Abstract

Diffuse and specular characteristics of the Tyvek 1025-BL material are reported with respect to their implementation in the Geant4 Monte Carlo simulation toolkit. This toolkit incorporates the UNIFIED model. Coefficients defined by the UNIFIED model were calculated from the bidirectional reflectance distribution function (BRDF) profiles measured with a scatterometer for several angles of incidence. Results were amended with profile measurements made by a profilometer.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Yanagisawa for the Super-Kamiokande Collaboration, The Super-Kamiokande detector,” Nucl. Instrum. Meth. A 501, 418462 (2003).
  2. I. Allekotte for the Pierre Auger Collaboration, The surface detector system of the Pierre Auger Observatory,” Nucl. Instrum. Meth. A 586, 409–420 (2008).
  3. J. Allison for Geant4 Collaboration, Geant4 - A Simulation Toolkit,” Nucl. Instrum. Meth. A 506, 250–303 (2003).
  4. Geant4 Collaboration, Geant4 Developments and Applications,” IEEE Trans. Nucl. Sci. 53(1), 270–278 (2006).
  5. G. Santin, D. Strul, D. Lazaro, L. Simon, M. Krieguer, M. Vieira Martins, V. Breton, and C. Morel, GATE: A Geant4-Based Simulation Platform for PET and SPECT Integrating Movement and Time Management,” IEEE Trans. Nucl. Sci. 50(5), 15161521 (2003).
    [CrossRef]
  6. A. Levin, and C. Moisan, A more physical approach to model the surface treatment of scintillation counters and its implementation in DETECT,” Proc. IEEE Nucl. Sci. Symp., 2 (1996).
  7. . J. C. A. Velazquez, C. V. Lopez and A. Zepeda, Diffuse reflectivity of Tyvek in air and water, and anisotropical effects,” Nucl. Instrum. Meth. B 97,231–234 (2001).
  8. J. O. Gichaba, Measurements of TYVEK Reflective Properties for the Pierre Auger Project,” Ph.D. Thesis, The University of Mississippi (1998).
  9. M. Janecek, and W. W. Moses, Simulating Scintillator Light Collection UsingMeasured Optical Reflectance,” IEEE Trans. Nucl. Sci. 57(3), 964–970 (2010).
    [CrossRef]
  10. J. C. Stover, Optical scattering: measurement and analysis,” SPIE Press (1995).
  11. G. Hausler, Limits of optical range sensors and how to exploit them,” in International Trends in Optics and Photonics ICO IV, T. Asakura, ed., Springer Series in Optical Sciences (Springer Verlag, Berlin), 74, 328342 (1999).
  12. B. F. LeLoup, Design of an instrument for measuring the spectral bidirectional scatter distribution function,” Appl. Opt. 47(3), 5454–5467 (2008).
    [PubMed]
  13. . Geant 4 User’s Guide For Applications Developers, Geant4 Project homepage.

2010

M. Janecek, and W. W. Moses, Simulating Scintillator Light Collection UsingMeasured Optical Reflectance,” IEEE Trans. Nucl. Sci. 57(3), 964–970 (2010).
[CrossRef]

2008

B. F. LeLoup, Design of an instrument for measuring the spectral bidirectional scatter distribution function,” Appl. Opt. 47(3), 5454–5467 (2008).
[PubMed]

I. Allekotte for the Pierre Auger Collaboration, The surface detector system of the Pierre Auger Observatory,” Nucl. Instrum. Meth. A 586, 409–420 (2008).

2006

Geant4 Collaboration, Geant4 Developments and Applications,” IEEE Trans. Nucl. Sci. 53(1), 270–278 (2006).

2003

G. Santin, D. Strul, D. Lazaro, L. Simon, M. Krieguer, M. Vieira Martins, V. Breton, and C. Morel, GATE: A Geant4-Based Simulation Platform for PET and SPECT Integrating Movement and Time Management,” IEEE Trans. Nucl. Sci. 50(5), 15161521 (2003).
[CrossRef]

J. Allison for Geant4 Collaboration, Geant4 - A Simulation Toolkit,” Nucl. Instrum. Meth. A 506, 250–303 (2003).

C. Yanagisawa for the Super-Kamiokande Collaboration, The Super-Kamiokande detector,” Nucl. Instrum. Meth. A 501, 418462 (2003).

2001

. J. C. A. Velazquez, C. V. Lopez and A. Zepeda, Diffuse reflectivity of Tyvek in air and water, and anisotropical effects,” Nucl. Instrum. Meth. B 97,231–234 (2001).

Allekotte, I.

I. Allekotte for the Pierre Auger Collaboration, The surface detector system of the Pierre Auger Observatory,” Nucl. Instrum. Meth. A 586, 409–420 (2008).

Breton, V.

G. Santin, D. Strul, D. Lazaro, L. Simon, M. Krieguer, M. Vieira Martins, V. Breton, and C. Morel, GATE: A Geant4-Based Simulation Platform for PET and SPECT Integrating Movement and Time Management,” IEEE Trans. Nucl. Sci. 50(5), 15161521 (2003).
[CrossRef]

Janecek, M.

M. Janecek, and W. W. Moses, Simulating Scintillator Light Collection UsingMeasured Optical Reflectance,” IEEE Trans. Nucl. Sci. 57(3), 964–970 (2010).
[CrossRef]

Krieguer, M.

G. Santin, D. Strul, D. Lazaro, L. Simon, M. Krieguer, M. Vieira Martins, V. Breton, and C. Morel, GATE: A Geant4-Based Simulation Platform for PET and SPECT Integrating Movement and Time Management,” IEEE Trans. Nucl. Sci. 50(5), 15161521 (2003).
[CrossRef]

Lazaro, D.

G. Santin, D. Strul, D. Lazaro, L. Simon, M. Krieguer, M. Vieira Martins, V. Breton, and C. Morel, GATE: A Geant4-Based Simulation Platform for PET and SPECT Integrating Movement and Time Management,” IEEE Trans. Nucl. Sci. 50(5), 15161521 (2003).
[CrossRef]

LeLoup, B. F.

Lopez, C. V.

. J. C. A. Velazquez, C. V. Lopez and A. Zepeda, Diffuse reflectivity of Tyvek in air and water, and anisotropical effects,” Nucl. Instrum. Meth. B 97,231–234 (2001).

Morel, C.

G. Santin, D. Strul, D. Lazaro, L. Simon, M. Krieguer, M. Vieira Martins, V. Breton, and C. Morel, GATE: A Geant4-Based Simulation Platform for PET and SPECT Integrating Movement and Time Management,” IEEE Trans. Nucl. Sci. 50(5), 15161521 (2003).
[CrossRef]

Moses, W. W.

M. Janecek, and W. W. Moses, Simulating Scintillator Light Collection UsingMeasured Optical Reflectance,” IEEE Trans. Nucl. Sci. 57(3), 964–970 (2010).
[CrossRef]

Santin, G.

G. Santin, D. Strul, D. Lazaro, L. Simon, M. Krieguer, M. Vieira Martins, V. Breton, and C. Morel, GATE: A Geant4-Based Simulation Platform for PET and SPECT Integrating Movement and Time Management,” IEEE Trans. Nucl. Sci. 50(5), 15161521 (2003).
[CrossRef]

Simon, L.

G. Santin, D. Strul, D. Lazaro, L. Simon, M. Krieguer, M. Vieira Martins, V. Breton, and C. Morel, GATE: A Geant4-Based Simulation Platform for PET and SPECT Integrating Movement and Time Management,” IEEE Trans. Nucl. Sci. 50(5), 15161521 (2003).
[CrossRef]

Strul, D.

G. Santin, D. Strul, D. Lazaro, L. Simon, M. Krieguer, M. Vieira Martins, V. Breton, and C. Morel, GATE: A Geant4-Based Simulation Platform for PET and SPECT Integrating Movement and Time Management,” IEEE Trans. Nucl. Sci. 50(5), 15161521 (2003).
[CrossRef]

Velazquez, J. C. A.

. J. C. A. Velazquez, C. V. Lopez and A. Zepeda, Diffuse reflectivity of Tyvek in air and water, and anisotropical effects,” Nucl. Instrum. Meth. B 97,231–234 (2001).

Vieira Martins, M.

G. Santin, D. Strul, D. Lazaro, L. Simon, M. Krieguer, M. Vieira Martins, V. Breton, and C. Morel, GATE: A Geant4-Based Simulation Platform for PET and SPECT Integrating Movement and Time Management,” IEEE Trans. Nucl. Sci. 50(5), 15161521 (2003).
[CrossRef]

Yanagisawa, C.

C. Yanagisawa for the Super-Kamiokande Collaboration, The Super-Kamiokande detector,” Nucl. Instrum. Meth. A 501, 418462 (2003).

Zepeda, A.

. J. C. A. Velazquez, C. V. Lopez and A. Zepeda, Diffuse reflectivity of Tyvek in air and water, and anisotropical effects,” Nucl. Instrum. Meth. B 97,231–234 (2001).

Appl. Opt.

IEEE Trans. Nucl. Sci.

Geant4 Collaboration, Geant4 Developments and Applications,” IEEE Trans. Nucl. Sci. 53(1), 270–278 (2006).

G. Santin, D. Strul, D. Lazaro, L. Simon, M. Krieguer, M. Vieira Martins, V. Breton, and C. Morel, GATE: A Geant4-Based Simulation Platform for PET and SPECT Integrating Movement and Time Management,” IEEE Trans. Nucl. Sci. 50(5), 15161521 (2003).
[CrossRef]

M. Janecek, and W. W. Moses, Simulating Scintillator Light Collection UsingMeasured Optical Reflectance,” IEEE Trans. Nucl. Sci. 57(3), 964–970 (2010).
[CrossRef]

Nucl. Instrum. Meth. A

C. Yanagisawa for the Super-Kamiokande Collaboration, The Super-Kamiokande detector,” Nucl. Instrum. Meth. A 501, 418462 (2003).

I. Allekotte for the Pierre Auger Collaboration, The surface detector system of the Pierre Auger Observatory,” Nucl. Instrum. Meth. A 586, 409–420 (2008).

J. Allison for Geant4 Collaboration, Geant4 - A Simulation Toolkit,” Nucl. Instrum. Meth. A 506, 250–303 (2003).

Nucl. Instrum. Meth. B

. J. C. A. Velazquez, C. V. Lopez and A. Zepeda, Diffuse reflectivity of Tyvek in air and water, and anisotropical effects,” Nucl. Instrum. Meth. B 97,231–234 (2001).

Other

J. O. Gichaba, Measurements of TYVEK Reflective Properties for the Pierre Auger Project,” Ph.D. Thesis, The University of Mississippi (1998).

A. Levin, and C. Moisan, A more physical approach to model the surface treatment of scintillation counters and its implementation in DETECT,” Proc. IEEE Nucl. Sci. Symp., 2 (1996).

J. C. Stover, Optical scattering: measurement and analysis,” SPIE Press (1995).

G. Hausler, Limits of optical range sensors and how to exploit them,” in International Trends in Optics and Photonics ICO IV, T. Asakura, ed., Springer Series in Optical Sciences (Springer Verlag, Berlin), 74, 328342 (1999).

. Geant 4 User’s Guide For Applications Developers, Geant4 Project homepage.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

The CASI scatterometer system.

Fig. 2
Fig. 2

Geometry for the definition of BRDF.

Fig. 3
Fig. 3

Light reflection on a microfacet.

Fig. 4
Fig. 4

Results of the surface anisotropy effect scans.

Fig. 5
Fig. 5

BRDF functions of Tyvek for various angles of incidence.

Fig. 6
Fig. 6

(a) Simple CASI model, (b) sample detail.

Fig. 7
Fig. 7

Comparison between data and the Geant4 model.

Tables (2)

Tables Icon

Table 1 Surface profile parameters of Tyvek.

Tables Icon

Table 2 Fitted normalized UNIFIED parameters.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

f s ( θ i , φ i ; θ s , φ s ; λ ) = δ L ( θ s , φ s ; λ ) δ E ( θ i , φ i ; λ ) = d 2 Φ s d A d Ω s cos θ s d A d Φ i d Φ s d Φ s 1 Φ i cos θ s ,
f s , corr f s cos θ s 1 Φ i J ( θ i , θ s , φ s ) ,
J ( θ i , θ s , φ s ) Φ i R ( θ i ) [ C s l g ( α s , 0 , σ α ) + C s s δ ( θ i θ s ) δ ( φ s ) + C b s δ ( θ i + θ i ) δ ( φ s ) ] + + Φ i R ( θ i ) C d l cos θ s + Φ i T ( θ t ) g ( α t , 0 , σ α ) ,
g ( α s , 0 , σ α ) = exp [ α s 2 2 σ α 2 ] = exp [ ( θ s θ i ) 2 8 σ α 2 ] .
f s , corr R ( θ i ) [ C s l g ( α s , 0 , σ α ) + C d l cos θ s ] .
d Φ s = Φ i f s , corr d Ω s = 2 π Φ i f s , corr sin θ s d θ s .
Φ s , d l = 2 π Φ i R C d l 0 π / 2 cos θ s sin θ s d θ s Φ i R k 1 C d l , Φ s , s l = 2 π Φ i R C s l 0 π / 2 exp [ ( θ s θ i ) 2 8 σ α 2 ] sin ( θ s θ i ) d ( θ s θ i ) Φ i R k 2 C s l ,
C d l , corr = Φ s , d l Φ s , d l + Φ s , c l = k 1 C d l k 1 C d l + k 2 C s l , C s l , corr = Φ s , s l Φ s , d l + Φ s , c l = k 2 C s l k 1 C d l + k 2 C s l ,

Metrics