Abstract

Analysis of optical waveguides with thin metal films is studied by the multidomain pseudospectral frequency-domain (PSFD) method. Calculated results for both guiding and leaky modes are precise by means of the PSFD based on Chebyshev-Lagrange interpolating polynomials with modified perfectly matched layer (MPML). By introducing a suitable boundary condition for the dielectric-metallic interface, the stability and the spectrum convergence characteristic of the PSFD-MPML method can be sustained. The comparison of exact solutions of highly sensitive surface plasmon modes in 1D dielectric-metal waveguides and those calculated by our PSFD-MPML demonstrates the validity and usefulness of the proposed method. We also apply the method to calculate the effective refractive indices of an integrated optical waveguide with deposition of the finite gold metal layer which induces the hybrid surface plasmon modes. Furthermore, the 2-D optical structures with gold films are investigated to exhibit hybrid surface plasmon modes of wide variations. We then apply hybrid surface plasmon modes to design novel optical components–mode selective devices and the polarizing beam splitter.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Faraday, “Experimental relations of gold (and other metals) to light,” Philos. Trans. R. Soc. Lond. 147(0), 145–181 (1857).
    [CrossRef]
  2. U. Kreibig, and M. Vollmer, Optical Properties of Metal Clusters, (Springer-Verlag, 1996).
  3. N. W. Ashcroft, and N. D. Mermin, Solid State Physics, (Harcount, 1976).
  4. H. Raether, Surface Plasmons, (Springer-Verlag, 1988).
  5. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, (Springer-Verlag, 1998).
  6. M. I. Stockman, “Electromagnetic Theory of SERS,” in Springer Series Topics in Applied Physics–Surface Enhanced Raman Scattering Physics and Applications, K. Kneipp, M. Moskovits, and H. Kneipp, ed. (Springer-Verlag, 2006).
  7. R. G. Heideman, R. P. H. Kooyman, and J. Greve, “Performance of a highly sensitive optical waveguide Mach–Zehnder interferometer immunosensor,” Sens. Actuators B Chem. 10(3), 209–217 (1993).
    [CrossRef]
  8. R. Weisser, B. Menges, and S. Mittler-Neher, “Refractive index and thickness determination of monolayers by multi mode waveguide coupled surface plasmons,” Sens. Actuators B Chem. 56(3), 189–197 (1999).
    [CrossRef]
  9. T. Goto, Y. Katagiri, H. Fukuda, H. Shinojima, Y. Nakano, I. Kobayashi, and Y. Mitsuoka, “Propagation loss measurement for surface plasmon-polariton modes at metal waveguides on semiconductor substrates,” Appl. Phys. Lett. 84(6), 852–854 (2004).
    [CrossRef]
  10. J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propaga-tion with subwavelength-scale localization,” Phys. Rev. B 73(3), 035407 (2006).
    [CrossRef]
  11. R. Zia, M. D. Selker, P. B. Catrysse, and M. L. Brongersma, “Geometries and materials for subwavelength surface plasmon modes,” J. Opt. Soc. Am. A 21(12), 2442–2446 (2004).
    [CrossRef]
  12. J. Chen, G. A. Smolyakov, S. R. J. Brueck, and K. J. Malloy, “Surface plasmon modes of finite, planar, metal-insulator-metal plasmonic waveguides,” Opt. Express 16(19), 14902–14909 (2008).
    [CrossRef] [PubMed]
  13. M. L. Nesterov, A. V. Kats, and S. K. Turitsyn, “Extremely short-length surface plasmon resonance devices,” Opt. Express 16(25), 20227–20240 (2008).
    [CrossRef] [PubMed]
  14. A. Hassani and M. Skorobogatiy, “Design of the microstructured optical fiber-based surface plasmon resonance sensors with enhanced microfluidics,” Opt. Express 14(24), 11616–11621 (2006).
    [CrossRef] [PubMed]
  15. D. R. Mason, D. K. Gramotnev, and K. S. Kim, “Wavelength-dependent transmission through sharp 90 ° bends in sub-wavelength metallic slot waveguides,” Opt. Express 18(15), 16139–16145 (2010).
    [CrossRef] [PubMed]
  16. S. J. Al-Bader and M. Imtaar, “Optical fiber hybrid-surface plasmon polaritons,” J. Opt. Soc. Am. B 10(1), 83–88 (1993).
    [CrossRef]
  17. Y. C. Lu, L. Yang, W. P. Huang, and S. S. Jian, “Improved full-vector finite-difference complex mode solver for optical waveguides of circular symmetry,” J. Lightwave Technol. 26(13), 1868–1876 (2008).
    [CrossRef]
  18. H. J. M. Kreuwel, P. V. Lambeck, J. M. N. Beltman, and T. J. A. Popma, “Mode-coupling in multilayer structures applied to a chemical sensor and a wavelength selective directional coupler,” in Proc. ECIO’87 (Glasgow, 11–13 May 1987) pp. 217–220.
  19. M. Koshiba and Y. Tsuji, “Curvilinear hybrid edge/nodal elements with triangular shape for guided-wave problems,” J. Lightwave Technol. 18(5), 737–743 (2000).
    [CrossRef]
  20. Y. Tsuji and M. Koshiba, “Guided-mode and leaky-mode analysis by imaginary distance beam propagation method based on finite element scheme,” J. Lightwave Technol. 18(4), 618–623 (2000).
    [CrossRef]
  21. Y.-P. Chiou, Y.-C. Chiang, and H.-C. Chang, “Improved three-point formulas considering the interface conditions in the finite-difference analysis of step-index optical devices,” J. Lightwave Technol. 18(2), 243–251 (2000).
    [CrossRef]
  22. Y.-C. Chiang, Y.-P. Chiou, and H.-C. Chang, “Improved full-vectorial finite-difference mode solver for optical waveguides with step-index profiles,” J. Lightwave Technol. 20(8), 1609–1618 (2002).
    [CrossRef]
  23. Y.-P. Chiou, Y.-C. Chiang, C.-H. Lai, C.-H. Du, and H.-C. Chang, “Finite-difference modeling of dielectric waveguides with corners and slanted facets,” J. Lightwave Technol. 27(12), 2077–2086 (2009).
    [CrossRef]
  24. S. Xiao, R. Vahldieck, and H. Jin, “Full-wave analysis of guided wave structures using a novel 2-D FDTD,” IEEE Microw. Guid. Wave Lett. 2(5), 165–167 (1992).
    [CrossRef]
  25. N. Kaneda, B. Houshmand, and T. Itoh, “FDTD analysis of dielectric resonators with curved surfaces,” IEEE Trans. Microw. Theory Tech. 45(9), 1645–1649 (1997).
    [CrossRef]
  26. K. Bierwirth, N. Schulz, and F. Arndt, “Finite-difference analysis of rectangular dielectric waveguide structures,” IEEE Trans. Microw. Theory Tech. 34(11), 1104–1114 (1986).
    [CrossRef]
  27. Z. Zhu and T. G. Brown, “Full-vectorial finite-difference analysis of microstructured optical fibers,” Opt. Express 10(17), 853–864 (2002).
    [PubMed]
  28. S. Guo, F. Wu, S. Albin, H. Tai, and R. Rogowski, “Loss and dispersion analysis of microstructured fibers by finite-difference method,” Opt. Express 12(15), 3341–3352 (2004).
    [CrossRef] [PubMed]
  29. Q. H. Liu, “A pseudospectral frequency-domain (PSFD) method for computational electromagnetics,” IEEE Antennas Wirel. Propag. Lett. 1(1), 131–134 (2002).
    [CrossRef]
  30. B. Yang, D. Gottlieb, and J. S. Hesthaven, “Spectral simulations of electromagnetic wave scattering,” J. Comput. Phys. 134(2), 216–230 (1997).
    [CrossRef]
  31. B. Yang and J. S. Hesthaven, “A pseudospectral method for time-domain computation of electromagnetic scattering by bodies of revolution,” IEEE Trans. Antenn. Propag. 47(1), 132–141 (1999).
    [CrossRef]
  32. J. S. Hesthaven, P. G. Dinesen, and J. P. Lynovy, “Spectral collocation time-domain modeling of diffractive optical elements,” J. Comput. Phys. 155(2), 287–306 (1999).
    [CrossRef]
  33. P. J. Chiang, C. P. Yu, and H. C. Chang, “Analysis of two-dimensional photonic crystals using a multidomain pseudospectral method,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 75(2), 026703 (2007).
    [CrossRef] [PubMed]
  34. P. J. Chiang, C. L. Wu, C. H. Teng, C. S. Yang, and H. C. Chang, “Full-vectorial optical waveguide mode solvers using multidomain pseudospectral frequency-domain (PSFD) formulations,” IEEE J. Quantum Electron. 44(1), 56–66 (2008).
    [CrossRef]
  35. P. J. Chiang and Y.-C. Chiang, “Pseudospectral frequency-domain formulae based on modified perfectly matched layers for calculating both guided and leaky modes,” IEEE Photon. Technol. Lett. 22(12), 908–910 (2010).
    [CrossRef]
  36. T. Baba and Y. Kokubun, “Dispersion and radiation loss characteristics of antiresonant reflecting optical waveguides-numerical results and analytical expression,” IEEE J. Quantum Electron. 28(7), 1689–1700 (1992).
    [CrossRef]
  37. Y.-T. Huang, C.-H. Jang, S.-H. Hsu, and J.-J. Deng, “Antiresonant reflecting optical waveguides polariza-tion beam splitters,” J. Lightwave Technol. 24(9), 3553–3560 (2006).
    [CrossRef]
  38. M. Elshazly-Zaghloul and R. M. Azzam, “Brewster and pseudo-Brewster angles of uniaxial crystal surfaces and their use for determination of optical properties,” J. Opt. Soc. Am. 72(5), 657–661 (1982).
    [CrossRef]
  39. I. Hodgkinson, Q. H. Wu, M. Arnold, L. De Silva, G. Beydaghyan, K. Kaminska, and K. Robbie, “Biaxial thin-film coated-plate polarizing beam splitters,” Appl. Opt. 45(7), 1563–1568 (2006).
    [CrossRef] [PubMed]
  40. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, Inc., 1988), http://refractiveindex.info/ .

2010 (2)

D. R. Mason, D. K. Gramotnev, and K. S. Kim, “Wavelength-dependent transmission through sharp 90 ° bends in sub-wavelength metallic slot waveguides,” Opt. Express 18(15), 16139–16145 (2010).
[CrossRef] [PubMed]

P. J. Chiang and Y.-C. Chiang, “Pseudospectral frequency-domain formulae based on modified perfectly matched layers for calculating both guided and leaky modes,” IEEE Photon. Technol. Lett. 22(12), 908–910 (2010).
[CrossRef]

2009 (1)

2008 (4)

2007 (1)

P. J. Chiang, C. P. Yu, and H. C. Chang, “Analysis of two-dimensional photonic crystals using a multidomain pseudospectral method,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 75(2), 026703 (2007).
[CrossRef] [PubMed]

2006 (4)

2004 (3)

2002 (3)

2000 (3)

1999 (3)

R. Weisser, B. Menges, and S. Mittler-Neher, “Refractive index and thickness determination of monolayers by multi mode waveguide coupled surface plasmons,” Sens. Actuators B Chem. 56(3), 189–197 (1999).
[CrossRef]

B. Yang and J. S. Hesthaven, “A pseudospectral method for time-domain computation of electromagnetic scattering by bodies of revolution,” IEEE Trans. Antenn. Propag. 47(1), 132–141 (1999).
[CrossRef]

J. S. Hesthaven, P. G. Dinesen, and J. P. Lynovy, “Spectral collocation time-domain modeling of diffractive optical elements,” J. Comput. Phys. 155(2), 287–306 (1999).
[CrossRef]

1997 (2)

B. Yang, D. Gottlieb, and J. S. Hesthaven, “Spectral simulations of electromagnetic wave scattering,” J. Comput. Phys. 134(2), 216–230 (1997).
[CrossRef]

N. Kaneda, B. Houshmand, and T. Itoh, “FDTD analysis of dielectric resonators with curved surfaces,” IEEE Trans. Microw. Theory Tech. 45(9), 1645–1649 (1997).
[CrossRef]

1993 (2)

R. G. Heideman, R. P. H. Kooyman, and J. Greve, “Performance of a highly sensitive optical waveguide Mach–Zehnder interferometer immunosensor,” Sens. Actuators B Chem. 10(3), 209–217 (1993).
[CrossRef]

S. J. Al-Bader and M. Imtaar, “Optical fiber hybrid-surface plasmon polaritons,” J. Opt. Soc. Am. B 10(1), 83–88 (1993).
[CrossRef]

1992 (2)

S. Xiao, R. Vahldieck, and H. Jin, “Full-wave analysis of guided wave structures using a novel 2-D FDTD,” IEEE Microw. Guid. Wave Lett. 2(5), 165–167 (1992).
[CrossRef]

T. Baba and Y. Kokubun, “Dispersion and radiation loss characteristics of antiresonant reflecting optical waveguides-numerical results and analytical expression,” IEEE J. Quantum Electron. 28(7), 1689–1700 (1992).
[CrossRef]

1986 (1)

K. Bierwirth, N. Schulz, and F. Arndt, “Finite-difference analysis of rectangular dielectric waveguide structures,” IEEE Trans. Microw. Theory Tech. 34(11), 1104–1114 (1986).
[CrossRef]

1982 (1)

1857 (1)

M. Faraday, “Experimental relations of gold (and other metals) to light,” Philos. Trans. R. Soc. Lond. 147(0), 145–181 (1857).
[CrossRef]

Al-Bader, S. J.

Albin, S.

Arndt, F.

K. Bierwirth, N. Schulz, and F. Arndt, “Finite-difference analysis of rectangular dielectric waveguide structures,” IEEE Trans. Microw. Theory Tech. 34(11), 1104–1114 (1986).
[CrossRef]

Arnold, M.

Atwater, H. A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propaga-tion with subwavelength-scale localization,” Phys. Rev. B 73(3), 035407 (2006).
[CrossRef]

Azzam, R. M.

Baba, T.

T. Baba and Y. Kokubun, “Dispersion and radiation loss characteristics of antiresonant reflecting optical waveguides-numerical results and analytical expression,” IEEE J. Quantum Electron. 28(7), 1689–1700 (1992).
[CrossRef]

Beydaghyan, G.

Bierwirth, K.

K. Bierwirth, N. Schulz, and F. Arndt, “Finite-difference analysis of rectangular dielectric waveguide structures,” IEEE Trans. Microw. Theory Tech. 34(11), 1104–1114 (1986).
[CrossRef]

Brongersma, M. L.

Brown, T. G.

Brueck, S. R. J.

Catrysse, P. B.

Chang, H. C.

P. J. Chiang, C. L. Wu, C. H. Teng, C. S. Yang, and H. C. Chang, “Full-vectorial optical waveguide mode solvers using multidomain pseudospectral frequency-domain (PSFD) formulations,” IEEE J. Quantum Electron. 44(1), 56–66 (2008).
[CrossRef]

P. J. Chiang, C. P. Yu, and H. C. Chang, “Analysis of two-dimensional photonic crystals using a multidomain pseudospectral method,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 75(2), 026703 (2007).
[CrossRef] [PubMed]

Chang, H.-C.

Chen, J.

Chiang, P. J.

P. J. Chiang and Y.-C. Chiang, “Pseudospectral frequency-domain formulae based on modified perfectly matched layers for calculating both guided and leaky modes,” IEEE Photon. Technol. Lett. 22(12), 908–910 (2010).
[CrossRef]

P. J. Chiang, C. L. Wu, C. H. Teng, C. S. Yang, and H. C. Chang, “Full-vectorial optical waveguide mode solvers using multidomain pseudospectral frequency-domain (PSFD) formulations,” IEEE J. Quantum Electron. 44(1), 56–66 (2008).
[CrossRef]

P. J. Chiang, C. P. Yu, and H. C. Chang, “Analysis of two-dimensional photonic crystals using a multidomain pseudospectral method,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 75(2), 026703 (2007).
[CrossRef] [PubMed]

Chiang, Y.-C.

Chiou, Y.-P.

De Silva, L.

Deng, J.-J.

Dinesen, P. G.

J. S. Hesthaven, P. G. Dinesen, and J. P. Lynovy, “Spectral collocation time-domain modeling of diffractive optical elements,” J. Comput. Phys. 155(2), 287–306 (1999).
[CrossRef]

Dionne, J. A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propaga-tion with subwavelength-scale localization,” Phys. Rev. B 73(3), 035407 (2006).
[CrossRef]

Du, C.-H.

Elshazly-Zaghloul, M.

Faraday, M.

M. Faraday, “Experimental relations of gold (and other metals) to light,” Philos. Trans. R. Soc. Lond. 147(0), 145–181 (1857).
[CrossRef]

Fukuda, H.

T. Goto, Y. Katagiri, H. Fukuda, H. Shinojima, Y. Nakano, I. Kobayashi, and Y. Mitsuoka, “Propagation loss measurement for surface plasmon-polariton modes at metal waveguides on semiconductor substrates,” Appl. Phys. Lett. 84(6), 852–854 (2004).
[CrossRef]

Goto, T.

T. Goto, Y. Katagiri, H. Fukuda, H. Shinojima, Y. Nakano, I. Kobayashi, and Y. Mitsuoka, “Propagation loss measurement for surface plasmon-polariton modes at metal waveguides on semiconductor substrates,” Appl. Phys. Lett. 84(6), 852–854 (2004).
[CrossRef]

Gottlieb, D.

B. Yang, D. Gottlieb, and J. S. Hesthaven, “Spectral simulations of electromagnetic wave scattering,” J. Comput. Phys. 134(2), 216–230 (1997).
[CrossRef]

Gramotnev, D. K.

Greve, J.

R. G. Heideman, R. P. H. Kooyman, and J. Greve, “Performance of a highly sensitive optical waveguide Mach–Zehnder interferometer immunosensor,” Sens. Actuators B Chem. 10(3), 209–217 (1993).
[CrossRef]

Guo, S.

Hassani, A.

Heideman, R. G.

R. G. Heideman, R. P. H. Kooyman, and J. Greve, “Performance of a highly sensitive optical waveguide Mach–Zehnder interferometer immunosensor,” Sens. Actuators B Chem. 10(3), 209–217 (1993).
[CrossRef]

Hesthaven, J. S.

B. Yang and J. S. Hesthaven, “A pseudospectral method for time-domain computation of electromagnetic scattering by bodies of revolution,” IEEE Trans. Antenn. Propag. 47(1), 132–141 (1999).
[CrossRef]

J. S. Hesthaven, P. G. Dinesen, and J. P. Lynovy, “Spectral collocation time-domain modeling of diffractive optical elements,” J. Comput. Phys. 155(2), 287–306 (1999).
[CrossRef]

B. Yang, D. Gottlieb, and J. S. Hesthaven, “Spectral simulations of electromagnetic wave scattering,” J. Comput. Phys. 134(2), 216–230 (1997).
[CrossRef]

Hodgkinson, I.

Houshmand, B.

N. Kaneda, B. Houshmand, and T. Itoh, “FDTD analysis of dielectric resonators with curved surfaces,” IEEE Trans. Microw. Theory Tech. 45(9), 1645–1649 (1997).
[CrossRef]

Hsu, S.-H.

Huang, W. P.

Huang, Y.-T.

Imtaar, M.

Itoh, T.

N. Kaneda, B. Houshmand, and T. Itoh, “FDTD analysis of dielectric resonators with curved surfaces,” IEEE Trans. Microw. Theory Tech. 45(9), 1645–1649 (1997).
[CrossRef]

Jang, C.-H.

Jian, S. S.

Jin, H.

S. Xiao, R. Vahldieck, and H. Jin, “Full-wave analysis of guided wave structures using a novel 2-D FDTD,” IEEE Microw. Guid. Wave Lett. 2(5), 165–167 (1992).
[CrossRef]

Kaminska, K.

Kaneda, N.

N. Kaneda, B. Houshmand, and T. Itoh, “FDTD analysis of dielectric resonators with curved surfaces,” IEEE Trans. Microw. Theory Tech. 45(9), 1645–1649 (1997).
[CrossRef]

Katagiri, Y.

T. Goto, Y. Katagiri, H. Fukuda, H. Shinojima, Y. Nakano, I. Kobayashi, and Y. Mitsuoka, “Propagation loss measurement for surface plasmon-polariton modes at metal waveguides on semiconductor substrates,” Appl. Phys. Lett. 84(6), 852–854 (2004).
[CrossRef]

Kats, A. V.

Kim, K. S.

Kobayashi, I.

T. Goto, Y. Katagiri, H. Fukuda, H. Shinojima, Y. Nakano, I. Kobayashi, and Y. Mitsuoka, “Propagation loss measurement for surface plasmon-polariton modes at metal waveguides on semiconductor substrates,” Appl. Phys. Lett. 84(6), 852–854 (2004).
[CrossRef]

Kokubun, Y.

T. Baba and Y. Kokubun, “Dispersion and radiation loss characteristics of antiresonant reflecting optical waveguides-numerical results and analytical expression,” IEEE J. Quantum Electron. 28(7), 1689–1700 (1992).
[CrossRef]

Kooyman, R. P. H.

R. G. Heideman, R. P. H. Kooyman, and J. Greve, “Performance of a highly sensitive optical waveguide Mach–Zehnder interferometer immunosensor,” Sens. Actuators B Chem. 10(3), 209–217 (1993).
[CrossRef]

Koshiba, M.

Lai, C.-H.

Liu, Q. H.

Q. H. Liu, “A pseudospectral frequency-domain (PSFD) method for computational electromagnetics,” IEEE Antennas Wirel. Propag. Lett. 1(1), 131–134 (2002).
[CrossRef]

Lu, Y. C.

Lynovy, J. P.

J. S. Hesthaven, P. G. Dinesen, and J. P. Lynovy, “Spectral collocation time-domain modeling of diffractive optical elements,” J. Comput. Phys. 155(2), 287–306 (1999).
[CrossRef]

Malloy, K. J.

Mason, D. R.

Menges, B.

R. Weisser, B. Menges, and S. Mittler-Neher, “Refractive index and thickness determination of monolayers by multi mode waveguide coupled surface plasmons,” Sens. Actuators B Chem. 56(3), 189–197 (1999).
[CrossRef]

Mitsuoka, Y.

T. Goto, Y. Katagiri, H. Fukuda, H. Shinojima, Y. Nakano, I. Kobayashi, and Y. Mitsuoka, “Propagation loss measurement for surface plasmon-polariton modes at metal waveguides on semiconductor substrates,” Appl. Phys. Lett. 84(6), 852–854 (2004).
[CrossRef]

Mittler-Neher, S.

R. Weisser, B. Menges, and S. Mittler-Neher, “Refractive index and thickness determination of monolayers by multi mode waveguide coupled surface plasmons,” Sens. Actuators B Chem. 56(3), 189–197 (1999).
[CrossRef]

Nakano, Y.

T. Goto, Y. Katagiri, H. Fukuda, H. Shinojima, Y. Nakano, I. Kobayashi, and Y. Mitsuoka, “Propagation loss measurement for surface plasmon-polariton modes at metal waveguides on semiconductor substrates,” Appl. Phys. Lett. 84(6), 852–854 (2004).
[CrossRef]

Nesterov, M. L.

Polman, A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propaga-tion with subwavelength-scale localization,” Phys. Rev. B 73(3), 035407 (2006).
[CrossRef]

Robbie, K.

Rogowski, R.

Schulz, N.

K. Bierwirth, N. Schulz, and F. Arndt, “Finite-difference analysis of rectangular dielectric waveguide structures,” IEEE Trans. Microw. Theory Tech. 34(11), 1104–1114 (1986).
[CrossRef]

Selker, M. D.

Shinojima, H.

T. Goto, Y. Katagiri, H. Fukuda, H. Shinojima, Y. Nakano, I. Kobayashi, and Y. Mitsuoka, “Propagation loss measurement for surface plasmon-polariton modes at metal waveguides on semiconductor substrates,” Appl. Phys. Lett. 84(6), 852–854 (2004).
[CrossRef]

Skorobogatiy, M.

Smolyakov, G. A.

Sweatlock, L. A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propaga-tion with subwavelength-scale localization,” Phys. Rev. B 73(3), 035407 (2006).
[CrossRef]

Tai, H.

Teng, C. H.

P. J. Chiang, C. L. Wu, C. H. Teng, C. S. Yang, and H. C. Chang, “Full-vectorial optical waveguide mode solvers using multidomain pseudospectral frequency-domain (PSFD) formulations,” IEEE J. Quantum Electron. 44(1), 56–66 (2008).
[CrossRef]

Tsuji, Y.

Turitsyn, S. K.

Vahldieck, R.

S. Xiao, R. Vahldieck, and H. Jin, “Full-wave analysis of guided wave structures using a novel 2-D FDTD,” IEEE Microw. Guid. Wave Lett. 2(5), 165–167 (1992).
[CrossRef]

Weisser, R.

R. Weisser, B. Menges, and S. Mittler-Neher, “Refractive index and thickness determination of monolayers by multi mode waveguide coupled surface plasmons,” Sens. Actuators B Chem. 56(3), 189–197 (1999).
[CrossRef]

Wu, C. L.

P. J. Chiang, C. L. Wu, C. H. Teng, C. S. Yang, and H. C. Chang, “Full-vectorial optical waveguide mode solvers using multidomain pseudospectral frequency-domain (PSFD) formulations,” IEEE J. Quantum Electron. 44(1), 56–66 (2008).
[CrossRef]

Wu, F.

Wu, Q. H.

Xiao, S.

S. Xiao, R. Vahldieck, and H. Jin, “Full-wave analysis of guided wave structures using a novel 2-D FDTD,” IEEE Microw. Guid. Wave Lett. 2(5), 165–167 (1992).
[CrossRef]

Yang, B.

B. Yang and J. S. Hesthaven, “A pseudospectral method for time-domain computation of electromagnetic scattering by bodies of revolution,” IEEE Trans. Antenn. Propag. 47(1), 132–141 (1999).
[CrossRef]

B. Yang, D. Gottlieb, and J. S. Hesthaven, “Spectral simulations of electromagnetic wave scattering,” J. Comput. Phys. 134(2), 216–230 (1997).
[CrossRef]

Yang, C. S.

P. J. Chiang, C. L. Wu, C. H. Teng, C. S. Yang, and H. C. Chang, “Full-vectorial optical waveguide mode solvers using multidomain pseudospectral frequency-domain (PSFD) formulations,” IEEE J. Quantum Electron. 44(1), 56–66 (2008).
[CrossRef]

Yang, L.

Yu, C. P.

P. J. Chiang, C. P. Yu, and H. C. Chang, “Analysis of two-dimensional photonic crystals using a multidomain pseudospectral method,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 75(2), 026703 (2007).
[CrossRef] [PubMed]

Zhu, Z.

Zia, R.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

T. Goto, Y. Katagiri, H. Fukuda, H. Shinojima, Y. Nakano, I. Kobayashi, and Y. Mitsuoka, “Propagation loss measurement for surface plasmon-polariton modes at metal waveguides on semiconductor substrates,” Appl. Phys. Lett. 84(6), 852–854 (2004).
[CrossRef]

IEEE Antennas Wirel. Propag. Lett. (1)

Q. H. Liu, “A pseudospectral frequency-domain (PSFD) method for computational electromagnetics,” IEEE Antennas Wirel. Propag. Lett. 1(1), 131–134 (2002).
[CrossRef]

IEEE J. Quantum Electron. (2)

T. Baba and Y. Kokubun, “Dispersion and radiation loss characteristics of antiresonant reflecting optical waveguides-numerical results and analytical expression,” IEEE J. Quantum Electron. 28(7), 1689–1700 (1992).
[CrossRef]

P. J. Chiang, C. L. Wu, C. H. Teng, C. S. Yang, and H. C. Chang, “Full-vectorial optical waveguide mode solvers using multidomain pseudospectral frequency-domain (PSFD) formulations,” IEEE J. Quantum Electron. 44(1), 56–66 (2008).
[CrossRef]

IEEE Microw. Guid. Wave Lett. (1)

S. Xiao, R. Vahldieck, and H. Jin, “Full-wave analysis of guided wave structures using a novel 2-D FDTD,” IEEE Microw. Guid. Wave Lett. 2(5), 165–167 (1992).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

P. J. Chiang and Y.-C. Chiang, “Pseudospectral frequency-domain formulae based on modified perfectly matched layers for calculating both guided and leaky modes,” IEEE Photon. Technol. Lett. 22(12), 908–910 (2010).
[CrossRef]

IEEE Trans. Antenn. Propag. (1)

B. Yang and J. S. Hesthaven, “A pseudospectral method for time-domain computation of electromagnetic scattering by bodies of revolution,” IEEE Trans. Antenn. Propag. 47(1), 132–141 (1999).
[CrossRef]

IEEE Trans. Microw. Theory Tech. (2)

N. Kaneda, B. Houshmand, and T. Itoh, “FDTD analysis of dielectric resonators with curved surfaces,” IEEE Trans. Microw. Theory Tech. 45(9), 1645–1649 (1997).
[CrossRef]

K. Bierwirth, N. Schulz, and F. Arndt, “Finite-difference analysis of rectangular dielectric waveguide structures,” IEEE Trans. Microw. Theory Tech. 34(11), 1104–1114 (1986).
[CrossRef]

J. Comput. Phys. (2)

B. Yang, D. Gottlieb, and J. S. Hesthaven, “Spectral simulations of electromagnetic wave scattering,” J. Comput. Phys. 134(2), 216–230 (1997).
[CrossRef]

J. S. Hesthaven, P. G. Dinesen, and J. P. Lynovy, “Spectral collocation time-domain modeling of diffractive optical elements,” J. Comput. Phys. 155(2), 287–306 (1999).
[CrossRef]

J. Lightwave Technol. (7)

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Opt. Express (6)

Philos. Trans. R. Soc. Lond. (1)

M. Faraday, “Experimental relations of gold (and other metals) to light,” Philos. Trans. R. Soc. Lond. 147(0), 145–181 (1857).
[CrossRef]

Phys. Rev. B (1)

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propaga-tion with subwavelength-scale localization,” Phys. Rev. B 73(3), 035407 (2006).
[CrossRef]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

P. J. Chiang, C. P. Yu, and H. C. Chang, “Analysis of two-dimensional photonic crystals using a multidomain pseudospectral method,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 75(2), 026703 (2007).
[CrossRef] [PubMed]

Sens. Actuators B Chem. (2)

R. G. Heideman, R. P. H. Kooyman, and J. Greve, “Performance of a highly sensitive optical waveguide Mach–Zehnder interferometer immunosensor,” Sens. Actuators B Chem. 10(3), 209–217 (1993).
[CrossRef]

R. Weisser, B. Menges, and S. Mittler-Neher, “Refractive index and thickness determination of monolayers by multi mode waveguide coupled surface plasmons,” Sens. Actuators B Chem. 56(3), 189–197 (1999).
[CrossRef]

Other (7)

U. Kreibig, and M. Vollmer, Optical Properties of Metal Clusters, (Springer-Verlag, 1996).

N. W. Ashcroft, and N. D. Mermin, Solid State Physics, (Harcount, 1976).

H. Raether, Surface Plasmons, (Springer-Verlag, 1988).

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, (Springer-Verlag, 1998).

M. I. Stockman, “Electromagnetic Theory of SERS,” in Springer Series Topics in Applied Physics–Surface Enhanced Raman Scattering Physics and Applications, K. Kneipp, M. Moskovits, and H. Kneipp, ed. (Springer-Verlag, 2006).

E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, Inc., 1988), http://refractiveindex.info/ .

H. J. M. Kreuwel, P. V. Lambeck, J. M. N. Beltman, and T. J. A. Popma, “Mode-coupling in multilayer structures applied to a chemical sensor and a wavelength selective directional coupler,” in Proc. ECIO’87 (Glasgow, 11–13 May 1987) pp. 217–220.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

(a) Sketch of a dielectric-metal waveguide. (b) Hy -field distribution of the SP mode along the x direction with wavelengths λ = 0.5 μm, 0.7 μm, 0.9 μm, and 1.55 μm, respectively.

Fig. 2
Fig. 2

(a) Scheme of the MPML in a dielectric-metal waveguide. (b) Field profiles of a dielectric-metal waveguide at the wavelength λ = 1.55 μm.

Fig. 3
Fig. 3

(a) Relative errors in the calculated n eff versus the number of unknowns for the SP mode of the dielectric-metal waveguide. (b) Necessary computer memory versus relative errors in n eff for the SP mode of the dielectric-metal waveguide.

Fig. 4
Fig. 4

(a) Sketch of the multilayer waveguide structure with the gold thin film. (b) Imaginary part of the effective refractive index Im(n eff) of the TM0, TM1, and TM2 HSP modes versus the gold thickness.

Fig. 5
Fig. 5

(a) Real part and (b) imaginary part of the effective index n eff of the TM0 and the TM1 HSP modes, respectively, of the waveguide versus core thicknesses dc with the wavelength λ = 0.532 μm.

Fig. 6
Fig. 6

Scheme of the mode selective waveguide.

Fig. 7
Fig. 7

(a) Cross-section of coupling mode switching and polarizing beam splitter. (b) Mesh and domain division profile for the optical component.

Fig. 8
Fig. 8

Magnetic field patterns of the dominant components of the first four x- and y- polarized modes of the mode selective coupler and polarizing beam splitter. (a) H y even mode. (b) H y odd mode. (c) H x even mode. (d) H x odd mode.

Fig. 9
Fig. 9

(a) Real and (b) imaginary part of the effective index of the first four x- and y- polarized modes versus the gold thickness of the mode selective coupler and polarizing beam splitter with the wavelength λ = 0.6 μm.

Fig. 10
Fig. 10

Imaginary part of the effective index of the first four x- and y- polarized modes versus the wavelength of the mode selective coupler and polarizing beam splitter with the gold thickness dg = 6 nm.

Fig. 11
Fig. 11

Scheme of the polarizing beam splitter.

Fig. 12
Fig. 12

Coupling coefficient of i polarized modes, Ci (i = x or y) (a) versus the wavelength λ with the gold thickness dg = 0 nm, 6 nm, and 8 nm, respectively, and (b) versus the gold thickness dg with the wavelength λ = 0.6 μm.

Tables (4)

Tables Icon

Table 1 Convergence behavior of the SP mode effective index of the dielectric-metal waveguide with the degree N at the wavelength λ = 1.55 μm

Tables Icon

Table 2 Convergence of the calculated effective index of the TM1 HSP mode with respect to different degrees N for gold thickness dg = 0.01 μm at the wavelength λ = 0.532 μm

Tables Icon

Table 3 Calculated effective index of the first 7 modes of the multimode waveguide coated with the gold film with thickness dg = 5 nm between 0.68 μm and 0.685 μm

Tables Icon

Table 4 Convergence of the calculated effective index of the H y even HSP mode with respect to different degrees for gold thickness dg = 6 nm at the wavelength λ = 0.6 μm

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

( 2 + k 0 2 n 2 ) [ H ( x ) exp ( j γ z ) ] = 0 ,
( 2 x 2 ) H ( x ) = ( γ 2 k 0 2 n 2 ) H ( x ) .
H ( x ) = { H 0 exp [ j ( k 0 2 n a 2 μ 0 γ 2 ) x ] = H 0 exp ( j k 1 x x ) for  x < 0 , H 0 exp [ j ( k 0 2 n b 2 μ 0 γ 2 ) x ] = H 0 exp ( j k 2 x x ) for  x > 0.
n eff = γ k 0 = n a 2 n b 2 n a 2 + n b 2 ,
H y a x | x = 0 = exp j θ ( n a 2 | n b 2 | ) H y b x | x = 0

Metrics