]

Biss, D. P.

I. Veilleux, J. A. Spencer, D. P. Biss, D. Côté, and C. P. Lin, “In vivo cell tracking with multimodal video rate microscopy,” IEEE J. Sel. Top. Quantum Electron. 14(1), 10–18 (2008).
[CrossRef]

Bown, M. R.

M. R. Bown, J. M. MacInnes, and R. W. K. Allen, “Micro-PIV simulation and measurement in complex microchannel geometries,” Meas. Sci. Technol. 16(3), 619–626 (2005).
[CrossRef]

Brody, M. J.

J. R. Haywood, R. A. Shaffer, C. Fastenow, G. D. Fink, and M. J. Brody, “Regional blood flow measurement with pulsed Doppler flowmeter in conscious rat,” Am. J. Physiol. 241(2), H273–H278 (1981).
[PubMed]

Chen, Z.

Choi, C. K.

J. S. Park, C. K. Choi, and K. D. Kihm, “Optically sliced micro-PIV using confocal laser scanning microscopy (CLSM),” Exp. Fluids 37(1), 105–119 (2004).
[CrossRef]

Cochrane, T.

T. Cochrane, J. C. Earnshaw, and A. H. G. Love, “Laser Doppler measurement of blood velocity in microvessels,” Med. Biol. Eng. Comput. 19(5), 589–596 (1981).
[CrossRef] [PubMed]

Côté, D.

I. Veilleux, J. A. Spencer, D. P. Biss, D. Côté, and C. P. Lin, “In vivo cell tracking with multimodal video rate microscopy,” IEEE J. Sel. Top. Quantum Electron. 14(1), 10–18 (2008).
[CrossRef]

Czopf, L.

K. Toth, G. Kesmarky, J. Vekasi, J. Nemes, L. Czopf, P. Kapronczay, R. Halmosi, E. Papp, and I. Juricskay, “Hemorheological and hemodynamic parameters in patients with essential hypertension,” Clin. Hemorheol. Microcirc. 21(3-4), 209–216 (1999).

de Boer, J. F.

Dintenfass, L.

L. Dintenfass, “Blood rheology in pathogenesis of the coronary heart diseases,” Am. Heart J. 77(1), 139–147 (1969).
[CrossRef] [PubMed]

Earnshaw, J. C.

T. Cochrane, J. C. Earnshaw, and A. H. G. Love, “Laser Doppler measurement of blood velocity in microvessels,” Med. Biol. Eng. Comput. 19(5), 589–596 (1981).
[CrossRef] [PubMed]

Ernst, E.

K. L. Resch, E. Ernst, A. Matrai, and H. F. Paulsen, “Fibrinogen and viscosity as risk factors for subsequent cardiovascular events in stroke survivors,” Ann. Intern. Med. 117(5), 371–375 (1992).
[PubMed]

Fastenow, C.

J. R. Haywood, R. A. Shaffer, C. Fastenow, G. D. Fink, and M. J. Brody, “Regional blood flow measurement with pulsed Doppler flowmeter in conscious rat,” Am. J. Physiol. 241(2), H273–H278 (1981).
[PubMed]

Fink, G. D.

J. R. Haywood, R. A. Shaffer, C. Fastenow, G. D. Fink, and M. J. Brody, “Regional blood flow measurement with pulsed Doppler flowmeter in conscious rat,” Am. J. Physiol. 241(2), H273–H278 (1981).
[PubMed]

Fossum, E.

E. Fossum, A. Høieggen, A. Moan, G. Nordby, T. L. Velund, and S. E. Kjeldsen, “Whole blood viscosity, blood pressure and cardiovascular risk factors in healthy blood donors,” Blood Press. 6(3), 161–165 (1997).
[CrossRef] [PubMed]

Fowkes, F. G.

A. J. Lee, P. I. Mowbray, G. D. Lowe, A. Rumley, F. G. Fowkes, and P. L. Allan, “Blood viscosity and elevated carotid intima-media thickness in men and women: the Edinburgh Artery Study,” Circulation 97(15), 1467–1473 (1998).
[PubMed]

Fujii, T.

H. Kinoshita, S. Kaneda, T. Fujii, and M. Oshima, “Three-dimensional measurement and visualization of internal flow of a moving droplet using confocal micro-PIV,” Lab Chip 7(3), 338–346 (2007).
[CrossRef] [PubMed]

Groenendijk, B. C.

P. Vennemann, K. T. Kiger, R. Lindken, B. C. Groenendijk, S. Stekelenburg-de Vos, T. L. ten Hagen, N. T. Ursem, R. E. Poelmann, J. Westerweel, and B. P. Hierck, “In vivo micro particle image velocimetry measurements of blood-plasma in the embryonic avian heart,” J. Biomech. 39(7), 1191–1200 (2006).
[CrossRef]

Halmosi, R.

K. Toth, G. Kesmarky, J. Vekasi, J. Nemes, L. Czopf, P. Kapronczay, R. Halmosi, E. Papp, and I. Juricskay, “Hemorheological and hemodynamic parameters in patients with essential hypertension,” Clin. Hemorheol. Microcirc. 21(3-4), 209–216 (1999).

Haywood, J. R.

J. R. Haywood, R. A. Shaffer, C. Fastenow, G. D. Fink, and M. J. Brody, “Regional blood flow measurement with pulsed Doppler flowmeter in conscious rat,” Am. J. Physiol. 241(2), H273–H278 (1981).
[PubMed]

Hierck, B. P.

P. Vennemann, K. T. Kiger, R. Lindken, B. C. Groenendijk, S. Stekelenburg-de Vos, T. L. ten Hagen, N. T. Ursem, R. E. Poelmann, J. Westerweel, and B. P. Hierck, “In vivo micro particle image velocimetry measurements of blood-plasma in the embryonic avian heart,” J. Biomech. 39(7), 1191–1200 (2006).
[CrossRef]

Høieggen, A.

E. Fossum, A. Høieggen, A. Moan, G. Nordby, T. L. Velund, and S. E. Kjeldsen, “Whole blood viscosity, blood pressure and cardiovascular risk factors in healthy blood donors,” Blood Press. 6(3), 161–165 (1997).
[CrossRef] [PubMed]

Ji, H. S.

J. Y. Lee, H. S. Ji, and S. J. Lee, “Micro-PIV measurements of blood flow in extraembryonic blood vessels of chicken embryos,” Physiol. Meas. 28(10), 1149–1162 (2007).
[CrossRef] [PubMed]

Johnson, P. C.

H. Wayland and P. C. Johnson, “Erythrocyte velocity measurement in microvessels by a two-slit photometric method,” J. Appl. Physiol. 22(2), 333–337 (1967).
[PubMed]

Jung, W. G.

Y. C. Ahn, W. G. Jung, and Z. Chen, “Optical sectioning for microfluidics: secondary flow and mixing in a meandering microchannel,” Lab Chip 8(1), 125–133 (2007).
[CrossRef] [PubMed]

Juricskay, I.

K. Toth, G. Kesmarky, J. Vekasi, J. Nemes, L. Czopf, P. Kapronczay, R. Halmosi, E. Papp, and I. Juricskay, “Hemorheological and hemodynamic parameters in patients with essential hypertension,” Clin. Hemorheol. Microcirc. 21(3-4), 209–216 (1999).

Kaneda, S.

H. Kinoshita, S. Kaneda, T. Fujii, and M. Oshima, “Three-dimensional measurement and visualization of internal flow of a moving droplet using confocal micro-PIV,” Lab Chip 7(3), 338–346 (2007).
[CrossRef] [PubMed]

Kapronczay, P.

K. Toth, G. Kesmarky, J. Vekasi, J. Nemes, L. Czopf, P. Kapronczay, R. Halmosi, E. Papp, and I. Juricskay, “Hemorheological and hemodynamic parameters in patients with essential hypertension,” Clin. Hemorheol. Microcirc. 21(3-4), 209–216 (1999).

Keane, R. D.

R. D. Keane and R. J. Adrian, “Theory of cross-correlation analysis of PIV images,” Appl. Sci. Res. 49(3), 191–215 (1992).
[CrossRef]

Kesmarky, G.

K. Toth, G. Kesmarky, J. Vekasi, J. Nemes, L. Czopf, P. Kapronczay, R. Halmosi, E. Papp, and I. Juricskay, “Hemorheological and hemodynamic parameters in patients with essential hypertension,” Clin. Hemorheol. Microcirc. 21(3-4), 209–216 (1999).

Kiger, K. T.

P. Vennemann, K. T. Kiger, R. Lindken, B. C. Groenendijk, S. Stekelenburg-de Vos, T. L. ten Hagen, N. T. Ursem, R. E. Poelmann, J. Westerweel, and B. P. Hierck, “In vivo micro particle image velocimetry measurements of blood-plasma in the embryonic avian heart,” J. Biomech. 39(7), 1191–1200 (2006).
[CrossRef]

Kihm, K. D.

J. S. Park, C. K. Choi, and K. D. Kihm, “Optically sliced micro-PIV using confocal laser scanning microscopy (CLSM),” Exp. Fluids 37(1), 105–119 (2004).
[CrossRef]

Kim, C. I.

Kim, W. H.

Kinoshita, H.

H. Kinoshita, S. Kaneda, T. Fujii, and M. Oshima, “Three-dimensional measurement and visualization of internal flow of a moving droplet using confocal micro-PIV,” Lab Chip 7(3), 338–346 (2007).
[CrossRef] [PubMed]

Kjeldsen, S. E.

E. Fossum, A. Høieggen, A. Moan, G. Nordby, T. L. Velund, and S. E. Kjeldsen, “Whole blood viscosity, blood pressure and cardiovascular risk factors in healthy blood donors,” Blood Press. 6(3), 161–165 (1997).
[CrossRef] [PubMed]

Ku, D. N.

D. N. Ku, “Blood flow in arteries,” Annu. Rev. Fluid Mech. 29(1), 399–434 (1997).
[CrossRef]

Lee, A. J.

A. J. Lee, P. I. Mowbray, G. D. Lowe, A. Rumley, F. G. Fowkes, and P. L. Allan, “Blood viscosity and elevated carotid intima-media thickness in men and women: the Edinburgh Artery Study,” Circulation 97(15), 1467–1473 (1998).
[PubMed]

Lee, H.

Lee, J. Y.

J. Y. Lee, H. S. Ji, and S. J. Lee, “Micro-PIV measurements of blood flow in extraembryonic blood vessels of chicken embryos,” Physiol. Meas. 28(10), 1149–1162 (2007).
[CrossRef] [PubMed]

Lee, S. J.

J. Y. Lee, H. S. Ji, and S. J. Lee, “Micro-PIV measurements of blood flow in extraembryonic blood vessels of chicken embryos,” Physiol. Meas. 28(10), 1149–1162 (2007).
[CrossRef] [PubMed]

Lee, S. W.

Lim, S. H.

Lima, R.

R. Lima, S. Wada, M. Takeda, K. Tsubota, and T. Yamaguchi, “In vitro confocal micro-PIV measurements of blood flow in a square microchannel: the effect of the haematocrit on instantaneous velocity profiles,” J. Biomech. 40(12), 2752–2757 (2007).
[CrossRef] [PubMed]

Lin, C. P.

I. Veilleux, J. A. Spencer, D. P. Biss, D. Côté, and C. P. Lin, “In vivo cell tracking with multimodal video rate microscopy,” IEEE J. Sel. Top. Quantum Electron. 14(1), 10–18 (2008).
[CrossRef]

Lindken, R.

C. Poelma, P. Vennemann, R. Lindken, and J. Westerweel, “In vivo blood flow and wall shear stress measurements in the vitelline network,” Exp. Fluids 45(4), 703–713 (2008).
[CrossRef]

P. Vennemann, K. T. Kiger, R. Lindken, B. C. Groenendijk, S. Stekelenburg-de Vos, T. L. ten Hagen, N. T. Ursem, R. E. Poelmann, J. Westerweel, and B. P. Hierck, “In vivo micro particle image velocimetry measurements of blood-plasma in the embryonic avian heart,” J. Biomech. 39(7), 1191–1200 (2006).
[CrossRef]

Love, A. H. G.

T. Cochrane, J. C. Earnshaw, and A. H. G. Love, “Laser Doppler measurement of blood velocity in microvessels,” Med. Biol. Eng. Comput. 19(5), 589–596 (1981).
[CrossRef] [PubMed]

Lowe, G. D.

A. J. Lee, P. I. Mowbray, G. D. Lowe, A. Rumley, F. G. Fowkes, and P. L. Allan, “Blood viscosity and elevated carotid intima-media thickness in men and women: the Edinburgh Artery Study,” Circulation 97(15), 1467–1473 (1998).
[PubMed]

MacInnes, J. M.

M. R. Bown, J. M. MacInnes, and R. W. K. Allen, “Micro-PIV simulation and measurement in complex microchannel geometries,” Meas. Sci. Technol. 16(3), 619–626 (2005).
[CrossRef]

Malekafzali, A.

Matrai, A.

K. L. Resch, E. Ernst, A. Matrai, and H. F. Paulsen, “Fibrinogen and viscosity as risk factors for subsequent cardiovascular events in stroke survivors,” Ann. Intern. Med. 117(5), 371–375 (1992).
[PubMed]

Meinhart, C. D.

C. D. Meinhart, S. T. Wereley, and J. G. Santiago, “PIV measurements of a microchannel flow,” Exp. Fluids 27(5), 414–419 (1999).
[CrossRef]

Milner, T. E.

Minamiyama, M.

A. Nakano, Y. Sugii, M. Minamiyama, and H. Niimi, “Measurement of red cell velocity in microvessels using particle image velocimetry (PIV),” Clin. Hemorheol. Microcirc. 29(3-4), 445–455 (2003).

Moan, A.

E. Fossum, A. Høieggen, A. Moan, G. Nordby, T. L. Velund, and S. E. Kjeldsen, “Whole blood viscosity, blood pressure and cardiovascular risk factors in healthy blood donors,” Blood Press. 6(3), 161–165 (1997).
[CrossRef] [PubMed]

Mowbray, P. I.

A. J. Lee, P. I. Mowbray, G. D. Lowe, A. Rumley, F. G. Fowkes, and P. L. Allan, “Blood viscosity and elevated carotid intima-media thickness in men and women: the Edinburgh Artery Study,” Circulation 97(15), 1467–1473 (1998).
[PubMed]

Nakano, A.

A. Nakano, Y. Sugii, M. Minamiyama, and H. Niimi, “Measurement of red cell velocity in microvessels using particle image velocimetry (PIV),” Clin. Hemorheol. Microcirc. 29(3-4), 445–455 (2003).

Nelson, J. S.

Nemes, J.

K. Toth, G. Kesmarky, J. Vekasi, J. Nemes, L. Czopf, P. Kapronczay, R. Halmosi, E. Papp, and I. Juricskay, “Hemorheological and hemodynamic parameters in patients with essential hypertension,” Clin. Hemorheol. Microcirc. 21(3-4), 209–216 (1999).

Niimi, H.

A. Nakano, Y. Sugii, M. Minamiyama, and H. Niimi, “Measurement of red cell velocity in microvessels using particle image velocimetry (PIV),” Clin. Hemorheol. Microcirc. 29(3-4), 445–455 (2003).

Nishio, S.

Y. Sugii, S. Nishio, and K. Okamoto, “In vivo PIV measurement of red blood cell velocity field in microvessels considering mesentery motion,” Physiol. Meas. 23(2), 403–416 (2002).
[CrossRef] [PubMed]

Nordby, G.

E. Fossum, A. Høieggen, A. Moan, G. Nordby, T. L. Velund, and S. E. Kjeldsen, “Whole blood viscosity, blood pressure and cardiovascular risk factors in healthy blood donors,” Blood Press. 6(3), 161–165 (1997).
[CrossRef] [PubMed]

Okamoto, K.

Y. Sugii, S. Nishio, and K. Okamoto, “In vivo PIV measurement of red blood cell velocity field in microvessels considering mesentery motion,” Physiol. Meas. 23(2), 403–416 (2002).
[CrossRef] [PubMed]

Oshima, M.

H. Kinoshita, S. Kaneda, T. Fujii, and M. Oshima, “Three-dimensional measurement and visualization of internal flow of a moving droplet using confocal micro-PIV,” Lab Chip 7(3), 338–346 (2007).
[CrossRef] [PubMed]

Oyama, T.

J. Seki, Y. Sasaki, T. Oyama, and J. Yamamoto, “Fiber-optic laser-Doppler anemometer microscope applied to the cerebral microcirculation in rats,” Biorheology 33(6), 463–470 (1996).
[CrossRef] [PubMed]

Papp, E.

K. Toth, G. Kesmarky, J. Vekasi, J. Nemes, L. Czopf, P. Kapronczay, R. Halmosi, E. Papp, and I. Juricskay, “Hemorheological and hemodynamic parameters in patients with essential hypertension,” Clin. Hemorheol. Microcirc. 21(3-4), 209–216 (1999).

Park, C. W.

Park, J. S.

J. S. Park, C. K. Choi, and K. D. Kihm, “Optically sliced micro-PIV using confocal laser scanning microscopy (CLSM),” Exp. Fluids 37(1), 105–119 (2004).
[CrossRef]

Park, M. K.

Paulsen, H. F.

K. L. Resch, E. Ernst, A. Matrai, and H. F. Paulsen, “Fibrinogen and viscosity as risk factors for subsequent cardiovascular events in stroke survivors,” Ann. Intern. Med. 117(5), 371–375 (1992).
[PubMed]

Poelma, C.

C. Poelma, P. Vennemann, R. Lindken, and J. Westerweel, “In vivo blood flow and wall shear stress measurements in the vitelline network,” Exp. Fluids 45(4), 703–713 (2008).
[CrossRef]

Poelmann, R. E.

P. Vennemann, K. T. Kiger, R. Lindken, B. C. Groenendijk, S. Stekelenburg-de Vos, T. L. ten Hagen, N. T. Ursem, R. E. Poelmann, J. Westerweel, and B. P. Hierck, “In vivo micro particle image velocimetry measurements of blood-plasma in the embryonic avian heart,” J. Biomech. 39(7), 1191–1200 (2006).
[CrossRef]

Resch, K. L.

K. L. Resch, E. Ernst, A. Matrai, and H. F. Paulsen, “Fibrinogen and viscosity as risk factors for subsequent cardiovascular events in stroke survivors,” Ann. Intern. Med. 117(5), 371–375 (1992).
[PubMed]

Rumley, A.

A. J. Lee, P. I. Mowbray, G. D. Lowe, A. Rumley, F. G. Fowkes, and P. L. Allan, “Blood viscosity and elevated carotid intima-media thickness in men and women: the Edinburgh Artery Study,” Circulation 97(15), 1467–1473 (1998).
[PubMed]

Santiago, J. G.

C. D. Meinhart, S. T. Wereley, and J. G. Santiago, “PIV measurements of a microchannel flow,” Exp. Fluids 27(5), 414–419 (1999).
[CrossRef]

Sasaki, Y.

J. Seki, Y. Sasaki, T. Oyama, and J. Yamamoto, “Fiber-optic laser-Doppler anemometer microscope applied to the cerebral microcirculation in rats,” Biorheology 33(6), 463–470 (1996).
[CrossRef] [PubMed]

Saxer, C.

Seki, J.

J. Seki, Y. Sasaki, T. Oyama, and J. Yamamoto, “Fiber-optic laser-Doppler anemometer microscope applied to the cerebral microcirculation in rats,” Biorheology 33(6), 463–470 (1996).
[CrossRef] [PubMed]

Shaffer, R. A.

J. R. Haywood, R. A. Shaffer, C. Fastenow, G. D. Fink, and M. J. Brody, “Regional blood flow measurement with pulsed Doppler flowmeter in conscious rat,” Am. J. Physiol. 241(2), H273–H278 (1981).
[PubMed]

Spencer, J. A.

I. Veilleux, J. A. Spencer, D. P. Biss, D. Côté, and C. P. Lin, “In vivo cell tracking with multimodal video rate microscopy,” IEEE J. Sel. Top. Quantum Electron. 14(1), 10–18 (2008).
[CrossRef]

Srinivas, S.

Stekelenburg-de Vos, S.

P. Vennemann, K. T. Kiger, R. Lindken, B. C. Groenendijk, S. Stekelenburg-de Vos, T. L. ten Hagen, N. T. Ursem, R. E. Poelmann, J. Westerweel, and B. P. Hierck, “In vivo micro particle image velocimetry measurements of blood-plasma in the embryonic avian heart,” J. Biomech. 39(7), 1191–1200 (2006).
[CrossRef]

Sugii, Y.

A. Nakano, Y. Sugii, M. Minamiyama, and H. Niimi, “Measurement of red cell velocity in microvessels using particle image velocimetry (PIV),” Clin. Hemorheol. Microcirc. 29(3-4), 445–455 (2003).

Y. Sugii, S. Nishio, and K. Okamoto, “In vivo PIV measurement of red blood cell velocity field in microvessels considering mesentery motion,” Physiol. Meas. 23(2), 403–416 (2002).
[CrossRef] [PubMed]

Takeda, M.

R. Lima, S. Wada, M. Takeda, K. Tsubota, and T. Yamaguchi, “In vitro confocal micro-PIV measurements of blood flow in a square microchannel: the effect of the haematocrit on instantaneous velocity profiles,” J. Biomech. 40(12), 2752–2757 (2007).
[CrossRef] [PubMed]

ten Hagen, T. L.

P. Vennemann, K. T. Kiger, R. Lindken, B. C. Groenendijk, S. Stekelenburg-de Vos, T. L. ten Hagen, N. T. Ursem, R. E. Poelmann, J. Westerweel, and B. P. Hierck, “In vivo micro particle image velocimetry measurements of blood-plasma in the embryonic avian heart,” J. Biomech. 39(7), 1191–1200 (2006).
[CrossRef]

Toth, K.

K. Toth, G. Kesmarky, J. Vekasi, J. Nemes, L. Czopf, P. Kapronczay, R. Halmosi, E. Papp, and I. Juricskay, “Hemorheological and hemodynamic parameters in patients with essential hypertension,” Clin. Hemorheol. Microcirc. 21(3-4), 209–216 (1999).

Tsubota, K.

R. Lima, S. Wada, M. Takeda, K. Tsubota, and T. Yamaguchi, “In vitro confocal micro-PIV measurements of blood flow in a square microchannel: the effect of the haematocrit on instantaneous velocity profiles,” J. Biomech. 40(12), 2752–2757 (2007).
[CrossRef] [PubMed]

Ursem, N. T.

P. Vennemann, K. T. Kiger, R. Lindken, B. C. Groenendijk, S. Stekelenburg-de Vos, T. L. ten Hagen, N. T. Ursem, R. E. Poelmann, J. Westerweel, and B. P. Hierck, “In vivo micro particle image velocimetry measurements of blood-plasma in the embryonic avian heart,” J. Biomech. 39(7), 1191–1200 (2006).
[CrossRef]

van Gemert, M. J.

Veilleux, I.

I. Veilleux, J. A. Spencer, D. P. Biss, D. Côté, and C. P. Lin, “In vivo cell tracking with multimodal video rate microscopy,” IEEE J. Sel. Top. Quantum Electron. 14(1), 10–18 (2008).
[CrossRef]

Vekasi, J.

K. Toth, G. Kesmarky, J. Vekasi, J. Nemes, L. Czopf, P. Kapronczay, R. Halmosi, E. Papp, and I. Juricskay, “Hemorheological and hemodynamic parameters in patients with essential hypertension,” Clin. Hemorheol. Microcirc. 21(3-4), 209–216 (1999).

Velund, T. L.

E. Fossum, A. Høieggen, A. Moan, G. Nordby, T. L. Velund, and S. E. Kjeldsen, “Whole blood viscosity, blood pressure and cardiovascular risk factors in healthy blood donors,” Blood Press. 6(3), 161–165 (1997).
[CrossRef] [PubMed]

Vennemann, P.

C. Poelma, P. Vennemann, R. Lindken, and J. Westerweel, “In vivo blood flow and wall shear stress measurements in the vitelline network,” Exp. Fluids 45(4), 703–713 (2008).
[CrossRef]

P. Vennemann, K. T. Kiger, R. Lindken, B. C. Groenendijk, S. Stekelenburg-de Vos, T. L. ten Hagen, N. T. Ursem, R. E. Poelmann, J. Westerweel, and B. P. Hierck, “In vivo micro particle image velocimetry measurements of blood-plasma in the embryonic avian heart,” J. Biomech. 39(7), 1191–1200 (2006).
[CrossRef]

Wada, S.

R. Lima, S. Wada, M. Takeda, K. Tsubota, and T. Yamaguchi, “In vitro confocal micro-PIV measurements of blood flow in a square microchannel: the effect of the haematocrit on instantaneous velocity profiles,” J. Biomech. 40(12), 2752–2757 (2007).
[CrossRef] [PubMed]

Wang, X.

Wayland, H.

H. Wayland and P. C. Johnson, “Erythrocyte velocity measurement in microvessels by a two-slit photometric method,” J. Appl. Physiol. 22(2), 333–337 (1967).
[PubMed]

Wereley, S. T.

C. D. Meinhart, S. T. Wereley, and J. G. Santiago, “PIV measurements of a microchannel flow,” Exp. Fluids 27(5), 414–419 (1999).
[CrossRef]

Westerweel, J.

C. Poelma, P. Vennemann, R. Lindken, and J. Westerweel, “In vivo blood flow and wall shear stress measurements in the vitelline network,” Exp. Fluids 45(4), 703–713 (2008).
[CrossRef]

P. Vennemann, K. T. Kiger, R. Lindken, B. C. Groenendijk, S. Stekelenburg-de Vos, T. L. ten Hagen, N. T. Ursem, R. E. Poelmann, J. Westerweel, and B. P. Hierck, “In vivo micro particle image velocimetry measurements of blood-plasma in the embryonic avian heart,” J. Biomech. 39(7), 1191–1200 (2006).
[CrossRef]

Xiang, S.

Yamaguchi, T.

R. Lima, S. Wada, M. Takeda, K. Tsubota, and T. Yamaguchi, “In vitro confocal micro-PIV measurements of blood flow in a square microchannel: the effect of the haematocrit on instantaneous velocity profiles,” J. Biomech. 40(12), 2752–2757 (2007).
[CrossRef] [PubMed]

Yamamoto, J.

J. Seki, Y. Sasaki, T. Oyama, and J. Yamamoto, “Fiber-optic laser-Doppler anemometer microscope applied to the cerebral microcirculation in rats,” Biorheology 33(6), 463–470 (1996).
[CrossRef] [PubMed]

Zhao, Y.

Am. Heart J. (1)

L. Dintenfass, “Blood rheology in pathogenesis of the coronary heart diseases,” Am. Heart J. 77(1), 139–147 (1969).
[CrossRef] [PubMed]

Am. J. Physiol. (1)

J. R. Haywood, R. A. Shaffer, C. Fastenow, G. D. Fink, and M. J. Brody, “Regional blood flow measurement with pulsed Doppler flowmeter in conscious rat,” Am. J. Physiol. 241(2), H273–H278 (1981).
[PubMed]

Ann. Intern. Med. (1)

K. L. Resch, E. Ernst, A. Matrai, and H. F. Paulsen, “Fibrinogen and viscosity as risk factors for subsequent cardiovascular events in stroke survivors,” Ann. Intern. Med. 117(5), 371–375 (1992).
[PubMed]

Annu. Rev. Fluid Mech. (2)

D. N. Ku, “Blood flow in arteries,” Annu. Rev. Fluid Mech. 29(1), 399–434 (1997).
[CrossRef]

R. J. Adrian, “Particle-imaging techniques for experimental fluid mechanics,” Annu. Rev. Fluid Mech. 23(1), 261–304 (1991).
[CrossRef]

Appl. Sci. Res. (1)

R. D. Keane and R. J. Adrian, “Theory of cross-correlation analysis of PIV images,” Appl. Sci. Res. 49(3), 191–215 (1992).
[CrossRef]

Biorheology (1)

J. Seki, Y. Sasaki, T. Oyama, and J. Yamamoto, “Fiber-optic laser-Doppler anemometer microscope applied to the cerebral microcirculation in rats,” Biorheology 33(6), 463–470 (1996).
[CrossRef] [PubMed]

Blood Press. (1)

E. Fossum, A. Høieggen, A. Moan, G. Nordby, T. L. Velund, and S. E. Kjeldsen, “Whole blood viscosity, blood pressure and cardiovascular risk factors in healthy blood donors,” Blood Press. 6(3), 161–165 (1997).
[CrossRef] [PubMed]

Circulation (1)

A. J. Lee, P. I. Mowbray, G. D. Lowe, A. Rumley, F. G. Fowkes, and P. L. Allan, “Blood viscosity and elevated carotid intima-media thickness in men and women: the Edinburgh Artery Study,” Circulation 97(15), 1467–1473 (1998).
[PubMed]

Clin. Hemorheol. Microcirc. (2)

K. Toth, G. Kesmarky, J. Vekasi, J. Nemes, L. Czopf, P. Kapronczay, R. Halmosi, E. Papp, and I. Juricskay, “Hemorheological and hemodynamic parameters in patients with essential hypertension,” Clin. Hemorheol. Microcirc. 21(3-4), 209–216 (1999).

A. Nakano, Y. Sugii, M. Minamiyama, and H. Niimi, “Measurement of red cell velocity in microvessels using particle image velocimetry (PIV),” Clin. Hemorheol. Microcirc. 29(3-4), 445–455 (2003).

Exp. Fluids (3)

J. S. Park, C. K. Choi, and K. D. Kihm, “Optically sliced micro-PIV using confocal laser scanning microscopy (CLSM),” Exp. Fluids 37(1), 105–119 (2004).
[CrossRef]

C. Poelma, P. Vennemann, R. Lindken, and J. Westerweel, “In vivo blood flow and wall shear stress measurements in the vitelline network,” Exp. Fluids 45(4), 703–713 (2008).
[CrossRef]

C. D. Meinhart, S. T. Wereley, and J. G. Santiago, “PIV measurements of a microchannel flow,” Exp. Fluids 27(5), 414–419 (1999).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

I. Veilleux, J. A. Spencer, D. P. Biss, D. Côté, and C. P. Lin, “In vivo cell tracking with multimodal video rate microscopy,” IEEE J. Sel. Top. Quantum Electron. 14(1), 10–18 (2008).
[CrossRef]

J. Appl. Physiol. (1)

H. Wayland and P. C. Johnson, “Erythrocyte velocity measurement in microvessels by a two-slit photometric method,” J. Appl. Physiol. 22(2), 333–337 (1967).
[PubMed]

J. Biomech. (2)

P. Vennemann, K. T. Kiger, R. Lindken, B. C. Groenendijk, S. Stekelenburg-de Vos, T. L. ten Hagen, N. T. Ursem, R. E. Poelmann, J. Westerweel, and B. P. Hierck, “In vivo micro particle image velocimetry measurements of blood-plasma in the embryonic avian heart,” J. Biomech. 39(7), 1191–1200 (2006).
[CrossRef]

R. Lima, S. Wada, M. Takeda, K. Tsubota, and T. Yamaguchi, “In vitro confocal micro-PIV measurements of blood flow in a square microchannel: the effect of the haematocrit on instantaneous velocity profiles,” J. Biomech. 40(12), 2752–2757 (2007).
[CrossRef] [PubMed]

J. Opt. Soc. Korea (1)

Lab Chip (2)

H. Kinoshita, S. Kaneda, T. Fujii, and M. Oshima, “Three-dimensional measurement and visualization of internal flow of a moving droplet using confocal micro-PIV,” Lab Chip 7(3), 338–346 (2007).
[CrossRef] [PubMed]

Y. C. Ahn, W. G. Jung, and Z. Chen, “Optical sectioning for microfluidics: secondary flow and mixing in a meandering microchannel,” Lab Chip 8(1), 125–133 (2007).
[CrossRef] [PubMed]

Meas. Sci. Technol. (1)

M. R. Bown, J. M. MacInnes, and R. W. K. Allen, “Micro-PIV simulation and measurement in complex microchannel geometries,” Meas. Sci. Technol. 16(3), 619–626 (2005).
[CrossRef]

Med. Biol. Eng. Comput. (1)

T. Cochrane, J. C. Earnshaw, and A. H. G. Love, “Laser Doppler measurement of blood velocity in microvessels,” Med. Biol. Eng. Comput. 19(5), 589–596 (1981).
[CrossRef] [PubMed]

Opt. Lett. (2)

Physiol. Meas. (2)

Y. Sugii, S. Nishio, and K. Okamoto, “In vivo PIV measurement of red blood cell velocity field in microvessels considering mesentery motion,” Physiol. Meas. 23(2), 403–416 (2002).
[CrossRef] [PubMed]

J. Y. Lee, H. S. Ji, and S. J. Lee, “Micro-PIV measurements of blood flow in extraembryonic blood vessels of chicken embryos,” Physiol. Meas. 28(10), 1149–1162 (2007).
[CrossRef] [PubMed]

Other (3)

M. Minsky, “Microscopy apparatus,” US patent 3013467 (1961).

T. Wilson, and T. Confocal Microscopy, Wilson, ed. (Academic Press, 1990).

R. Okuda, Y. Sugii, and K. Okamoto, “Velocity measurement of blood flow in a microtube using micro PIV system,” in Proceedings of PSFVIP-4, (Chamonix. France. Jun. 2003), pp. 1–7.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

The schematic of the confocal laser scanning microscopy.

Fig. 2
Fig. 2

The underlying concept of the two frames cross-correlation particle image velocimetry.

Fig. 3
Fig. 3

En face skin image of in vivo mouse ear observed with confocal microscopy. (a) stratum corneum, (b) epidermal cell layer, (c) dermal fiber structure and the hair follicles and (d) dermal Fat cells.

Fig. 4
Fig. 4

Sequential image of blood cells in the capillary of mouse ear. The time delay between each image ((a)~(h)) is 132msec.

Fig. 5
Fig. 5

(a) Typical confocal image of the blood stream, (b) the corresponding velocity vector field and contour plots and (c) the cross-sectional velocity profile.

Fig. 6
Fig. 6

(a) Confocal image of the blood flow in small diameter vessel and (b) the corresponding velocity vector field and contour plots.

Fig. 7
Fig. 7

(a) Confocal image of the blood flow with the maximum velocity higher than 100um/sec and (b) the corresponding velocity vector field and contour plots.

Fig. 8
Fig. 8

(a) Confocal image of the blood flow in a branched vessel and (b) the corresponding velocity vector field and contour plots.

Metrics