Abstract

The production of inexpensive, large-scale, uniform substrates for surface-enhanced Raman scattering (SERS) is a key to popularize its usage in chemical and biological detection. We demonstrate a flexible nano-imprinted hexagonally patterned SERS-active substrate. Its electromagnetic enhancement factor was optimized by the thickness adjustment of its silver over-coated film. The experimental data show a good correspondence with the theoretical prediction. Such substrate was shown to exhibit high uniformity and reproducibility with a variation of less than 2%, offering a potential of greatly exploiting such substrate in infield biocide monitoring.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. J. C. Brown and M. J. T. Milton, “Nanostructures and nanostructured substrates for surface-enhanced Raman scattering (SERS),” J. Raman Spectrosc. 39(10), 1313–1326 (2008).
    [CrossRef]
  2. S. Lal, N. K. Grady, J. Kundu, C. S. Levin, J. B. Lassiter, and N. J. Halas, “Tailoring plasmonic substrates for surface enhanced spectroscopies,” Chem. Soc. Rev. 37(5), 898–911 (2008).
    [CrossRef] [PubMed]
  3. D. Y. Wu, J. F. Li, B. Ren, and Z. Q. Tian, “Electrochemical surface-enhanced Raman spectroscopy of nanostructures,” Chem. Soc. Rev. 37(5), 1025–1041 (2008).
    [CrossRef] [PubMed]
  4. N. M. B. Perney, J. J. Baumberg, M. E. Zoorob, M. D. B. Charlton, S. Mahnkopf, and C. M. Netti, “Tuning localized plasmons in nanostructured substrates for surface-enhanced Raman scattering,” Opt. Express 14(2), 847–857 (2006).
    [CrossRef] [PubMed]
  5. H. H. Wang, C. Y. Liu, S. B. Wu, N. W. Liu, C. Y. Peng, T. H. Chan, C. F. Hsu, J. K. Wang, and Y. L. Wang, “Highly Raman-enhancing substrates based on silver nanoparticle arrays with tunable sub-10 nm gaps,” Adv. Mater. 18(4), 491–495 (2006).
    [CrossRef]
  6. H. V. Chu, Y. J. Liu, Y. W. Huang, and Y. P. Zhao, “A high sensitive fiber SERS probe based on silver nanorod arrays,” Opt. Express 15(19), 12230–12239 (2007).
    [CrossRef] [PubMed]
  7. M. W. Knight and N. J. Halas, “Nanoshells to nanoeggs to nanocups: optical properties of reduced symmetry core-shell nanoparticles beyond the quasistatic limit,” N. J. Phys. 10(10), 105006 (2008).
    [CrossRef]
  8. K. B. Li, L. V. Clime, B. Cui, and T. Veres, “Surface enhanced Raman scattering on long-range ordered noble-metal nanocrescent arrays,” Nanotechnology 19(14), 145305 (2008).
    [CrossRef] [PubMed]
  9. J. Ye, L. Lagae, G. Maes, G. Borghs, and P. Van Dorpe, “Symmetry breaking induced optical properties of gold open shell nanostructures,” Opt. Express 17(26), 23765–23771 (2009).
    [CrossRef]
  10. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
    [CrossRef] [PubMed]
  11. J. A. Dieringer, A. D. McFarland, N. C. Shah, D. A. Stuart, A. V. Whitney, C. R. Yonzon, M. A. Young, X. Y. Zhang, and R. P. Van Duyne, “Surface enhanced Raman spectroscopy: new materials, concepts, characterization tools, and applications,” Faraday Discuss. 132, 9–26 (2006).
    [CrossRef] [PubMed]
  12. D. A. Stuart, J. M. Yuen, N. Shah, O. Lyandres, C. R. Yonzon, M. R. Glucksberg, J. T. Walsh, and R. P. Van Duyne, “In vivo glucose measurement by surface-enhanced Raman spectroscopy,” Anal. Chem. 78(20), 7211–7215 (2006).
    [CrossRef] [PubMed]
  13. T. T. Liu, Y. H. Lin, C. S. Hung, T. J. Liu, Y. Chen, Y. C. Huang, T. H. Tsai, H. H. Wang, D. W. Wang, J. K. Wang, Y. L. Wang, and C. H. Lin, “A High Speed Detection Platform Based on Surface-Enhanced Raman scattering for monitoring Antibiotic-Induced Chemical Changes in Bacteria Cell Wall,” Plos One 4(5), e5470 (2009).
    [CrossRef] [PubMed]
  14. R. Alvarez-Puebla, B. Cui, J. P. Bravo-Vasquez, T. Veres, and H. Fenniri, “Nanoimprinted SERS-active substrates with tunable surface plasmon resonances,” J. Phys. Chem. C 111(18), 6720–6723 (2007).
    [CrossRef]
  15. B. Cui and T. Veres, “Fabrication of metal nanoring array by nanoimprint lithography (NIL) and reactive ion etching,” Microelectron. Eng. 84(5-8), 1544–1547 (2007).
    [CrossRef]
  16. B. D. Lucas, J. S. Kim, C. Chin, and L. J. Guo, “Nanoimprint lithography based approach for the fabrication of large-area, uniformly oriented plasmonic arrays,” Adv. Mater. 20(6), 1129–1134 (2008).
    [CrossRef]
  17. A. Campion and P. Kambhampati, “Surface-enhanced Raman scattering,” Chem. Soc. Rev. 27(4), 241–250 (1998).
    [CrossRef]
  18. S. Srivastava, R. Sinha, and D. Roy, “Toxicological effects of malachite green,” Aquat. Toxicol. 66(3), 319–329 (2004).
    [CrossRef] [PubMed]
  19. E. Sudova, J. Machova, Z. Svobodova, and T. Vesely, “Negative effects of malachite green and possibilities of its replacement in the treatment of fish eggs and fish: a review,” Vet. Med. 52, 527–539 (2007).
  20. J. L. Allen, J. R. Meinertz, and J. E. Gofus, “Determination of malachite green and its leuco form in water,” J. AOAC Int. 77, 646 (1992).
  21. K. Sagar, M. Smyth, J. Wilson, and K. McLaughin, “High-performance liquid chromatographic determination of the triphenylmethane dye, malachite green, using amperometric detection at a carbon fibre microelectrode,” J. Chromatogr. A 659(2), 329–336 (1994).
    [CrossRef]
  22. C. H. Tsai, J. D. Lin, and C. H. Lin, “Optimization of the separation of malachite green in water by capillary electrophoresis Raman spectroscopy (CE-RS) based on the stacking and sweeping modes,” Talanta 72(2), 368–372 (2007).
    [CrossRef] [PubMed]
  23. M.-C. Yang, J.-M. Fang, T.-F. Kuo, D.-M. Wang, Y.-L. Huang, L.-Y. Liu, P.-H. Chen, and T.-H. Chang, “Production of antibodies for selective detection of malachite green and the related triphenylmethane dyes in fish and fishpond water,” J. Agric. Food Chem. 55(22), 8851–8856 (2007).
    [CrossRef] [PubMed]
  24. T.-L. Chang, K.-Y. Cheng, T.-H. Chou, C.-C. Su, H.-P. Yang, and S.-W. Luo, “Hybrid-polymer nanostructures forming an anti-reflection film using two-beam interference and ultraviolet nanoimprint lithography,” Microelectron. Eng. 86(4-6), 874–877 (2009).
    [CrossRef]
  25. F. Pigeon, I. F. Salakhutdinov, and A. V. Tishchenko, “Identity of long-range surface plasmons along asymmetric structures and their potential for refractometric sensors,” J. Appl. Phys. 90(2), 852–859 (2001).
    [CrossRef]
  26. M. M. Dvoynenko, I. I. Samoylenko, and J. K. Wang, “Suppressed light transmission through corrugated metal films at normal incidence,” J. Opt. Soc. Am. A 23(9), 2315–2319 (2006).
    [CrossRef]
  27. J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B Condens. Matter 33(8), 5186–5201 (1986).
    [CrossRef] [PubMed]
  28. P. Berini, “Long-range surface plasmon polaritons,” Adv. Opt. Photon. 1(3), 484–588 (2009).
    [CrossRef]
  29. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
    [CrossRef] [PubMed]
  30. H. Hövel, S. Fritz, A. Hilger, U. Kreibig, and M. Vollmer, “Width of cluster plasmon resonances: Bulk dielectric functions and chemical interface damping,” Phys. Rev. B Condens. Matter 48(24), 18178–18188 (1993).
    [CrossRef] [PubMed]
  31. H. B. Lueck, D. C. Daniel, and J. L. McHale, “Resonance Raman Study of Solvent Effects on a series of Triarylmethane Dyes,” J. Raman Spectrosc. 24(6), 363–370 (1993).
    [CrossRef]
  32. J. G. Bergman, D. S. Chemla, P. F. Liao, A. M. Glass, A. Pinczuk, R. M. Hart, and D. H. Olson, “Relationship between surface-enhanced Raman scattering and the dielectric properties of aggregated silver films,” Opt. Lett. 6(1), 33–35 (1981).
    [CrossRef] [PubMed]
  33. N. Félidj, J. Aubard, G. Levi, J. R. Krenn, M. Salerno, G. Schider, B. Lamprecht, A. Leitner, and F. R. Aussenegg, “Controlling the optical response of regular arrays of gold particles for surface-enhanced Raman scattering,” Phys. Rev. B 65(7), 075419 (2002).
    [CrossRef]
  34. M. M. Dvoynenko and J. K. Wang, “Finding electromagnetic and chemical enhancement factors of surface-enhanced Raman scattering,” Opt. Lett. 32(24), 3552–3554 (2007).
    [CrossRef] [PubMed]
  35. D. A. Weitz, S. Garoff, and T. J. Gramila, “Excitation spectra of surface-enhanced Raman scattering on silver-island films,” Opt. Lett. 7(4), 168–170 (1982).
    [CrossRef] [PubMed]
  36. B. Y. Lin, H. C. Hsu, C. H. Teng, H. C. Chang, J. K. Wang, and Y. L. Wang, “Unraveling near-field origin of electromagnetic waves scattered from silver nanorod arrays using pseudo-spectral time-domain calculation,” Opt. Express 17(16), 14211–14228 (2009).
    [CrossRef] [PubMed]

2009 (5)

T. T. Liu, Y. H. Lin, C. S. Hung, T. J. Liu, Y. Chen, Y. C. Huang, T. H. Tsai, H. H. Wang, D. W. Wang, J. K. Wang, Y. L. Wang, and C. H. Lin, “A High Speed Detection Platform Based on Surface-Enhanced Raman scattering for monitoring Antibiotic-Induced Chemical Changes in Bacteria Cell Wall,” Plos One 4(5), e5470 (2009).
[CrossRef] [PubMed]

T.-L. Chang, K.-Y. Cheng, T.-H. Chou, C.-C. Su, H.-P. Yang, and S.-W. Luo, “Hybrid-polymer nanostructures forming an anti-reflection film using two-beam interference and ultraviolet nanoimprint lithography,” Microelectron. Eng. 86(4-6), 874–877 (2009).
[CrossRef]

B. Y. Lin, H. C. Hsu, C. H. Teng, H. C. Chang, J. K. Wang, and Y. L. Wang, “Unraveling near-field origin of electromagnetic waves scattered from silver nanorod arrays using pseudo-spectral time-domain calculation,” Opt. Express 17(16), 14211–14228 (2009).
[CrossRef] [PubMed]

P. Berini, “Long-range surface plasmon polaritons,” Adv. Opt. Photon. 1(3), 484–588 (2009).
[CrossRef]

J. Ye, L. Lagae, G. Maes, G. Borghs, and P. Van Dorpe, “Symmetry breaking induced optical properties of gold open shell nanostructures,” Opt. Express 17(26), 23765–23771 (2009).
[CrossRef]

2008 (7)

M. W. Knight and N. J. Halas, “Nanoshells to nanoeggs to nanocups: optical properties of reduced symmetry core-shell nanoparticles beyond the quasistatic limit,” N. J. Phys. 10(10), 105006 (2008).
[CrossRef]

K. B. Li, L. V. Clime, B. Cui, and T. Veres, “Surface enhanced Raman scattering on long-range ordered noble-metal nanocrescent arrays,” Nanotechnology 19(14), 145305 (2008).
[CrossRef] [PubMed]

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[CrossRef] [PubMed]

B. D. Lucas, J. S. Kim, C. Chin, and L. J. Guo, “Nanoimprint lithography based approach for the fabrication of large-area, uniformly oriented plasmonic arrays,” Adv. Mater. 20(6), 1129–1134 (2008).
[CrossRef]

R. J. C. Brown and M. J. T. Milton, “Nanostructures and nanostructured substrates for surface-enhanced Raman scattering (SERS),” J. Raman Spectrosc. 39(10), 1313–1326 (2008).
[CrossRef]

S. Lal, N. K. Grady, J. Kundu, C. S. Levin, J. B. Lassiter, and N. J. Halas, “Tailoring plasmonic substrates for surface enhanced spectroscopies,” Chem. Soc. Rev. 37(5), 898–911 (2008).
[CrossRef] [PubMed]

D. Y. Wu, J. F. Li, B. Ren, and Z. Q. Tian, “Electrochemical surface-enhanced Raman spectroscopy of nanostructures,” Chem. Soc. Rev. 37(5), 1025–1041 (2008).
[CrossRef] [PubMed]

2007 (7)

C. H. Tsai, J. D. Lin, and C. H. Lin, “Optimization of the separation of malachite green in water by capillary electrophoresis Raman spectroscopy (CE-RS) based on the stacking and sweeping modes,” Talanta 72(2), 368–372 (2007).
[CrossRef] [PubMed]

M.-C. Yang, J.-M. Fang, T.-F. Kuo, D.-M. Wang, Y.-L. Huang, L.-Y. Liu, P.-H. Chen, and T.-H. Chang, “Production of antibodies for selective detection of malachite green and the related triphenylmethane dyes in fish and fishpond water,” J. Agric. Food Chem. 55(22), 8851–8856 (2007).
[CrossRef] [PubMed]

E. Sudova, J. Machova, Z. Svobodova, and T. Vesely, “Negative effects of malachite green and possibilities of its replacement in the treatment of fish eggs and fish: a review,” Vet. Med. 52, 527–539 (2007).

R. Alvarez-Puebla, B. Cui, J. P. Bravo-Vasquez, T. Veres, and H. Fenniri, “Nanoimprinted SERS-active substrates with tunable surface plasmon resonances,” J. Phys. Chem. C 111(18), 6720–6723 (2007).
[CrossRef]

B. Cui and T. Veres, “Fabrication of metal nanoring array by nanoimprint lithography (NIL) and reactive ion etching,” Microelectron. Eng. 84(5-8), 1544–1547 (2007).
[CrossRef]

H. V. Chu, Y. J. Liu, Y. W. Huang, and Y. P. Zhao, “A high sensitive fiber SERS probe based on silver nanorod arrays,” Opt. Express 15(19), 12230–12239 (2007).
[CrossRef] [PubMed]

M. M. Dvoynenko and J. K. Wang, “Finding electromagnetic and chemical enhancement factors of surface-enhanced Raman scattering,” Opt. Lett. 32(24), 3552–3554 (2007).
[CrossRef] [PubMed]

2006 (5)

N. M. B. Perney, J. J. Baumberg, M. E. Zoorob, M. D. B. Charlton, S. Mahnkopf, and C. M. Netti, “Tuning localized plasmons in nanostructured substrates for surface-enhanced Raman scattering,” Opt. Express 14(2), 847–857 (2006).
[CrossRef] [PubMed]

M. M. Dvoynenko, I. I. Samoylenko, and J. K. Wang, “Suppressed light transmission through corrugated metal films at normal incidence,” J. Opt. Soc. Am. A 23(9), 2315–2319 (2006).
[CrossRef]

J. A. Dieringer, A. D. McFarland, N. C. Shah, D. A. Stuart, A. V. Whitney, C. R. Yonzon, M. A. Young, X. Y. Zhang, and R. P. Van Duyne, “Surface enhanced Raman spectroscopy: new materials, concepts, characterization tools, and applications,” Faraday Discuss. 132, 9–26 (2006).
[CrossRef] [PubMed]

D. A. Stuart, J. M. Yuen, N. Shah, O. Lyandres, C. R. Yonzon, M. R. Glucksberg, J. T. Walsh, and R. P. Van Duyne, “In vivo glucose measurement by surface-enhanced Raman spectroscopy,” Anal. Chem. 78(20), 7211–7215 (2006).
[CrossRef] [PubMed]

H. H. Wang, C. Y. Liu, S. B. Wu, N. W. Liu, C. Y. Peng, T. H. Chan, C. F. Hsu, J. K. Wang, and Y. L. Wang, “Highly Raman-enhancing substrates based on silver nanoparticle arrays with tunable sub-10 nm gaps,” Adv. Mater. 18(4), 491–495 (2006).
[CrossRef]

2004 (1)

S. Srivastava, R. Sinha, and D. Roy, “Toxicological effects of malachite green,” Aquat. Toxicol. 66(3), 319–329 (2004).
[CrossRef] [PubMed]

2003 (1)

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[CrossRef] [PubMed]

2002 (1)

N. Félidj, J. Aubard, G. Levi, J. R. Krenn, M. Salerno, G. Schider, B. Lamprecht, A. Leitner, and F. R. Aussenegg, “Controlling the optical response of regular arrays of gold particles for surface-enhanced Raman scattering,” Phys. Rev. B 65(7), 075419 (2002).
[CrossRef]

2001 (1)

F. Pigeon, I. F. Salakhutdinov, and A. V. Tishchenko, “Identity of long-range surface plasmons along asymmetric structures and their potential for refractometric sensors,” J. Appl. Phys. 90(2), 852–859 (2001).
[CrossRef]

1998 (1)

A. Campion and P. Kambhampati, “Surface-enhanced Raman scattering,” Chem. Soc. Rev. 27(4), 241–250 (1998).
[CrossRef]

1994 (1)

K. Sagar, M. Smyth, J. Wilson, and K. McLaughin, “High-performance liquid chromatographic determination of the triphenylmethane dye, malachite green, using amperometric detection at a carbon fibre microelectrode,” J. Chromatogr. A 659(2), 329–336 (1994).
[CrossRef]

1993 (2)

H. Hövel, S. Fritz, A. Hilger, U. Kreibig, and M. Vollmer, “Width of cluster plasmon resonances: Bulk dielectric functions and chemical interface damping,” Phys. Rev. B Condens. Matter 48(24), 18178–18188 (1993).
[CrossRef] [PubMed]

H. B. Lueck, D. C. Daniel, and J. L. McHale, “Resonance Raman Study of Solvent Effects on a series of Triarylmethane Dyes,” J. Raman Spectrosc. 24(6), 363–370 (1993).
[CrossRef]

1992 (1)

J. L. Allen, J. R. Meinertz, and J. E. Gofus, “Determination of malachite green and its leuco form in water,” J. AOAC Int. 77, 646 (1992).

1986 (1)

J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B Condens. Matter 33(8), 5186–5201 (1986).
[CrossRef] [PubMed]

1982 (1)

1981 (1)

Allen, J. L.

J. L. Allen, J. R. Meinertz, and J. E. Gofus, “Determination of malachite green and its leuco form in water,” J. AOAC Int. 77, 646 (1992).

Alvarez-Puebla, R.

R. Alvarez-Puebla, B. Cui, J. P. Bravo-Vasquez, T. Veres, and H. Fenniri, “Nanoimprinted SERS-active substrates with tunable surface plasmon resonances,” J. Phys. Chem. C 111(18), 6720–6723 (2007).
[CrossRef]

Anker, J. N.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[CrossRef] [PubMed]

Aubard, J.

N. Félidj, J. Aubard, G. Levi, J. R. Krenn, M. Salerno, G. Schider, B. Lamprecht, A. Leitner, and F. R. Aussenegg, “Controlling the optical response of regular arrays of gold particles for surface-enhanced Raman scattering,” Phys. Rev. B 65(7), 075419 (2002).
[CrossRef]

Aussenegg, F. R.

N. Félidj, J. Aubard, G. Levi, J. R. Krenn, M. Salerno, G. Schider, B. Lamprecht, A. Leitner, and F. R. Aussenegg, “Controlling the optical response of regular arrays of gold particles for surface-enhanced Raman scattering,” Phys. Rev. B 65(7), 075419 (2002).
[CrossRef]

Baumberg, J. J.

Bergman, J. G.

Berini, P.

Borghs, G.

Bravo-Vasquez, J. P.

R. Alvarez-Puebla, B. Cui, J. P. Bravo-Vasquez, T. Veres, and H. Fenniri, “Nanoimprinted SERS-active substrates with tunable surface plasmon resonances,” J. Phys. Chem. C 111(18), 6720–6723 (2007).
[CrossRef]

Brown, R. J. C.

R. J. C. Brown and M. J. T. Milton, “Nanostructures and nanostructured substrates for surface-enhanced Raman scattering (SERS),” J. Raman Spectrosc. 39(10), 1313–1326 (2008).
[CrossRef]

Burke, J. J.

J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B Condens. Matter 33(8), 5186–5201 (1986).
[CrossRef] [PubMed]

Campion, A.

A. Campion and P. Kambhampati, “Surface-enhanced Raman scattering,” Chem. Soc. Rev. 27(4), 241–250 (1998).
[CrossRef]

Chan, T. H.

H. H. Wang, C. Y. Liu, S. B. Wu, N. W. Liu, C. Y. Peng, T. H. Chan, C. F. Hsu, J. K. Wang, and Y. L. Wang, “Highly Raman-enhancing substrates based on silver nanoparticle arrays with tunable sub-10 nm gaps,” Adv. Mater. 18(4), 491–495 (2006).
[CrossRef]

Chang, H. C.

Chang, T.-H.

M.-C. Yang, J.-M. Fang, T.-F. Kuo, D.-M. Wang, Y.-L. Huang, L.-Y. Liu, P.-H. Chen, and T.-H. Chang, “Production of antibodies for selective detection of malachite green and the related triphenylmethane dyes in fish and fishpond water,” J. Agric. Food Chem. 55(22), 8851–8856 (2007).
[CrossRef] [PubMed]

Chang, T.-L.

T.-L. Chang, K.-Y. Cheng, T.-H. Chou, C.-C. Su, H.-P. Yang, and S.-W. Luo, “Hybrid-polymer nanostructures forming an anti-reflection film using two-beam interference and ultraviolet nanoimprint lithography,” Microelectron. Eng. 86(4-6), 874–877 (2009).
[CrossRef]

Charlton, M. D. B.

Chemla, D. S.

Chen, P.-H.

M.-C. Yang, J.-M. Fang, T.-F. Kuo, D.-M. Wang, Y.-L. Huang, L.-Y. Liu, P.-H. Chen, and T.-H. Chang, “Production of antibodies for selective detection of malachite green and the related triphenylmethane dyes in fish and fishpond water,” J. Agric. Food Chem. 55(22), 8851–8856 (2007).
[CrossRef] [PubMed]

Chen, Y.

T. T. Liu, Y. H. Lin, C. S. Hung, T. J. Liu, Y. Chen, Y. C. Huang, T. H. Tsai, H. H. Wang, D. W. Wang, J. K. Wang, Y. L. Wang, and C. H. Lin, “A High Speed Detection Platform Based on Surface-Enhanced Raman scattering for monitoring Antibiotic-Induced Chemical Changes in Bacteria Cell Wall,” Plos One 4(5), e5470 (2009).
[CrossRef] [PubMed]

Cheng, K.-Y.

T.-L. Chang, K.-Y. Cheng, T.-H. Chou, C.-C. Su, H.-P. Yang, and S.-W. Luo, “Hybrid-polymer nanostructures forming an anti-reflection film using two-beam interference and ultraviolet nanoimprint lithography,” Microelectron. Eng. 86(4-6), 874–877 (2009).
[CrossRef]

Chin, C.

B. D. Lucas, J. S. Kim, C. Chin, and L. J. Guo, “Nanoimprint lithography based approach for the fabrication of large-area, uniformly oriented plasmonic arrays,” Adv. Mater. 20(6), 1129–1134 (2008).
[CrossRef]

Chou, T.-H.

T.-L. Chang, K.-Y. Cheng, T.-H. Chou, C.-C. Su, H.-P. Yang, and S.-W. Luo, “Hybrid-polymer nanostructures forming an anti-reflection film using two-beam interference and ultraviolet nanoimprint lithography,” Microelectron. Eng. 86(4-6), 874–877 (2009).
[CrossRef]

Chu, H. V.

Clime, L. V.

K. B. Li, L. V. Clime, B. Cui, and T. Veres, “Surface enhanced Raman scattering on long-range ordered noble-metal nanocrescent arrays,” Nanotechnology 19(14), 145305 (2008).
[CrossRef] [PubMed]

Cui, B.

K. B. Li, L. V. Clime, B. Cui, and T. Veres, “Surface enhanced Raman scattering on long-range ordered noble-metal nanocrescent arrays,” Nanotechnology 19(14), 145305 (2008).
[CrossRef] [PubMed]

R. Alvarez-Puebla, B. Cui, J. P. Bravo-Vasquez, T. Veres, and H. Fenniri, “Nanoimprinted SERS-active substrates with tunable surface plasmon resonances,” J. Phys. Chem. C 111(18), 6720–6723 (2007).
[CrossRef]

B. Cui and T. Veres, “Fabrication of metal nanoring array by nanoimprint lithography (NIL) and reactive ion etching,” Microelectron. Eng. 84(5-8), 1544–1547 (2007).
[CrossRef]

Daniel, D. C.

H. B. Lueck, D. C. Daniel, and J. L. McHale, “Resonance Raman Study of Solvent Effects on a series of Triarylmethane Dyes,” J. Raman Spectrosc. 24(6), 363–370 (1993).
[CrossRef]

Dieringer, J. A.

J. A. Dieringer, A. D. McFarland, N. C. Shah, D. A. Stuart, A. V. Whitney, C. R. Yonzon, M. A. Young, X. Y. Zhang, and R. P. Van Duyne, “Surface enhanced Raman spectroscopy: new materials, concepts, characterization tools, and applications,” Faraday Discuss. 132, 9–26 (2006).
[CrossRef] [PubMed]

Dvoynenko, M. M.

Fang, J.-M.

M.-C. Yang, J.-M. Fang, T.-F. Kuo, D.-M. Wang, Y.-L. Huang, L.-Y. Liu, P.-H. Chen, and T.-H. Chang, “Production of antibodies for selective detection of malachite green and the related triphenylmethane dyes in fish and fishpond water,” J. Agric. Food Chem. 55(22), 8851–8856 (2007).
[CrossRef] [PubMed]

Félidj, N.

N. Félidj, J. Aubard, G. Levi, J. R. Krenn, M. Salerno, G. Schider, B. Lamprecht, A. Leitner, and F. R. Aussenegg, “Controlling the optical response of regular arrays of gold particles for surface-enhanced Raman scattering,” Phys. Rev. B 65(7), 075419 (2002).
[CrossRef]

Fenniri, H.

R. Alvarez-Puebla, B. Cui, J. P. Bravo-Vasquez, T. Veres, and H. Fenniri, “Nanoimprinted SERS-active substrates with tunable surface plasmon resonances,” J. Phys. Chem. C 111(18), 6720–6723 (2007).
[CrossRef]

Fritz, S.

H. Hövel, S. Fritz, A. Hilger, U. Kreibig, and M. Vollmer, “Width of cluster plasmon resonances: Bulk dielectric functions and chemical interface damping,” Phys. Rev. B Condens. Matter 48(24), 18178–18188 (1993).
[CrossRef] [PubMed]

Garoff, S.

Glass, A. M.

Glucksberg, M. R.

D. A. Stuart, J. M. Yuen, N. Shah, O. Lyandres, C. R. Yonzon, M. R. Glucksberg, J. T. Walsh, and R. P. Van Duyne, “In vivo glucose measurement by surface-enhanced Raman spectroscopy,” Anal. Chem. 78(20), 7211–7215 (2006).
[CrossRef] [PubMed]

Gofus, J. E.

J. L. Allen, J. R. Meinertz, and J. E. Gofus, “Determination of malachite green and its leuco form in water,” J. AOAC Int. 77, 646 (1992).

Grady, N. K.

S. Lal, N. K. Grady, J. Kundu, C. S. Levin, J. B. Lassiter, and N. J. Halas, “Tailoring plasmonic substrates for surface enhanced spectroscopies,” Chem. Soc. Rev. 37(5), 898–911 (2008).
[CrossRef] [PubMed]

Gramila, T. J.

Guo, L. J.

B. D. Lucas, J. S. Kim, C. Chin, and L. J. Guo, “Nanoimprint lithography based approach for the fabrication of large-area, uniformly oriented plasmonic arrays,” Adv. Mater. 20(6), 1129–1134 (2008).
[CrossRef]

Halas, N. J.

S. Lal, N. K. Grady, J. Kundu, C. S. Levin, J. B. Lassiter, and N. J. Halas, “Tailoring plasmonic substrates for surface enhanced spectroscopies,” Chem. Soc. Rev. 37(5), 898–911 (2008).
[CrossRef] [PubMed]

M. W. Knight and N. J. Halas, “Nanoshells to nanoeggs to nanocups: optical properties of reduced symmetry core-shell nanoparticles beyond the quasistatic limit,” N. J. Phys. 10(10), 105006 (2008).
[CrossRef]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[CrossRef] [PubMed]

Hall, W. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[CrossRef] [PubMed]

Hart, R. M.

Hilger, A.

H. Hövel, S. Fritz, A. Hilger, U. Kreibig, and M. Vollmer, “Width of cluster plasmon resonances: Bulk dielectric functions and chemical interface damping,” Phys. Rev. B Condens. Matter 48(24), 18178–18188 (1993).
[CrossRef] [PubMed]

Hövel, H.

H. Hövel, S. Fritz, A. Hilger, U. Kreibig, and M. Vollmer, “Width of cluster plasmon resonances: Bulk dielectric functions and chemical interface damping,” Phys. Rev. B Condens. Matter 48(24), 18178–18188 (1993).
[CrossRef] [PubMed]

Hsu, C. F.

H. H. Wang, C. Y. Liu, S. B. Wu, N. W. Liu, C. Y. Peng, T. H. Chan, C. F. Hsu, J. K. Wang, and Y. L. Wang, “Highly Raman-enhancing substrates based on silver nanoparticle arrays with tunable sub-10 nm gaps,” Adv. Mater. 18(4), 491–495 (2006).
[CrossRef]

Hsu, H. C.

Huang, Y. C.

T. T. Liu, Y. H. Lin, C. S. Hung, T. J. Liu, Y. Chen, Y. C. Huang, T. H. Tsai, H. H. Wang, D. W. Wang, J. K. Wang, Y. L. Wang, and C. H. Lin, “A High Speed Detection Platform Based on Surface-Enhanced Raman scattering for monitoring Antibiotic-Induced Chemical Changes in Bacteria Cell Wall,” Plos One 4(5), e5470 (2009).
[CrossRef] [PubMed]

Huang, Y. W.

Huang, Y.-L.

M.-C. Yang, J.-M. Fang, T.-F. Kuo, D.-M. Wang, Y.-L. Huang, L.-Y. Liu, P.-H. Chen, and T.-H. Chang, “Production of antibodies for selective detection of malachite green and the related triphenylmethane dyes in fish and fishpond water,” J. Agric. Food Chem. 55(22), 8851–8856 (2007).
[CrossRef] [PubMed]

Hung, C. S.

T. T. Liu, Y. H. Lin, C. S. Hung, T. J. Liu, Y. Chen, Y. C. Huang, T. H. Tsai, H. H. Wang, D. W. Wang, J. K. Wang, Y. L. Wang, and C. H. Lin, “A High Speed Detection Platform Based on Surface-Enhanced Raman scattering for monitoring Antibiotic-Induced Chemical Changes in Bacteria Cell Wall,” Plos One 4(5), e5470 (2009).
[CrossRef] [PubMed]

Kambhampati, P.

A. Campion and P. Kambhampati, “Surface-enhanced Raman scattering,” Chem. Soc. Rev. 27(4), 241–250 (1998).
[CrossRef]

Kim, J. S.

B. D. Lucas, J. S. Kim, C. Chin, and L. J. Guo, “Nanoimprint lithography based approach for the fabrication of large-area, uniformly oriented plasmonic arrays,” Adv. Mater. 20(6), 1129–1134 (2008).
[CrossRef]

Knight, M. W.

M. W. Knight and N. J. Halas, “Nanoshells to nanoeggs to nanocups: optical properties of reduced symmetry core-shell nanoparticles beyond the quasistatic limit,” N. J. Phys. 10(10), 105006 (2008).
[CrossRef]

Kreibig, U.

H. Hövel, S. Fritz, A. Hilger, U. Kreibig, and M. Vollmer, “Width of cluster plasmon resonances: Bulk dielectric functions and chemical interface damping,” Phys. Rev. B Condens. Matter 48(24), 18178–18188 (1993).
[CrossRef] [PubMed]

Krenn, J. R.

N. Félidj, J. Aubard, G. Levi, J. R. Krenn, M. Salerno, G. Schider, B. Lamprecht, A. Leitner, and F. R. Aussenegg, “Controlling the optical response of regular arrays of gold particles for surface-enhanced Raman scattering,” Phys. Rev. B 65(7), 075419 (2002).
[CrossRef]

Kundu, J.

S. Lal, N. K. Grady, J. Kundu, C. S. Levin, J. B. Lassiter, and N. J. Halas, “Tailoring plasmonic substrates for surface enhanced spectroscopies,” Chem. Soc. Rev. 37(5), 898–911 (2008).
[CrossRef] [PubMed]

Kuo, T.-F.

M.-C. Yang, J.-M. Fang, T.-F. Kuo, D.-M. Wang, Y.-L. Huang, L.-Y. Liu, P.-H. Chen, and T.-H. Chang, “Production of antibodies for selective detection of malachite green and the related triphenylmethane dyes in fish and fishpond water,” J. Agric. Food Chem. 55(22), 8851–8856 (2007).
[CrossRef] [PubMed]

Lagae, L.

Lal, S.

S. Lal, N. K. Grady, J. Kundu, C. S. Levin, J. B. Lassiter, and N. J. Halas, “Tailoring plasmonic substrates for surface enhanced spectroscopies,” Chem. Soc. Rev. 37(5), 898–911 (2008).
[CrossRef] [PubMed]

Lamprecht, B.

N. Félidj, J. Aubard, G. Levi, J. R. Krenn, M. Salerno, G. Schider, B. Lamprecht, A. Leitner, and F. R. Aussenegg, “Controlling the optical response of regular arrays of gold particles for surface-enhanced Raman scattering,” Phys. Rev. B 65(7), 075419 (2002).
[CrossRef]

Lassiter, J. B.

S. Lal, N. K. Grady, J. Kundu, C. S. Levin, J. B. Lassiter, and N. J. Halas, “Tailoring plasmonic substrates for surface enhanced spectroscopies,” Chem. Soc. Rev. 37(5), 898–911 (2008).
[CrossRef] [PubMed]

Leitner, A.

N. Félidj, J. Aubard, G. Levi, J. R. Krenn, M. Salerno, G. Schider, B. Lamprecht, A. Leitner, and F. R. Aussenegg, “Controlling the optical response of regular arrays of gold particles for surface-enhanced Raman scattering,” Phys. Rev. B 65(7), 075419 (2002).
[CrossRef]

Levi, G.

N. Félidj, J. Aubard, G. Levi, J. R. Krenn, M. Salerno, G. Schider, B. Lamprecht, A. Leitner, and F. R. Aussenegg, “Controlling the optical response of regular arrays of gold particles for surface-enhanced Raman scattering,” Phys. Rev. B 65(7), 075419 (2002).
[CrossRef]

Levin, C. S.

S. Lal, N. K. Grady, J. Kundu, C. S. Levin, J. B. Lassiter, and N. J. Halas, “Tailoring plasmonic substrates for surface enhanced spectroscopies,” Chem. Soc. Rev. 37(5), 898–911 (2008).
[CrossRef] [PubMed]

Li, J. F.

D. Y. Wu, J. F. Li, B. Ren, and Z. Q. Tian, “Electrochemical surface-enhanced Raman spectroscopy of nanostructures,” Chem. Soc. Rev. 37(5), 1025–1041 (2008).
[CrossRef] [PubMed]

Li, K. B.

K. B. Li, L. V. Clime, B. Cui, and T. Veres, “Surface enhanced Raman scattering on long-range ordered noble-metal nanocrescent arrays,” Nanotechnology 19(14), 145305 (2008).
[CrossRef] [PubMed]

Liao, P. F.

Lin, B. Y.

Lin, C. H.

T. T. Liu, Y. H. Lin, C. S. Hung, T. J. Liu, Y. Chen, Y. C. Huang, T. H. Tsai, H. H. Wang, D. W. Wang, J. K. Wang, Y. L. Wang, and C. H. Lin, “A High Speed Detection Platform Based on Surface-Enhanced Raman scattering for monitoring Antibiotic-Induced Chemical Changes in Bacteria Cell Wall,” Plos One 4(5), e5470 (2009).
[CrossRef] [PubMed]

C. H. Tsai, J. D. Lin, and C. H. Lin, “Optimization of the separation of malachite green in water by capillary electrophoresis Raman spectroscopy (CE-RS) based on the stacking and sweeping modes,” Talanta 72(2), 368–372 (2007).
[CrossRef] [PubMed]

Lin, J. D.

C. H. Tsai, J. D. Lin, and C. H. Lin, “Optimization of the separation of malachite green in water by capillary electrophoresis Raman spectroscopy (CE-RS) based on the stacking and sweeping modes,” Talanta 72(2), 368–372 (2007).
[CrossRef] [PubMed]

Lin, Y. H.

T. T. Liu, Y. H. Lin, C. S. Hung, T. J. Liu, Y. Chen, Y. C. Huang, T. H. Tsai, H. H. Wang, D. W. Wang, J. K. Wang, Y. L. Wang, and C. H. Lin, “A High Speed Detection Platform Based on Surface-Enhanced Raman scattering for monitoring Antibiotic-Induced Chemical Changes in Bacteria Cell Wall,” Plos One 4(5), e5470 (2009).
[CrossRef] [PubMed]

Liu, C. Y.

H. H. Wang, C. Y. Liu, S. B. Wu, N. W. Liu, C. Y. Peng, T. H. Chan, C. F. Hsu, J. K. Wang, and Y. L. Wang, “Highly Raman-enhancing substrates based on silver nanoparticle arrays with tunable sub-10 nm gaps,” Adv. Mater. 18(4), 491–495 (2006).
[CrossRef]

Liu, L.-Y.

M.-C. Yang, J.-M. Fang, T.-F. Kuo, D.-M. Wang, Y.-L. Huang, L.-Y. Liu, P.-H. Chen, and T.-H. Chang, “Production of antibodies for selective detection of malachite green and the related triphenylmethane dyes in fish and fishpond water,” J. Agric. Food Chem. 55(22), 8851–8856 (2007).
[CrossRef] [PubMed]

Liu, N. W.

H. H. Wang, C. Y. Liu, S. B. Wu, N. W. Liu, C. Y. Peng, T. H. Chan, C. F. Hsu, J. K. Wang, and Y. L. Wang, “Highly Raman-enhancing substrates based on silver nanoparticle arrays with tunable sub-10 nm gaps,” Adv. Mater. 18(4), 491–495 (2006).
[CrossRef]

Liu, T. J.

T. T. Liu, Y. H. Lin, C. S. Hung, T. J. Liu, Y. Chen, Y. C. Huang, T. H. Tsai, H. H. Wang, D. W. Wang, J. K. Wang, Y. L. Wang, and C. H. Lin, “A High Speed Detection Platform Based on Surface-Enhanced Raman scattering for monitoring Antibiotic-Induced Chemical Changes in Bacteria Cell Wall,” Plos One 4(5), e5470 (2009).
[CrossRef] [PubMed]

Liu, T. T.

T. T. Liu, Y. H. Lin, C. S. Hung, T. J. Liu, Y. Chen, Y. C. Huang, T. H. Tsai, H. H. Wang, D. W. Wang, J. K. Wang, Y. L. Wang, and C. H. Lin, “A High Speed Detection Platform Based on Surface-Enhanced Raman scattering for monitoring Antibiotic-Induced Chemical Changes in Bacteria Cell Wall,” Plos One 4(5), e5470 (2009).
[CrossRef] [PubMed]

Liu, Y. J.

Lucas, B. D.

B. D. Lucas, J. S. Kim, C. Chin, and L. J. Guo, “Nanoimprint lithography based approach for the fabrication of large-area, uniformly oriented plasmonic arrays,” Adv. Mater. 20(6), 1129–1134 (2008).
[CrossRef]

Lueck, H. B.

H. B. Lueck, D. C. Daniel, and J. L. McHale, “Resonance Raman Study of Solvent Effects on a series of Triarylmethane Dyes,” J. Raman Spectrosc. 24(6), 363–370 (1993).
[CrossRef]

Luo, S.-W.

T.-L. Chang, K.-Y. Cheng, T.-H. Chou, C.-C. Su, H.-P. Yang, and S.-W. Luo, “Hybrid-polymer nanostructures forming an anti-reflection film using two-beam interference and ultraviolet nanoimprint lithography,” Microelectron. Eng. 86(4-6), 874–877 (2009).
[CrossRef]

Lyandres, O.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[CrossRef] [PubMed]

D. A. Stuart, J. M. Yuen, N. Shah, O. Lyandres, C. R. Yonzon, M. R. Glucksberg, J. T. Walsh, and R. P. Van Duyne, “In vivo glucose measurement by surface-enhanced Raman spectroscopy,” Anal. Chem. 78(20), 7211–7215 (2006).
[CrossRef] [PubMed]

Machova, J.

E. Sudova, J. Machova, Z. Svobodova, and T. Vesely, “Negative effects of malachite green and possibilities of its replacement in the treatment of fish eggs and fish: a review,” Vet. Med. 52, 527–539 (2007).

Maes, G.

Mahnkopf, S.

McFarland, A. D.

J. A. Dieringer, A. D. McFarland, N. C. Shah, D. A. Stuart, A. V. Whitney, C. R. Yonzon, M. A. Young, X. Y. Zhang, and R. P. Van Duyne, “Surface enhanced Raman spectroscopy: new materials, concepts, characterization tools, and applications,” Faraday Discuss. 132, 9–26 (2006).
[CrossRef] [PubMed]

McHale, J. L.

H. B. Lueck, D. C. Daniel, and J. L. McHale, “Resonance Raman Study of Solvent Effects on a series of Triarylmethane Dyes,” J. Raman Spectrosc. 24(6), 363–370 (1993).
[CrossRef]

McLaughin, K.

K. Sagar, M. Smyth, J. Wilson, and K. McLaughin, “High-performance liquid chromatographic determination of the triphenylmethane dye, malachite green, using amperometric detection at a carbon fibre microelectrode,” J. Chromatogr. A 659(2), 329–336 (1994).
[CrossRef]

Meinertz, J. R.

J. L. Allen, J. R. Meinertz, and J. E. Gofus, “Determination of malachite green and its leuco form in water,” J. AOAC Int. 77, 646 (1992).

Milton, M. J. T.

R. J. C. Brown and M. J. T. Milton, “Nanostructures and nanostructured substrates for surface-enhanced Raman scattering (SERS),” J. Raman Spectrosc. 39(10), 1313–1326 (2008).
[CrossRef]

Netti, C. M.

Nordlander, P.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[CrossRef] [PubMed]

Olson, D. H.

Peng, C. Y.

H. H. Wang, C. Y. Liu, S. B. Wu, N. W. Liu, C. Y. Peng, T. H. Chan, C. F. Hsu, J. K. Wang, and Y. L. Wang, “Highly Raman-enhancing substrates based on silver nanoparticle arrays with tunable sub-10 nm gaps,” Adv. Mater. 18(4), 491–495 (2006).
[CrossRef]

Perney, N. M. B.

Pigeon, F.

F. Pigeon, I. F. Salakhutdinov, and A. V. Tishchenko, “Identity of long-range surface plasmons along asymmetric structures and their potential for refractometric sensors,” J. Appl. Phys. 90(2), 852–859 (2001).
[CrossRef]

Pinczuk, A.

Prodan, E.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[CrossRef] [PubMed]

Radloff, C.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[CrossRef] [PubMed]

Ren, B.

D. Y. Wu, J. F. Li, B. Ren, and Z. Q. Tian, “Electrochemical surface-enhanced Raman spectroscopy of nanostructures,” Chem. Soc. Rev. 37(5), 1025–1041 (2008).
[CrossRef] [PubMed]

Roy, D.

S. Srivastava, R. Sinha, and D. Roy, “Toxicological effects of malachite green,” Aquat. Toxicol. 66(3), 319–329 (2004).
[CrossRef] [PubMed]

Sagar, K.

K. Sagar, M. Smyth, J. Wilson, and K. McLaughin, “High-performance liquid chromatographic determination of the triphenylmethane dye, malachite green, using amperometric detection at a carbon fibre microelectrode,” J. Chromatogr. A 659(2), 329–336 (1994).
[CrossRef]

Salakhutdinov, I. F.

F. Pigeon, I. F. Salakhutdinov, and A. V. Tishchenko, “Identity of long-range surface plasmons along asymmetric structures and their potential for refractometric sensors,” J. Appl. Phys. 90(2), 852–859 (2001).
[CrossRef]

Salerno, M.

N. Félidj, J. Aubard, G. Levi, J. R. Krenn, M. Salerno, G. Schider, B. Lamprecht, A. Leitner, and F. R. Aussenegg, “Controlling the optical response of regular arrays of gold particles for surface-enhanced Raman scattering,” Phys. Rev. B 65(7), 075419 (2002).
[CrossRef]

Samoylenko, I. I.

Schider, G.

N. Félidj, J. Aubard, G. Levi, J. R. Krenn, M. Salerno, G. Schider, B. Lamprecht, A. Leitner, and F. R. Aussenegg, “Controlling the optical response of regular arrays of gold particles for surface-enhanced Raman scattering,” Phys. Rev. B 65(7), 075419 (2002).
[CrossRef]

Shah, N.

D. A. Stuart, J. M. Yuen, N. Shah, O. Lyandres, C. R. Yonzon, M. R. Glucksberg, J. T. Walsh, and R. P. Van Duyne, “In vivo glucose measurement by surface-enhanced Raman spectroscopy,” Anal. Chem. 78(20), 7211–7215 (2006).
[CrossRef] [PubMed]

Shah, N. C.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[CrossRef] [PubMed]

J. A. Dieringer, A. D. McFarland, N. C. Shah, D. A. Stuart, A. V. Whitney, C. R. Yonzon, M. A. Young, X. Y. Zhang, and R. P. Van Duyne, “Surface enhanced Raman spectroscopy: new materials, concepts, characterization tools, and applications,” Faraday Discuss. 132, 9–26 (2006).
[CrossRef] [PubMed]

Sinha, R.

S. Srivastava, R. Sinha, and D. Roy, “Toxicological effects of malachite green,” Aquat. Toxicol. 66(3), 319–329 (2004).
[CrossRef] [PubMed]

Smyth, M.

K. Sagar, M. Smyth, J. Wilson, and K. McLaughin, “High-performance liquid chromatographic determination of the triphenylmethane dye, malachite green, using amperometric detection at a carbon fibre microelectrode,” J. Chromatogr. A 659(2), 329–336 (1994).
[CrossRef]

Srivastava, S.

S. Srivastava, R. Sinha, and D. Roy, “Toxicological effects of malachite green,” Aquat. Toxicol. 66(3), 319–329 (2004).
[CrossRef] [PubMed]

Stegeman, G. I.

J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B Condens. Matter 33(8), 5186–5201 (1986).
[CrossRef] [PubMed]

Stuart, D. A.

D. A. Stuart, J. M. Yuen, N. Shah, O. Lyandres, C. R. Yonzon, M. R. Glucksberg, J. T. Walsh, and R. P. Van Duyne, “In vivo glucose measurement by surface-enhanced Raman spectroscopy,” Anal. Chem. 78(20), 7211–7215 (2006).
[CrossRef] [PubMed]

J. A. Dieringer, A. D. McFarland, N. C. Shah, D. A. Stuart, A. V. Whitney, C. R. Yonzon, M. A. Young, X. Y. Zhang, and R. P. Van Duyne, “Surface enhanced Raman spectroscopy: new materials, concepts, characterization tools, and applications,” Faraday Discuss. 132, 9–26 (2006).
[CrossRef] [PubMed]

Su, C.-C.

T.-L. Chang, K.-Y. Cheng, T.-H. Chou, C.-C. Su, H.-P. Yang, and S.-W. Luo, “Hybrid-polymer nanostructures forming an anti-reflection film using two-beam interference and ultraviolet nanoimprint lithography,” Microelectron. Eng. 86(4-6), 874–877 (2009).
[CrossRef]

Sudova, E.

E. Sudova, J. Machova, Z. Svobodova, and T. Vesely, “Negative effects of malachite green and possibilities of its replacement in the treatment of fish eggs and fish: a review,” Vet. Med. 52, 527–539 (2007).

Svobodova, Z.

E. Sudova, J. Machova, Z. Svobodova, and T. Vesely, “Negative effects of malachite green and possibilities of its replacement in the treatment of fish eggs and fish: a review,” Vet. Med. 52, 527–539 (2007).

Tamir, T.

J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B Condens. Matter 33(8), 5186–5201 (1986).
[CrossRef] [PubMed]

Teng, C. H.

Tian, Z. Q.

D. Y. Wu, J. F. Li, B. Ren, and Z. Q. Tian, “Electrochemical surface-enhanced Raman spectroscopy of nanostructures,” Chem. Soc. Rev. 37(5), 1025–1041 (2008).
[CrossRef] [PubMed]

Tishchenko, A. V.

F. Pigeon, I. F. Salakhutdinov, and A. V. Tishchenko, “Identity of long-range surface plasmons along asymmetric structures and their potential for refractometric sensors,” J. Appl. Phys. 90(2), 852–859 (2001).
[CrossRef]

Tsai, C. H.

C. H. Tsai, J. D. Lin, and C. H. Lin, “Optimization of the separation of malachite green in water by capillary electrophoresis Raman spectroscopy (CE-RS) based on the stacking and sweeping modes,” Talanta 72(2), 368–372 (2007).
[CrossRef] [PubMed]

Tsai, T. H.

T. T. Liu, Y. H. Lin, C. S. Hung, T. J. Liu, Y. Chen, Y. C. Huang, T. H. Tsai, H. H. Wang, D. W. Wang, J. K. Wang, Y. L. Wang, and C. H. Lin, “A High Speed Detection Platform Based on Surface-Enhanced Raman scattering for monitoring Antibiotic-Induced Chemical Changes in Bacteria Cell Wall,” Plos One 4(5), e5470 (2009).
[CrossRef] [PubMed]

Van Dorpe, P.

Van Duyne, R. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[CrossRef] [PubMed]

D. A. Stuart, J. M. Yuen, N. Shah, O. Lyandres, C. R. Yonzon, M. R. Glucksberg, J. T. Walsh, and R. P. Van Duyne, “In vivo glucose measurement by surface-enhanced Raman spectroscopy,” Anal. Chem. 78(20), 7211–7215 (2006).
[CrossRef] [PubMed]

J. A. Dieringer, A. D. McFarland, N. C. Shah, D. A. Stuart, A. V. Whitney, C. R. Yonzon, M. A. Young, X. Y. Zhang, and R. P. Van Duyne, “Surface enhanced Raman spectroscopy: new materials, concepts, characterization tools, and applications,” Faraday Discuss. 132, 9–26 (2006).
[CrossRef] [PubMed]

Veres, T.

K. B. Li, L. V. Clime, B. Cui, and T. Veres, “Surface enhanced Raman scattering on long-range ordered noble-metal nanocrescent arrays,” Nanotechnology 19(14), 145305 (2008).
[CrossRef] [PubMed]

B. Cui and T. Veres, “Fabrication of metal nanoring array by nanoimprint lithography (NIL) and reactive ion etching,” Microelectron. Eng. 84(5-8), 1544–1547 (2007).
[CrossRef]

R. Alvarez-Puebla, B. Cui, J. P. Bravo-Vasquez, T. Veres, and H. Fenniri, “Nanoimprinted SERS-active substrates with tunable surface plasmon resonances,” J. Phys. Chem. C 111(18), 6720–6723 (2007).
[CrossRef]

Vesely, T.

E. Sudova, J. Machova, Z. Svobodova, and T. Vesely, “Negative effects of malachite green and possibilities of its replacement in the treatment of fish eggs and fish: a review,” Vet. Med. 52, 527–539 (2007).

Vollmer, M.

H. Hövel, S. Fritz, A. Hilger, U. Kreibig, and M. Vollmer, “Width of cluster plasmon resonances: Bulk dielectric functions and chemical interface damping,” Phys. Rev. B Condens. Matter 48(24), 18178–18188 (1993).
[CrossRef] [PubMed]

Walsh, J. T.

D. A. Stuart, J. M. Yuen, N. Shah, O. Lyandres, C. R. Yonzon, M. R. Glucksberg, J. T. Walsh, and R. P. Van Duyne, “In vivo glucose measurement by surface-enhanced Raman spectroscopy,” Anal. Chem. 78(20), 7211–7215 (2006).
[CrossRef] [PubMed]

Wang, D. W.

T. T. Liu, Y. H. Lin, C. S. Hung, T. J. Liu, Y. Chen, Y. C. Huang, T. H. Tsai, H. H. Wang, D. W. Wang, J. K. Wang, Y. L. Wang, and C. H. Lin, “A High Speed Detection Platform Based on Surface-Enhanced Raman scattering for monitoring Antibiotic-Induced Chemical Changes in Bacteria Cell Wall,” Plos One 4(5), e5470 (2009).
[CrossRef] [PubMed]

Wang, D.-M.

M.-C. Yang, J.-M. Fang, T.-F. Kuo, D.-M. Wang, Y.-L. Huang, L.-Y. Liu, P.-H. Chen, and T.-H. Chang, “Production of antibodies for selective detection of malachite green and the related triphenylmethane dyes in fish and fishpond water,” J. Agric. Food Chem. 55(22), 8851–8856 (2007).
[CrossRef] [PubMed]

Wang, H. H.

T. T. Liu, Y. H. Lin, C. S. Hung, T. J. Liu, Y. Chen, Y. C. Huang, T. H. Tsai, H. H. Wang, D. W. Wang, J. K. Wang, Y. L. Wang, and C. H. Lin, “A High Speed Detection Platform Based on Surface-Enhanced Raman scattering for monitoring Antibiotic-Induced Chemical Changes in Bacteria Cell Wall,” Plos One 4(5), e5470 (2009).
[CrossRef] [PubMed]

H. H. Wang, C. Y. Liu, S. B. Wu, N. W. Liu, C. Y. Peng, T. H. Chan, C. F. Hsu, J. K. Wang, and Y. L. Wang, “Highly Raman-enhancing substrates based on silver nanoparticle arrays with tunable sub-10 nm gaps,” Adv. Mater. 18(4), 491–495 (2006).
[CrossRef]

Wang, J. K.

B. Y. Lin, H. C. Hsu, C. H. Teng, H. C. Chang, J. K. Wang, and Y. L. Wang, “Unraveling near-field origin of electromagnetic waves scattered from silver nanorod arrays using pseudo-spectral time-domain calculation,” Opt. Express 17(16), 14211–14228 (2009).
[CrossRef] [PubMed]

T. T. Liu, Y. H. Lin, C. S. Hung, T. J. Liu, Y. Chen, Y. C. Huang, T. H. Tsai, H. H. Wang, D. W. Wang, J. K. Wang, Y. L. Wang, and C. H. Lin, “A High Speed Detection Platform Based on Surface-Enhanced Raman scattering for monitoring Antibiotic-Induced Chemical Changes in Bacteria Cell Wall,” Plos One 4(5), e5470 (2009).
[CrossRef] [PubMed]

M. M. Dvoynenko and J. K. Wang, “Finding electromagnetic and chemical enhancement factors of surface-enhanced Raman scattering,” Opt. Lett. 32(24), 3552–3554 (2007).
[CrossRef] [PubMed]

H. H. Wang, C. Y. Liu, S. B. Wu, N. W. Liu, C. Y. Peng, T. H. Chan, C. F. Hsu, J. K. Wang, and Y. L. Wang, “Highly Raman-enhancing substrates based on silver nanoparticle arrays with tunable sub-10 nm gaps,” Adv. Mater. 18(4), 491–495 (2006).
[CrossRef]

M. M. Dvoynenko, I. I. Samoylenko, and J. K. Wang, “Suppressed light transmission through corrugated metal films at normal incidence,” J. Opt. Soc. Am. A 23(9), 2315–2319 (2006).
[CrossRef]

Wang, Y. L.

B. Y. Lin, H. C. Hsu, C. H. Teng, H. C. Chang, J. K. Wang, and Y. L. Wang, “Unraveling near-field origin of electromagnetic waves scattered from silver nanorod arrays using pseudo-spectral time-domain calculation,” Opt. Express 17(16), 14211–14228 (2009).
[CrossRef] [PubMed]

T. T. Liu, Y. H. Lin, C. S. Hung, T. J. Liu, Y. Chen, Y. C. Huang, T. H. Tsai, H. H. Wang, D. W. Wang, J. K. Wang, Y. L. Wang, and C. H. Lin, “A High Speed Detection Platform Based on Surface-Enhanced Raman scattering for monitoring Antibiotic-Induced Chemical Changes in Bacteria Cell Wall,” Plos One 4(5), e5470 (2009).
[CrossRef] [PubMed]

H. H. Wang, C. Y. Liu, S. B. Wu, N. W. Liu, C. Y. Peng, T. H. Chan, C. F. Hsu, J. K. Wang, and Y. L. Wang, “Highly Raman-enhancing substrates based on silver nanoparticle arrays with tunable sub-10 nm gaps,” Adv. Mater. 18(4), 491–495 (2006).
[CrossRef]

Weitz, D. A.

Whitney, A. V.

J. A. Dieringer, A. D. McFarland, N. C. Shah, D. A. Stuart, A. V. Whitney, C. R. Yonzon, M. A. Young, X. Y. Zhang, and R. P. Van Duyne, “Surface enhanced Raman spectroscopy: new materials, concepts, characterization tools, and applications,” Faraday Discuss. 132, 9–26 (2006).
[CrossRef] [PubMed]

Wilson, J.

K. Sagar, M. Smyth, J. Wilson, and K. McLaughin, “High-performance liquid chromatographic determination of the triphenylmethane dye, malachite green, using amperometric detection at a carbon fibre microelectrode,” J. Chromatogr. A 659(2), 329–336 (1994).
[CrossRef]

Wu, D. Y.

D. Y. Wu, J. F. Li, B. Ren, and Z. Q. Tian, “Electrochemical surface-enhanced Raman spectroscopy of nanostructures,” Chem. Soc. Rev. 37(5), 1025–1041 (2008).
[CrossRef] [PubMed]

Wu, S. B.

H. H. Wang, C. Y. Liu, S. B. Wu, N. W. Liu, C. Y. Peng, T. H. Chan, C. F. Hsu, J. K. Wang, and Y. L. Wang, “Highly Raman-enhancing substrates based on silver nanoparticle arrays with tunable sub-10 nm gaps,” Adv. Mater. 18(4), 491–495 (2006).
[CrossRef]

Yang, H.-P.

T.-L. Chang, K.-Y. Cheng, T.-H. Chou, C.-C. Su, H.-P. Yang, and S.-W. Luo, “Hybrid-polymer nanostructures forming an anti-reflection film using two-beam interference and ultraviolet nanoimprint lithography,” Microelectron. Eng. 86(4-6), 874–877 (2009).
[CrossRef]

Yang, M.-C.

M.-C. Yang, J.-M. Fang, T.-F. Kuo, D.-M. Wang, Y.-L. Huang, L.-Y. Liu, P.-H. Chen, and T.-H. Chang, “Production of antibodies for selective detection of malachite green and the related triphenylmethane dyes in fish and fishpond water,” J. Agric. Food Chem. 55(22), 8851–8856 (2007).
[CrossRef] [PubMed]

Ye, J.

Yonzon, C. R.

D. A. Stuart, J. M. Yuen, N. Shah, O. Lyandres, C. R. Yonzon, M. R. Glucksberg, J. T. Walsh, and R. P. Van Duyne, “In vivo glucose measurement by surface-enhanced Raman spectroscopy,” Anal. Chem. 78(20), 7211–7215 (2006).
[CrossRef] [PubMed]

J. A. Dieringer, A. D. McFarland, N. C. Shah, D. A. Stuart, A. V. Whitney, C. R. Yonzon, M. A. Young, X. Y. Zhang, and R. P. Van Duyne, “Surface enhanced Raman spectroscopy: new materials, concepts, characterization tools, and applications,” Faraday Discuss. 132, 9–26 (2006).
[CrossRef] [PubMed]

Young, M. A.

J. A. Dieringer, A. D. McFarland, N. C. Shah, D. A. Stuart, A. V. Whitney, C. R. Yonzon, M. A. Young, X. Y. Zhang, and R. P. Van Duyne, “Surface enhanced Raman spectroscopy: new materials, concepts, characterization tools, and applications,” Faraday Discuss. 132, 9–26 (2006).
[CrossRef] [PubMed]

Yuen, J. M.

D. A. Stuart, J. M. Yuen, N. Shah, O. Lyandres, C. R. Yonzon, M. R. Glucksberg, J. T. Walsh, and R. P. Van Duyne, “In vivo glucose measurement by surface-enhanced Raman spectroscopy,” Anal. Chem. 78(20), 7211–7215 (2006).
[CrossRef] [PubMed]

Zhang, X. Y.

J. A. Dieringer, A. D. McFarland, N. C. Shah, D. A. Stuart, A. V. Whitney, C. R. Yonzon, M. A. Young, X. Y. Zhang, and R. P. Van Duyne, “Surface enhanced Raman spectroscopy: new materials, concepts, characterization tools, and applications,” Faraday Discuss. 132, 9–26 (2006).
[CrossRef] [PubMed]

Zhao, J.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[CrossRef] [PubMed]

Zhao, Y. P.

Zoorob, M. E.

Adv. Mater. (2)

B. D. Lucas, J. S. Kim, C. Chin, and L. J. Guo, “Nanoimprint lithography based approach for the fabrication of large-area, uniformly oriented plasmonic arrays,” Adv. Mater. 20(6), 1129–1134 (2008).
[CrossRef]

H. H. Wang, C. Y. Liu, S. B. Wu, N. W. Liu, C. Y. Peng, T. H. Chan, C. F. Hsu, J. K. Wang, and Y. L. Wang, “Highly Raman-enhancing substrates based on silver nanoparticle arrays with tunable sub-10 nm gaps,” Adv. Mater. 18(4), 491–495 (2006).
[CrossRef]

Adv. Opt. Photon. (1)

Anal. Chem. (1)

D. A. Stuart, J. M. Yuen, N. Shah, O. Lyandres, C. R. Yonzon, M. R. Glucksberg, J. T. Walsh, and R. P. Van Duyne, “In vivo glucose measurement by surface-enhanced Raman spectroscopy,” Anal. Chem. 78(20), 7211–7215 (2006).
[CrossRef] [PubMed]

Aquat. Toxicol. (1)

S. Srivastava, R. Sinha, and D. Roy, “Toxicological effects of malachite green,” Aquat. Toxicol. 66(3), 319–329 (2004).
[CrossRef] [PubMed]

Chem. Soc. Rev. (3)

A. Campion and P. Kambhampati, “Surface-enhanced Raman scattering,” Chem. Soc. Rev. 27(4), 241–250 (1998).
[CrossRef]

S. Lal, N. K. Grady, J. Kundu, C. S. Levin, J. B. Lassiter, and N. J. Halas, “Tailoring plasmonic substrates for surface enhanced spectroscopies,” Chem. Soc. Rev. 37(5), 898–911 (2008).
[CrossRef] [PubMed]

D. Y. Wu, J. F. Li, B. Ren, and Z. Q. Tian, “Electrochemical surface-enhanced Raman spectroscopy of nanostructures,” Chem. Soc. Rev. 37(5), 1025–1041 (2008).
[CrossRef] [PubMed]

Faraday Discuss. (1)

J. A. Dieringer, A. D. McFarland, N. C. Shah, D. A. Stuart, A. V. Whitney, C. R. Yonzon, M. A. Young, X. Y. Zhang, and R. P. Van Duyne, “Surface enhanced Raman spectroscopy: new materials, concepts, characterization tools, and applications,” Faraday Discuss. 132, 9–26 (2006).
[CrossRef] [PubMed]

J. Agric. Food Chem. (1)

M.-C. Yang, J.-M. Fang, T.-F. Kuo, D.-M. Wang, Y.-L. Huang, L.-Y. Liu, P.-H. Chen, and T.-H. Chang, “Production of antibodies for selective detection of malachite green and the related triphenylmethane dyes in fish and fishpond water,” J. Agric. Food Chem. 55(22), 8851–8856 (2007).
[CrossRef] [PubMed]

J. AOAC Int. (1)

J. L. Allen, J. R. Meinertz, and J. E. Gofus, “Determination of malachite green and its leuco form in water,” J. AOAC Int. 77, 646 (1992).

J. Appl. Phys. (1)

F. Pigeon, I. F. Salakhutdinov, and A. V. Tishchenko, “Identity of long-range surface plasmons along asymmetric structures and their potential for refractometric sensors,” J. Appl. Phys. 90(2), 852–859 (2001).
[CrossRef]

J. Chromatogr. A (1)

K. Sagar, M. Smyth, J. Wilson, and K. McLaughin, “High-performance liquid chromatographic determination of the triphenylmethane dye, malachite green, using amperometric detection at a carbon fibre microelectrode,” J. Chromatogr. A 659(2), 329–336 (1994).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Phys. Chem. C (1)

R. Alvarez-Puebla, B. Cui, J. P. Bravo-Vasquez, T. Veres, and H. Fenniri, “Nanoimprinted SERS-active substrates with tunable surface plasmon resonances,” J. Phys. Chem. C 111(18), 6720–6723 (2007).
[CrossRef]

J. Raman Spectrosc. (2)

R. J. C. Brown and M. J. T. Milton, “Nanostructures and nanostructured substrates for surface-enhanced Raman scattering (SERS),” J. Raman Spectrosc. 39(10), 1313–1326 (2008).
[CrossRef]

H. B. Lueck, D. C. Daniel, and J. L. McHale, “Resonance Raman Study of Solvent Effects on a series of Triarylmethane Dyes,” J. Raman Spectrosc. 24(6), 363–370 (1993).
[CrossRef]

Microelectron. Eng. (2)

T.-L. Chang, K.-Y. Cheng, T.-H. Chou, C.-C. Su, H.-P. Yang, and S.-W. Luo, “Hybrid-polymer nanostructures forming an anti-reflection film using two-beam interference and ultraviolet nanoimprint lithography,” Microelectron. Eng. 86(4-6), 874–877 (2009).
[CrossRef]

B. Cui and T. Veres, “Fabrication of metal nanoring array by nanoimprint lithography (NIL) and reactive ion etching,” Microelectron. Eng. 84(5-8), 1544–1547 (2007).
[CrossRef]

N. J. Phys. (1)

M. W. Knight and N. J. Halas, “Nanoshells to nanoeggs to nanocups: optical properties of reduced symmetry core-shell nanoparticles beyond the quasistatic limit,” N. J. Phys. 10(10), 105006 (2008).
[CrossRef]

Nanotechnology (1)

K. B. Li, L. V. Clime, B. Cui, and T. Veres, “Surface enhanced Raman scattering on long-range ordered noble-metal nanocrescent arrays,” Nanotechnology 19(14), 145305 (2008).
[CrossRef] [PubMed]

Nat. Mater. (1)

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[CrossRef] [PubMed]

Opt. Express (4)

Opt. Lett. (3)

Phys. Rev. B (1)

N. Félidj, J. Aubard, G. Levi, J. R. Krenn, M. Salerno, G. Schider, B. Lamprecht, A. Leitner, and F. R. Aussenegg, “Controlling the optical response of regular arrays of gold particles for surface-enhanced Raman scattering,” Phys. Rev. B 65(7), 075419 (2002).
[CrossRef]

Phys. Rev. B Condens. Matter (2)

H. Hövel, S. Fritz, A. Hilger, U. Kreibig, and M. Vollmer, “Width of cluster plasmon resonances: Bulk dielectric functions and chemical interface damping,” Phys. Rev. B Condens. Matter 48(24), 18178–18188 (1993).
[CrossRef] [PubMed]

J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B Condens. Matter 33(8), 5186–5201 (1986).
[CrossRef] [PubMed]

Plos One (1)

T. T. Liu, Y. H. Lin, C. S. Hung, T. J. Liu, Y. Chen, Y. C. Huang, T. H. Tsai, H. H. Wang, D. W. Wang, J. K. Wang, Y. L. Wang, and C. H. Lin, “A High Speed Detection Platform Based on Surface-Enhanced Raman scattering for monitoring Antibiotic-Induced Chemical Changes in Bacteria Cell Wall,” Plos One 4(5), e5470 (2009).
[CrossRef] [PubMed]

Science (1)

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[CrossRef] [PubMed]

Talanta (1)

C. H. Tsai, J. D. Lin, and C. H. Lin, “Optimization of the separation of malachite green in water by capillary electrophoresis Raman spectroscopy (CE-RS) based on the stacking and sweeping modes,” Talanta 72(2), 368–372 (2007).
[CrossRef] [PubMed]

Vet. Med. (1)

E. Sudova, J. Machova, Z. Svobodova, and T. Vesely, “Negative effects of malachite green and possibilities of its replacement in the treatment of fish eggs and fish: a review,” Vet. Med. 52, 527–539 (2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) Cross-sectional schematic, (b) top-view scanning electron microscopic image (zoom-in view in the inset), and (c) atomic force microscopic topography image of a nano-imprinted SERS-active substrate with a 25 nm silver over-coating. The figure in the lower half of (c) shows the height profile along the red dashed line.

Fig. 2
Fig. 2

Experimental absorption spectra of SERS-active substrates deposited with different silver film thicknesses in (a) air and (b) water; calculated absorptance spectra of SERS-active substrates with different silver film thicknesses in (c) air and (d) water. d represents the thickness of silver film. Red, orange, green, blue, indigo and violet lines in (a) and (b) represent d = 13.1, 21.8, 30.6, 43.7, 65.5 and 87.3 nm, respectively. Red, orange, green, blue, and indigo dotted lines in (c) and (d) represent d = 15, 25, 35, 50, and 75 nm, respectively.

Fig. 3
Fig. 3

Extracted resonant wavelengths of symmetric (filled symbols) and asymmetric (open symbols) modes of silver-coated hexagonally patterned substrates vs. silver film thickness (d) from experimental and calculated results. Squares and circles represent the substrates in air and with a top water layer, respectively. Filled red symbols represent experimental data. Lines are guides to eye.

Fig. 4
Fig. 4

Cross-sectional view of radial electric field component of SERS-active substrate deposited with a 15 nm silver film in air at (a) 338 nm and (b) 643 nm. Their respective rescaled field distributions are shown at (c) and (d). The centre of the hemisphere is the origin of the spherical coordinate.

Fig. 5
Fig. 5

Raman spectra of 10−5 M of R6G in water on 25-nm silver-coated nano-imprinted hexagonally patterned SERS-active substrate (red dots) and that of 10−3 M of R6G in water on 25-nm silver-coated flat glass slide (blue dots). The excitation wavelength is 632.8 nm.

Fig. 6
Fig. 6

(a) Mean Raman spectrum of 10−6 M of MG in water averaged over ten spectra measured at ten different locations of single SERS-active substrate. Its standard error, Δ, is shown below. (b) Raman intensity vs. concentration of MG in water. Solid line is a guide to eye.

Fig. 7
Fig. 7

Normalized experimental Raman intensities (IS ) of (a) MG in water at 1620 cm−1 excited at 514.5 nm (b) R6G in water at 1365 cm−1 excited at 632.8 nm on silver-coated hexagonally patterned substrates as a function of the silver film thickness (d). Filled circles represent experimental data, open squares represent calculated electromagnetic enhancement factor (MEM ) based on absorptance measurements, and solid lines are guides to eyes.

Fig. 8
Fig. 8

(a) Top view of electric field intensity at 630 nm of SERS-active substrate deposited with a 25 nm silver film in water; (b) cross-sectional electric field intensity along the white dashed line in (a); (c) electric field intensity enhancement factor along the dashed line in (b).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

M E M = | E l o c ( ω L ) E i n c ( ω L ) | 2 × | E l o c ( ω S ) E i n c ( ω S ) | 2 ,

Metrics