Abstract

A novel long-lasting phosphorescence (LLP) material Ba4(Si3O8)2:Eu2+, Dy3+ with high chemical stability was achieved successfully. Two emission centers (Eu (I) and Eu (II)) were found in Ba4(Si3O8)2 due to the substitution of Eu2+ in different Ba2+ sites. Both Eu (I) and Eu (II) had contribution to the afterglow process, however, the decay rate of Eu (I) was higher than that of Eu (II). Ba3.982(Si3O8)2: 0.008Eu2+, 0.01Dy3+ exhibited a long-lasting phosphorescence whose duration was more than 24 h. Through the analysis of the thermoluminescence (TL) curves, we found that Eu2+ single doped Ba4(Si3O8)2 has a possibility to be a kind of storage phosphor. This work provides a new and efficient candidate for LLP and storage materials.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Lian, Y. Qi, C. Rong, L. Yu, A. Zhu, D. Yin, and S. Liu, “Effectively Leveraging Solar Energy through Persistent Dual Red Phosphorescence:Preparation, Characterization, and Density Functional Theory Study of Ca2Zn4Ti16O38:Pr3+,” J. Phys. Chem. C 114(15), 7196–7204 (2010).
    [CrossRef]
  2. T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “A new long phosphorescent phosphor with high brightness, SrAl2O4: Eu2+, Dy3+,” J. Electrochem. Soc. 143(8), 2670 (1996).
    [CrossRef]
  3. M. Kowatari, D. Koyama, Y. Satoh, K. Iinuma, and S. Uchida, “The temperature dependence of luminescence from a long-lasting phosphor exposed to ionizing radiation,” Nucl. Instrum. Methods Phys. Res. A 480(2-3), 431–439 (2002).
    [CrossRef]
  4. C.-N. Xu, T. Watanabe, M. Akiyama, and X.-G. Zheng, “Direct view of stress distribution in solids by mechanoluminescence,” Appl. Phys. Lett. 74(17), 2414–2416 (1999).
    [CrossRef]
  5. C.-N. Xu, X.-G. Zheng, M. Akiyama, K. Nonaka, and T. Watanabe, “Dynamic visualization of stress distribution by mechanoluminescence image,” Appl. Phys. Lett. 76(2), 179–181 (2000).
    [CrossRef]
  6. M. Akiyama, C.-N. Xu, Y. Liu, K. Nonaka, and T. Watanabe, “Influence of Eu, Dy co-doped strontium aluminate composition on mechanoluminescence intensity,” J. Lumin. 97(1), 13–18 (2002).
    [CrossRef]
  7. H. Aizawa, T. Katsumata, J. Takahashi, K. Matsunaga, S. Komuro, T. Morikawa, and E. Toba, “Fiber-optic thermometer using afterglow phosphorescence from long duration phosphor,” Electrochem. Solid-State Lett. 5(9), H17–H19 (2002).
    [CrossRef]
  8. T. L. Barry, “Fluorescence of Eu2+ activated phase in binary alkaline earth orthosilicate systems,” J. Electrochem. Soc. 115(11), 1181 (1968).
    [CrossRef]
  9. Y. Lin, Z. Tang, Z. Zhang, X. Wang, and J. Zhang, “Preparation of a new long afterglow blue-emitting Sr2MgSi2O7-based photoluminescent phosphor,” J. Mater. Sci. Lett. 20(16), 1505–1506 (2001).
    [CrossRef]
  10. Y. Lin, Z. Zhang, Z. Tang, X. Wang, and Z. Zheng, “Luminescent properties of a new long afterglow Eu2+ and Dy3+ activated Ca3MgSi2O8 phospho,” J. Eur. Ceram. Soc. 21(5), 683–685 (2001).
    [CrossRef]
  11. C. Shi, Y. Fu, B. Liu, G. Zhang, Y. Chen, Z. Qi, and X. Luo, “The roles of Eu2+ and Dy3+ in the blue long-lasting phosphor Sr2MgSi2O7: Eu2+, Dy3+,” J. Lumin. 122–123, 11–13 (2007).
    [CrossRef]
  12. L. Jiang, C. Chang, D. Mao, and C. Feng, “Luminescent properties of Ca2MgSi2O7 phosphor activated by Eu2+, Dy3+ and Nd3+,” Opt. Mater. 27(1), 51–55 (2004).
    [CrossRef]
  13. G. Blasse, and B. C. Grabmaier, Luminescent Materials (Springer, 1994).
  14. K.-F. Hesse and F. Liebau, “Crystal chemistry of silica-rich Barium silicates,” Z. Kristallogr. 153(1_2), 3–17 (1980).
    [CrossRef]
  15. B. Henderson, and G. G. Imbush, Optical Spectroscopy of Inorganic Solids (Clarendon, 1989).
  16. Y. Lin, Z. Tang, Z. Zhang, and C. W. Nan, “Anomalous luminescence in Sr4Al14O25:Eu, Dy phosphors,” Appl. Phys. Lett. 81(6), 996 (2002).
    [CrossRef]
  17. T. Kinoshita, M. Yamazaki, H. Kawazoe, and H. Hosono, “Long lasting phosphorescence and photostimulated luminescence in Tb-ion-activated reduced calcium aluminate glasses,” J. Appl. Phys. 86(7), 3729 (1999).
    [CrossRef]
  18. T. Aitasalo, P. Deren, J. Hölsä, H. Junger, J.-C. Krupa, M. Lastusaari, J. Legendziewicz, J. Niittykoski, and W. Strek, “Persistent luminescence phenomena in materials doped with rare earth ions,” J. Solid State Chem. 171(1-2), 114–122 (2003).
    [CrossRef]
  19. S. Schweizer, “Physics and Current Understanding of X-Ray Storage Phosphors,” Phys. Status Solidi A 187(2), 335–393 (2001).
    [CrossRef]
  20. W. Chen, “Luminescence, Storage Mechanisms, and Applications of X-Ray Storage Phosphors.” In Handbook of Luminescence, Display Materials and Devices; H. S. Nalwa, L. S. Rohwer, eds. (American Scientific Publishers, 2003); Vol. 2, pp 1–44.

2010 (1)

S. Lian, Y. Qi, C. Rong, L. Yu, A. Zhu, D. Yin, and S. Liu, “Effectively Leveraging Solar Energy through Persistent Dual Red Phosphorescence:Preparation, Characterization, and Density Functional Theory Study of Ca2Zn4Ti16O38:Pr3+,” J. Phys. Chem. C 114(15), 7196–7204 (2010).
[CrossRef]

2007 (1)

C. Shi, Y. Fu, B. Liu, G. Zhang, Y. Chen, Z. Qi, and X. Luo, “The roles of Eu2+ and Dy3+ in the blue long-lasting phosphor Sr2MgSi2O7: Eu2+, Dy3+,” J. Lumin. 122–123, 11–13 (2007).
[CrossRef]

2004 (1)

L. Jiang, C. Chang, D. Mao, and C. Feng, “Luminescent properties of Ca2MgSi2O7 phosphor activated by Eu2+, Dy3+ and Nd3+,” Opt. Mater. 27(1), 51–55 (2004).
[CrossRef]

2003 (1)

T. Aitasalo, P. Deren, J. Hölsä, H. Junger, J.-C. Krupa, M. Lastusaari, J. Legendziewicz, J. Niittykoski, and W. Strek, “Persistent luminescence phenomena in materials doped with rare earth ions,” J. Solid State Chem. 171(1-2), 114–122 (2003).
[CrossRef]

2002 (4)

Y. Lin, Z. Tang, Z. Zhang, and C. W. Nan, “Anomalous luminescence in Sr4Al14O25:Eu, Dy phosphors,” Appl. Phys. Lett. 81(6), 996 (2002).
[CrossRef]

M. Kowatari, D. Koyama, Y. Satoh, K. Iinuma, and S. Uchida, “The temperature dependence of luminescence from a long-lasting phosphor exposed to ionizing radiation,” Nucl. Instrum. Methods Phys. Res. A 480(2-3), 431–439 (2002).
[CrossRef]

M. Akiyama, C.-N. Xu, Y. Liu, K. Nonaka, and T. Watanabe, “Influence of Eu, Dy co-doped strontium aluminate composition on mechanoluminescence intensity,” J. Lumin. 97(1), 13–18 (2002).
[CrossRef]

H. Aizawa, T. Katsumata, J. Takahashi, K. Matsunaga, S. Komuro, T. Morikawa, and E. Toba, “Fiber-optic thermometer using afterglow phosphorescence from long duration phosphor,” Electrochem. Solid-State Lett. 5(9), H17–H19 (2002).
[CrossRef]

2001 (3)

Y. Lin, Z. Tang, Z. Zhang, X. Wang, and J. Zhang, “Preparation of a new long afterglow blue-emitting Sr2MgSi2O7-based photoluminescent phosphor,” J. Mater. Sci. Lett. 20(16), 1505–1506 (2001).
[CrossRef]

Y. Lin, Z. Zhang, Z. Tang, X. Wang, and Z. Zheng, “Luminescent properties of a new long afterglow Eu2+ and Dy3+ activated Ca3MgSi2O8 phospho,” J. Eur. Ceram. Soc. 21(5), 683–685 (2001).
[CrossRef]

S. Schweizer, “Physics and Current Understanding of X-Ray Storage Phosphors,” Phys. Status Solidi A 187(2), 335–393 (2001).
[CrossRef]

2000 (1)

C.-N. Xu, X.-G. Zheng, M. Akiyama, K. Nonaka, and T. Watanabe, “Dynamic visualization of stress distribution by mechanoluminescence image,” Appl. Phys. Lett. 76(2), 179–181 (2000).
[CrossRef]

1999 (2)

T. Kinoshita, M. Yamazaki, H. Kawazoe, and H. Hosono, “Long lasting phosphorescence and photostimulated luminescence in Tb-ion-activated reduced calcium aluminate glasses,” J. Appl. Phys. 86(7), 3729 (1999).
[CrossRef]

C.-N. Xu, T. Watanabe, M. Akiyama, and X.-G. Zheng, “Direct view of stress distribution in solids by mechanoluminescence,” Appl. Phys. Lett. 74(17), 2414–2416 (1999).
[CrossRef]

1996 (1)

T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “A new long phosphorescent phosphor with high brightness, SrAl2O4: Eu2+, Dy3+,” J. Electrochem. Soc. 143(8), 2670 (1996).
[CrossRef]

1980 (1)

K.-F. Hesse and F. Liebau, “Crystal chemistry of silica-rich Barium silicates,” Z. Kristallogr. 153(1_2), 3–17 (1980).
[CrossRef]

1968 (1)

T. L. Barry, “Fluorescence of Eu2+ activated phase in binary alkaline earth orthosilicate systems,” J. Electrochem. Soc. 115(11), 1181 (1968).
[CrossRef]

Aitasalo, T.

T. Aitasalo, P. Deren, J. Hölsä, H. Junger, J.-C. Krupa, M. Lastusaari, J. Legendziewicz, J. Niittykoski, and W. Strek, “Persistent luminescence phenomena in materials doped with rare earth ions,” J. Solid State Chem. 171(1-2), 114–122 (2003).
[CrossRef]

Aizawa, H.

H. Aizawa, T. Katsumata, J. Takahashi, K. Matsunaga, S. Komuro, T. Morikawa, and E. Toba, “Fiber-optic thermometer using afterglow phosphorescence from long duration phosphor,” Electrochem. Solid-State Lett. 5(9), H17–H19 (2002).
[CrossRef]

Akiyama, M.

M. Akiyama, C.-N. Xu, Y. Liu, K. Nonaka, and T. Watanabe, “Influence of Eu, Dy co-doped strontium aluminate composition on mechanoluminescence intensity,” J. Lumin. 97(1), 13–18 (2002).
[CrossRef]

C.-N. Xu, X.-G. Zheng, M. Akiyama, K. Nonaka, and T. Watanabe, “Dynamic visualization of stress distribution by mechanoluminescence image,” Appl. Phys. Lett. 76(2), 179–181 (2000).
[CrossRef]

C.-N. Xu, T. Watanabe, M. Akiyama, and X.-G. Zheng, “Direct view of stress distribution in solids by mechanoluminescence,” Appl. Phys. Lett. 74(17), 2414–2416 (1999).
[CrossRef]

Aoki, Y.

T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “A new long phosphorescent phosphor with high brightness, SrAl2O4: Eu2+, Dy3+,” J. Electrochem. Soc. 143(8), 2670 (1996).
[CrossRef]

Barry, T. L.

T. L. Barry, “Fluorescence of Eu2+ activated phase in binary alkaline earth orthosilicate systems,” J. Electrochem. Soc. 115(11), 1181 (1968).
[CrossRef]

Chang, C.

L. Jiang, C. Chang, D. Mao, and C. Feng, “Luminescent properties of Ca2MgSi2O7 phosphor activated by Eu2+, Dy3+ and Nd3+,” Opt. Mater. 27(1), 51–55 (2004).
[CrossRef]

Chen, Y.

C. Shi, Y. Fu, B. Liu, G. Zhang, Y. Chen, Z. Qi, and X. Luo, “The roles of Eu2+ and Dy3+ in the blue long-lasting phosphor Sr2MgSi2O7: Eu2+, Dy3+,” J. Lumin. 122–123, 11–13 (2007).
[CrossRef]

Deren, P.

T. Aitasalo, P. Deren, J. Hölsä, H. Junger, J.-C. Krupa, M. Lastusaari, J. Legendziewicz, J. Niittykoski, and W. Strek, “Persistent luminescence phenomena in materials doped with rare earth ions,” J. Solid State Chem. 171(1-2), 114–122 (2003).
[CrossRef]

Feng, C.

L. Jiang, C. Chang, D. Mao, and C. Feng, “Luminescent properties of Ca2MgSi2O7 phosphor activated by Eu2+, Dy3+ and Nd3+,” Opt. Mater. 27(1), 51–55 (2004).
[CrossRef]

Fu, Y.

C. Shi, Y. Fu, B. Liu, G. Zhang, Y. Chen, Z. Qi, and X. Luo, “The roles of Eu2+ and Dy3+ in the blue long-lasting phosphor Sr2MgSi2O7: Eu2+, Dy3+,” J. Lumin. 122–123, 11–13 (2007).
[CrossRef]

Hesse, K.-F.

K.-F. Hesse and F. Liebau, “Crystal chemistry of silica-rich Barium silicates,” Z. Kristallogr. 153(1_2), 3–17 (1980).
[CrossRef]

Hölsä, J.

T. Aitasalo, P. Deren, J. Hölsä, H. Junger, J.-C. Krupa, M. Lastusaari, J. Legendziewicz, J. Niittykoski, and W. Strek, “Persistent luminescence phenomena in materials doped with rare earth ions,” J. Solid State Chem. 171(1-2), 114–122 (2003).
[CrossRef]

Hosono, H.

T. Kinoshita, M. Yamazaki, H. Kawazoe, and H. Hosono, “Long lasting phosphorescence and photostimulated luminescence in Tb-ion-activated reduced calcium aluminate glasses,” J. Appl. Phys. 86(7), 3729 (1999).
[CrossRef]

Iinuma, K.

M. Kowatari, D. Koyama, Y. Satoh, K. Iinuma, and S. Uchida, “The temperature dependence of luminescence from a long-lasting phosphor exposed to ionizing radiation,” Nucl. Instrum. Methods Phys. Res. A 480(2-3), 431–439 (2002).
[CrossRef]

Jiang, L.

L. Jiang, C. Chang, D. Mao, and C. Feng, “Luminescent properties of Ca2MgSi2O7 phosphor activated by Eu2+, Dy3+ and Nd3+,” Opt. Mater. 27(1), 51–55 (2004).
[CrossRef]

Junger, H.

T. Aitasalo, P. Deren, J. Hölsä, H. Junger, J.-C. Krupa, M. Lastusaari, J. Legendziewicz, J. Niittykoski, and W. Strek, “Persistent luminescence phenomena in materials doped with rare earth ions,” J. Solid State Chem. 171(1-2), 114–122 (2003).
[CrossRef]

Katsumata, T.

H. Aizawa, T. Katsumata, J. Takahashi, K. Matsunaga, S. Komuro, T. Morikawa, and E. Toba, “Fiber-optic thermometer using afterglow phosphorescence from long duration phosphor,” Electrochem. Solid-State Lett. 5(9), H17–H19 (2002).
[CrossRef]

Kawazoe, H.

T. Kinoshita, M. Yamazaki, H. Kawazoe, and H. Hosono, “Long lasting phosphorescence and photostimulated luminescence in Tb-ion-activated reduced calcium aluminate glasses,” J. Appl. Phys. 86(7), 3729 (1999).
[CrossRef]

Kinoshita, T.

T. Kinoshita, M. Yamazaki, H. Kawazoe, and H. Hosono, “Long lasting phosphorescence and photostimulated luminescence in Tb-ion-activated reduced calcium aluminate glasses,” J. Appl. Phys. 86(7), 3729 (1999).
[CrossRef]

Komuro, S.

H. Aizawa, T. Katsumata, J. Takahashi, K. Matsunaga, S. Komuro, T. Morikawa, and E. Toba, “Fiber-optic thermometer using afterglow phosphorescence from long duration phosphor,” Electrochem. Solid-State Lett. 5(9), H17–H19 (2002).
[CrossRef]

Kowatari, M.

M. Kowatari, D. Koyama, Y. Satoh, K. Iinuma, and S. Uchida, “The temperature dependence of luminescence from a long-lasting phosphor exposed to ionizing radiation,” Nucl. Instrum. Methods Phys. Res. A 480(2-3), 431–439 (2002).
[CrossRef]

Koyama, D.

M. Kowatari, D. Koyama, Y. Satoh, K. Iinuma, and S. Uchida, “The temperature dependence of luminescence from a long-lasting phosphor exposed to ionizing radiation,” Nucl. Instrum. Methods Phys. Res. A 480(2-3), 431–439 (2002).
[CrossRef]

Krupa, J.-C.

T. Aitasalo, P. Deren, J. Hölsä, H. Junger, J.-C. Krupa, M. Lastusaari, J. Legendziewicz, J. Niittykoski, and W. Strek, “Persistent luminescence phenomena in materials doped with rare earth ions,” J. Solid State Chem. 171(1-2), 114–122 (2003).
[CrossRef]

Lastusaari, M.

T. Aitasalo, P. Deren, J. Hölsä, H. Junger, J.-C. Krupa, M. Lastusaari, J. Legendziewicz, J. Niittykoski, and W. Strek, “Persistent luminescence phenomena in materials doped with rare earth ions,” J. Solid State Chem. 171(1-2), 114–122 (2003).
[CrossRef]

Legendziewicz, J.

T. Aitasalo, P. Deren, J. Hölsä, H. Junger, J.-C. Krupa, M. Lastusaari, J. Legendziewicz, J. Niittykoski, and W. Strek, “Persistent luminescence phenomena in materials doped with rare earth ions,” J. Solid State Chem. 171(1-2), 114–122 (2003).
[CrossRef]

Lian, S.

S. Lian, Y. Qi, C. Rong, L. Yu, A. Zhu, D. Yin, and S. Liu, “Effectively Leveraging Solar Energy through Persistent Dual Red Phosphorescence:Preparation, Characterization, and Density Functional Theory Study of Ca2Zn4Ti16O38:Pr3+,” J. Phys. Chem. C 114(15), 7196–7204 (2010).
[CrossRef]

Liebau, F.

K.-F. Hesse and F. Liebau, “Crystal chemistry of silica-rich Barium silicates,” Z. Kristallogr. 153(1_2), 3–17 (1980).
[CrossRef]

Lin, Y.

Y. Lin, Z. Tang, Z. Zhang, and C. W. Nan, “Anomalous luminescence in Sr4Al14O25:Eu, Dy phosphors,” Appl. Phys. Lett. 81(6), 996 (2002).
[CrossRef]

Y. Lin, Z. Tang, Z. Zhang, X. Wang, and J. Zhang, “Preparation of a new long afterglow blue-emitting Sr2MgSi2O7-based photoluminescent phosphor,” J. Mater. Sci. Lett. 20(16), 1505–1506 (2001).
[CrossRef]

Y. Lin, Z. Zhang, Z. Tang, X. Wang, and Z. Zheng, “Luminescent properties of a new long afterglow Eu2+ and Dy3+ activated Ca3MgSi2O8 phospho,” J. Eur. Ceram. Soc. 21(5), 683–685 (2001).
[CrossRef]

Liu, B.

C. Shi, Y. Fu, B. Liu, G. Zhang, Y. Chen, Z. Qi, and X. Luo, “The roles of Eu2+ and Dy3+ in the blue long-lasting phosphor Sr2MgSi2O7: Eu2+, Dy3+,” J. Lumin. 122–123, 11–13 (2007).
[CrossRef]

Liu, S.

S. Lian, Y. Qi, C. Rong, L. Yu, A. Zhu, D. Yin, and S. Liu, “Effectively Leveraging Solar Energy through Persistent Dual Red Phosphorescence:Preparation, Characterization, and Density Functional Theory Study of Ca2Zn4Ti16O38:Pr3+,” J. Phys. Chem. C 114(15), 7196–7204 (2010).
[CrossRef]

Liu, Y.

M. Akiyama, C.-N. Xu, Y. Liu, K. Nonaka, and T. Watanabe, “Influence of Eu, Dy co-doped strontium aluminate composition on mechanoluminescence intensity,” J. Lumin. 97(1), 13–18 (2002).
[CrossRef]

Luo, X.

C. Shi, Y. Fu, B. Liu, G. Zhang, Y. Chen, Z. Qi, and X. Luo, “The roles of Eu2+ and Dy3+ in the blue long-lasting phosphor Sr2MgSi2O7: Eu2+, Dy3+,” J. Lumin. 122–123, 11–13 (2007).
[CrossRef]

Mao, D.

L. Jiang, C. Chang, D. Mao, and C. Feng, “Luminescent properties of Ca2MgSi2O7 phosphor activated by Eu2+, Dy3+ and Nd3+,” Opt. Mater. 27(1), 51–55 (2004).
[CrossRef]

Matsunaga, K.

H. Aizawa, T. Katsumata, J. Takahashi, K. Matsunaga, S. Komuro, T. Morikawa, and E. Toba, “Fiber-optic thermometer using afterglow phosphorescence from long duration phosphor,” Electrochem. Solid-State Lett. 5(9), H17–H19 (2002).
[CrossRef]

Matsuzawa, T.

T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “A new long phosphorescent phosphor with high brightness, SrAl2O4: Eu2+, Dy3+,” J. Electrochem. Soc. 143(8), 2670 (1996).
[CrossRef]

Morikawa, T.

H. Aizawa, T. Katsumata, J. Takahashi, K. Matsunaga, S. Komuro, T. Morikawa, and E. Toba, “Fiber-optic thermometer using afterglow phosphorescence from long duration phosphor,” Electrochem. Solid-State Lett. 5(9), H17–H19 (2002).
[CrossRef]

Murayama, Y.

T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “A new long phosphorescent phosphor with high brightness, SrAl2O4: Eu2+, Dy3+,” J. Electrochem. Soc. 143(8), 2670 (1996).
[CrossRef]

Nan, C. W.

Y. Lin, Z. Tang, Z. Zhang, and C. W. Nan, “Anomalous luminescence in Sr4Al14O25:Eu, Dy phosphors,” Appl. Phys. Lett. 81(6), 996 (2002).
[CrossRef]

Niittykoski, J.

T. Aitasalo, P. Deren, J. Hölsä, H. Junger, J.-C. Krupa, M. Lastusaari, J. Legendziewicz, J. Niittykoski, and W. Strek, “Persistent luminescence phenomena in materials doped with rare earth ions,” J. Solid State Chem. 171(1-2), 114–122 (2003).
[CrossRef]

Nonaka, K.

M. Akiyama, C.-N. Xu, Y. Liu, K. Nonaka, and T. Watanabe, “Influence of Eu, Dy co-doped strontium aluminate composition on mechanoluminescence intensity,” J. Lumin. 97(1), 13–18 (2002).
[CrossRef]

C.-N. Xu, X.-G. Zheng, M. Akiyama, K. Nonaka, and T. Watanabe, “Dynamic visualization of stress distribution by mechanoluminescence image,” Appl. Phys. Lett. 76(2), 179–181 (2000).
[CrossRef]

Qi, Y.

S. Lian, Y. Qi, C. Rong, L. Yu, A. Zhu, D. Yin, and S. Liu, “Effectively Leveraging Solar Energy through Persistent Dual Red Phosphorescence:Preparation, Characterization, and Density Functional Theory Study of Ca2Zn4Ti16O38:Pr3+,” J. Phys. Chem. C 114(15), 7196–7204 (2010).
[CrossRef]

Qi, Z.

C. Shi, Y. Fu, B. Liu, G. Zhang, Y. Chen, Z. Qi, and X. Luo, “The roles of Eu2+ and Dy3+ in the blue long-lasting phosphor Sr2MgSi2O7: Eu2+, Dy3+,” J. Lumin. 122–123, 11–13 (2007).
[CrossRef]

Rong, C.

S. Lian, Y. Qi, C. Rong, L. Yu, A. Zhu, D. Yin, and S. Liu, “Effectively Leveraging Solar Energy through Persistent Dual Red Phosphorescence:Preparation, Characterization, and Density Functional Theory Study of Ca2Zn4Ti16O38:Pr3+,” J. Phys. Chem. C 114(15), 7196–7204 (2010).
[CrossRef]

Satoh, Y.

M. Kowatari, D. Koyama, Y. Satoh, K. Iinuma, and S. Uchida, “The temperature dependence of luminescence from a long-lasting phosphor exposed to ionizing radiation,” Nucl. Instrum. Methods Phys. Res. A 480(2-3), 431–439 (2002).
[CrossRef]

Schweizer, S.

S. Schweizer, “Physics and Current Understanding of X-Ray Storage Phosphors,” Phys. Status Solidi A 187(2), 335–393 (2001).
[CrossRef]

Shi, C.

C. Shi, Y. Fu, B. Liu, G. Zhang, Y. Chen, Z. Qi, and X. Luo, “The roles of Eu2+ and Dy3+ in the blue long-lasting phosphor Sr2MgSi2O7: Eu2+, Dy3+,” J. Lumin. 122–123, 11–13 (2007).
[CrossRef]

Strek, W.

T. Aitasalo, P. Deren, J. Hölsä, H. Junger, J.-C. Krupa, M. Lastusaari, J. Legendziewicz, J. Niittykoski, and W. Strek, “Persistent luminescence phenomena in materials doped with rare earth ions,” J. Solid State Chem. 171(1-2), 114–122 (2003).
[CrossRef]

Takahashi, J.

H. Aizawa, T. Katsumata, J. Takahashi, K. Matsunaga, S. Komuro, T. Morikawa, and E. Toba, “Fiber-optic thermometer using afterglow phosphorescence from long duration phosphor,” Electrochem. Solid-State Lett. 5(9), H17–H19 (2002).
[CrossRef]

Takeuchi, N.

T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “A new long phosphorescent phosphor with high brightness, SrAl2O4: Eu2+, Dy3+,” J. Electrochem. Soc. 143(8), 2670 (1996).
[CrossRef]

Tang, Z.

Y. Lin, Z. Tang, Z. Zhang, and C. W. Nan, “Anomalous luminescence in Sr4Al14O25:Eu, Dy phosphors,” Appl. Phys. Lett. 81(6), 996 (2002).
[CrossRef]

Y. Lin, Z. Tang, Z. Zhang, X. Wang, and J. Zhang, “Preparation of a new long afterglow blue-emitting Sr2MgSi2O7-based photoluminescent phosphor,” J. Mater. Sci. Lett. 20(16), 1505–1506 (2001).
[CrossRef]

Y. Lin, Z. Zhang, Z. Tang, X. Wang, and Z. Zheng, “Luminescent properties of a new long afterglow Eu2+ and Dy3+ activated Ca3MgSi2O8 phospho,” J. Eur. Ceram. Soc. 21(5), 683–685 (2001).
[CrossRef]

Toba, E.

H. Aizawa, T. Katsumata, J. Takahashi, K. Matsunaga, S. Komuro, T. Morikawa, and E. Toba, “Fiber-optic thermometer using afterglow phosphorescence from long duration phosphor,” Electrochem. Solid-State Lett. 5(9), H17–H19 (2002).
[CrossRef]

Uchida, S.

M. Kowatari, D. Koyama, Y. Satoh, K. Iinuma, and S. Uchida, “The temperature dependence of luminescence from a long-lasting phosphor exposed to ionizing radiation,” Nucl. Instrum. Methods Phys. Res. A 480(2-3), 431–439 (2002).
[CrossRef]

Wang, X.

Y. Lin, Z. Zhang, Z. Tang, X. Wang, and Z. Zheng, “Luminescent properties of a new long afterglow Eu2+ and Dy3+ activated Ca3MgSi2O8 phospho,” J. Eur. Ceram. Soc. 21(5), 683–685 (2001).
[CrossRef]

Y. Lin, Z. Tang, Z. Zhang, X. Wang, and J. Zhang, “Preparation of a new long afterglow blue-emitting Sr2MgSi2O7-based photoluminescent phosphor,” J. Mater. Sci. Lett. 20(16), 1505–1506 (2001).
[CrossRef]

Watanabe, T.

M. Akiyama, C.-N. Xu, Y. Liu, K. Nonaka, and T. Watanabe, “Influence of Eu, Dy co-doped strontium aluminate composition on mechanoluminescence intensity,” J. Lumin. 97(1), 13–18 (2002).
[CrossRef]

C.-N. Xu, X.-G. Zheng, M. Akiyama, K. Nonaka, and T. Watanabe, “Dynamic visualization of stress distribution by mechanoluminescence image,” Appl. Phys. Lett. 76(2), 179–181 (2000).
[CrossRef]

C.-N. Xu, T. Watanabe, M. Akiyama, and X.-G. Zheng, “Direct view of stress distribution in solids by mechanoluminescence,” Appl. Phys. Lett. 74(17), 2414–2416 (1999).
[CrossRef]

Xu, C.-N.

M. Akiyama, C.-N. Xu, Y. Liu, K. Nonaka, and T. Watanabe, “Influence of Eu, Dy co-doped strontium aluminate composition on mechanoluminescence intensity,” J. Lumin. 97(1), 13–18 (2002).
[CrossRef]

C.-N. Xu, X.-G. Zheng, M. Akiyama, K. Nonaka, and T. Watanabe, “Dynamic visualization of stress distribution by mechanoluminescence image,” Appl. Phys. Lett. 76(2), 179–181 (2000).
[CrossRef]

C.-N. Xu, T. Watanabe, M. Akiyama, and X.-G. Zheng, “Direct view of stress distribution in solids by mechanoluminescence,” Appl. Phys. Lett. 74(17), 2414–2416 (1999).
[CrossRef]

Yamazaki, M.

T. Kinoshita, M. Yamazaki, H. Kawazoe, and H. Hosono, “Long lasting phosphorescence and photostimulated luminescence in Tb-ion-activated reduced calcium aluminate glasses,” J. Appl. Phys. 86(7), 3729 (1999).
[CrossRef]

Yin, D.

S. Lian, Y. Qi, C. Rong, L. Yu, A. Zhu, D. Yin, and S. Liu, “Effectively Leveraging Solar Energy through Persistent Dual Red Phosphorescence:Preparation, Characterization, and Density Functional Theory Study of Ca2Zn4Ti16O38:Pr3+,” J. Phys. Chem. C 114(15), 7196–7204 (2010).
[CrossRef]

Yu, L.

S. Lian, Y. Qi, C. Rong, L. Yu, A. Zhu, D. Yin, and S. Liu, “Effectively Leveraging Solar Energy through Persistent Dual Red Phosphorescence:Preparation, Characterization, and Density Functional Theory Study of Ca2Zn4Ti16O38:Pr3+,” J. Phys. Chem. C 114(15), 7196–7204 (2010).
[CrossRef]

Zhang, G.

C. Shi, Y. Fu, B. Liu, G. Zhang, Y. Chen, Z. Qi, and X. Luo, “The roles of Eu2+ and Dy3+ in the blue long-lasting phosphor Sr2MgSi2O7: Eu2+, Dy3+,” J. Lumin. 122–123, 11–13 (2007).
[CrossRef]

Zhang, J.

Y. Lin, Z. Tang, Z. Zhang, X. Wang, and J. Zhang, “Preparation of a new long afterglow blue-emitting Sr2MgSi2O7-based photoluminescent phosphor,” J. Mater. Sci. Lett. 20(16), 1505–1506 (2001).
[CrossRef]

Zhang, Z.

Y. Lin, Z. Tang, Z. Zhang, and C. W. Nan, “Anomalous luminescence in Sr4Al14O25:Eu, Dy phosphors,” Appl. Phys. Lett. 81(6), 996 (2002).
[CrossRef]

Y. Lin, Z. Tang, Z. Zhang, X. Wang, and J. Zhang, “Preparation of a new long afterglow blue-emitting Sr2MgSi2O7-based photoluminescent phosphor,” J. Mater. Sci. Lett. 20(16), 1505–1506 (2001).
[CrossRef]

Y. Lin, Z. Zhang, Z. Tang, X. Wang, and Z. Zheng, “Luminescent properties of a new long afterglow Eu2+ and Dy3+ activated Ca3MgSi2O8 phospho,” J. Eur. Ceram. Soc. 21(5), 683–685 (2001).
[CrossRef]

Zheng, X.-G.

C.-N. Xu, X.-G. Zheng, M. Akiyama, K. Nonaka, and T. Watanabe, “Dynamic visualization of stress distribution by mechanoluminescence image,” Appl. Phys. Lett. 76(2), 179–181 (2000).
[CrossRef]

C.-N. Xu, T. Watanabe, M. Akiyama, and X.-G. Zheng, “Direct view of stress distribution in solids by mechanoluminescence,” Appl. Phys. Lett. 74(17), 2414–2416 (1999).
[CrossRef]

Zheng, Z.

Y. Lin, Z. Zhang, Z. Tang, X. Wang, and Z. Zheng, “Luminescent properties of a new long afterglow Eu2+ and Dy3+ activated Ca3MgSi2O8 phospho,” J. Eur. Ceram. Soc. 21(5), 683–685 (2001).
[CrossRef]

Zhu, A.

S. Lian, Y. Qi, C. Rong, L. Yu, A. Zhu, D. Yin, and S. Liu, “Effectively Leveraging Solar Energy through Persistent Dual Red Phosphorescence:Preparation, Characterization, and Density Functional Theory Study of Ca2Zn4Ti16O38:Pr3+,” J. Phys. Chem. C 114(15), 7196–7204 (2010).
[CrossRef]

Appl. Phys. Lett. (3)

C.-N. Xu, T. Watanabe, M. Akiyama, and X.-G. Zheng, “Direct view of stress distribution in solids by mechanoluminescence,” Appl. Phys. Lett. 74(17), 2414–2416 (1999).
[CrossRef]

C.-N. Xu, X.-G. Zheng, M. Akiyama, K. Nonaka, and T. Watanabe, “Dynamic visualization of stress distribution by mechanoluminescence image,” Appl. Phys. Lett. 76(2), 179–181 (2000).
[CrossRef]

Y. Lin, Z. Tang, Z. Zhang, and C. W. Nan, “Anomalous luminescence in Sr4Al14O25:Eu, Dy phosphors,” Appl. Phys. Lett. 81(6), 996 (2002).
[CrossRef]

Electrochem. Solid-State Lett. (1)

H. Aizawa, T. Katsumata, J. Takahashi, K. Matsunaga, S. Komuro, T. Morikawa, and E. Toba, “Fiber-optic thermometer using afterglow phosphorescence from long duration phosphor,” Electrochem. Solid-State Lett. 5(9), H17–H19 (2002).
[CrossRef]

J. Appl. Phys. (1)

T. Kinoshita, M. Yamazaki, H. Kawazoe, and H. Hosono, “Long lasting phosphorescence and photostimulated luminescence in Tb-ion-activated reduced calcium aluminate glasses,” J. Appl. Phys. 86(7), 3729 (1999).
[CrossRef]

J. Electrochem. Soc. (2)

T. L. Barry, “Fluorescence of Eu2+ activated phase in binary alkaline earth orthosilicate systems,” J. Electrochem. Soc. 115(11), 1181 (1968).
[CrossRef]

T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “A new long phosphorescent phosphor with high brightness, SrAl2O4: Eu2+, Dy3+,” J. Electrochem. Soc. 143(8), 2670 (1996).
[CrossRef]

J. Eur. Ceram. Soc. (1)

Y. Lin, Z. Zhang, Z. Tang, X. Wang, and Z. Zheng, “Luminescent properties of a new long afterglow Eu2+ and Dy3+ activated Ca3MgSi2O8 phospho,” J. Eur. Ceram. Soc. 21(5), 683–685 (2001).
[CrossRef]

J. Lumin. (2)

C. Shi, Y. Fu, B. Liu, G. Zhang, Y. Chen, Z. Qi, and X. Luo, “The roles of Eu2+ and Dy3+ in the blue long-lasting phosphor Sr2MgSi2O7: Eu2+, Dy3+,” J. Lumin. 122–123, 11–13 (2007).
[CrossRef]

M. Akiyama, C.-N. Xu, Y. Liu, K. Nonaka, and T. Watanabe, “Influence of Eu, Dy co-doped strontium aluminate composition on mechanoluminescence intensity,” J. Lumin. 97(1), 13–18 (2002).
[CrossRef]

J. Mater. Sci. Lett. (1)

Y. Lin, Z. Tang, Z. Zhang, X. Wang, and J. Zhang, “Preparation of a new long afterglow blue-emitting Sr2MgSi2O7-based photoluminescent phosphor,” J. Mater. Sci. Lett. 20(16), 1505–1506 (2001).
[CrossRef]

J. Phys. Chem. C (1)

S. Lian, Y. Qi, C. Rong, L. Yu, A. Zhu, D. Yin, and S. Liu, “Effectively Leveraging Solar Energy through Persistent Dual Red Phosphorescence:Preparation, Characterization, and Density Functional Theory Study of Ca2Zn4Ti16O38:Pr3+,” J. Phys. Chem. C 114(15), 7196–7204 (2010).
[CrossRef]

J. Solid State Chem. (1)

T. Aitasalo, P. Deren, J. Hölsä, H. Junger, J.-C. Krupa, M. Lastusaari, J. Legendziewicz, J. Niittykoski, and W. Strek, “Persistent luminescence phenomena in materials doped with rare earth ions,” J. Solid State Chem. 171(1-2), 114–122 (2003).
[CrossRef]

Nucl. Instrum. Methods Phys. Res. A (1)

M. Kowatari, D. Koyama, Y. Satoh, K. Iinuma, and S. Uchida, “The temperature dependence of luminescence from a long-lasting phosphor exposed to ionizing radiation,” Nucl. Instrum. Methods Phys. Res. A 480(2-3), 431–439 (2002).
[CrossRef]

Opt. Mater. (1)

L. Jiang, C. Chang, D. Mao, and C. Feng, “Luminescent properties of Ca2MgSi2O7 phosphor activated by Eu2+, Dy3+ and Nd3+,” Opt. Mater. 27(1), 51–55 (2004).
[CrossRef]

Phys. Status Solidi A (1)

S. Schweizer, “Physics and Current Understanding of X-Ray Storage Phosphors,” Phys. Status Solidi A 187(2), 335–393 (2001).
[CrossRef]

Z. Kristallogr. (1)

K.-F. Hesse and F. Liebau, “Crystal chemistry of silica-rich Barium silicates,” Z. Kristallogr. 153(1_2), 3–17 (1980).
[CrossRef]

Other (3)

B. Henderson, and G. G. Imbush, Optical Spectroscopy of Inorganic Solids (Clarendon, 1989).

W. Chen, “Luminescence, Storage Mechanisms, and Applications of X-Ray Storage Phosphors.” In Handbook of Luminescence, Display Materials and Devices; H. S. Nalwa, L. S. Rohwer, eds. (American Scientific Publishers, 2003); Vol. 2, pp 1–44.

G. Blasse, and B. C. Grabmaier, Luminescent Materials (Springer, 1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

XRD patterns of Ba3.992(Si3O8)2: 0.008Eu2+, Ba3.982(Si3O8)2: 0.008Eu2+, 0.01Dy3+ and JCPDS Card No.83-1442.

Fig. 2
Fig. 2

The emission spectrum of Ba3.992(Si3O8)2: 0.008Eu2+ and the excitation and the emission spectra of Ba3.982(Si3O8)2: 0.008Eu2+, 0.01Dy3+ (the dot line is the excitation spectrum monitored at 500nm and the dash line is the excitation spectrum monitored at 550 nm; the green lines are the Gaussian profiles).

Fig. 3
Fig. 3

Afterglow decay curves of Ba3.992(Si3O8)2: 0.008Eu2+ and Ba3.982(Si3O8)2: 0.008Eu2+, 0.01Dy3+. Inset A: long afterglow photographs of Ba3.982(Si3O8)2: 0.008Eu2+, 0.01Dy3+. Inset B: long afterglow photographs of Ba3.992(Si3O8)2: 0.008Eu2+. The photographs were taken in the darkroom for 1 min after the removal of the 365 nm ultraviolet lamp.

Fig. 4
Fig. 4

Phosphorescence spectra of Ba3.982(Si3O8)2: 0.008Eu2+, 0.01Dy3+ measure at different times after the removal of the excitation source (λex = 367nm).

Fig. 5
Fig. 5

Thermoluminescence glow curves of Ba3.992(Si3O8)2: 0.008Eu2+ (dot line) and Ba3.982(Si3O8)2: 0.008Eu2+, 0.01Dy3+ (solid line) after ceasing the UV irradiation for 1 min. Inset shows the thermoluminescence glow curves of Ba3.992(Si3O8)2: 0.008Eu2+ with different delay times after ceasing the UV irradiation.

Metrics