Abstract

We analytically study received waveform asymmetries induced by chromatic dispersion (CD) for signed CD monitoring in differential quadrature phase-shift keying (DQPSK) systems and show that the asymmetries are results of differential detection and the ±π/4 phase shifters used in conventional DQPSK receivers. The theoretical insights developed help explain various published results on signed CD monitoring based on waveform asymmetries and allow us to further propose signed CD monitoring for differential eight phase-shift keying (D8PSK) systems without any modification to the receiver. Simulation results also show that the CD-induced waveform asymmetric features are preserved in presence of self-phase modulation (SPM) and polarization-mode dispersion (PMD).

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Ip, A. P. T. Lau, D. J. F. Barros, and J. M. Kahn, “Coherent Detection in optical fiber systems,” Opt. Express 16(2), 753–791 (2008).
    [CrossRef] [PubMed]
  2. W. Hatton, and M. Nishimura, “Temperature dependence of chromatic dispersion in single mode fibers,” J. Lightwave Technol. 4(10), 15520–1555 (1986).
    [CrossRef]
  3. D. C. Kilper, R. Bach, D. J. Blumenthal, D. Einstein, T. Landolsi, L. Ostar, M. Preiss, and A. E. Willner, “Optical Performance Monitoring,” J. Lightwave Technol. 22(1), 294–304 (2004).
    [CrossRef]
  4. A. R. Chraplyvy, R. W. Tkach, L. L. Buhl, and R. C. Alferness, “Phase modulation to amplitude modulation conversion of CW laser light in optical fibers,” Electron. Lett. 22(8), 409–411 (1986).
    [CrossRef]
  5. M. N. Petersen, Z. Pan, S. Lee, S. A. Havstad, and A. E. Willner, “Online chromatic dispersion monitoring and compensation using a single in-band subcarrier tone,” IEEE Photon. Technol. Lett. 14(4), 570–572 (2002).
    [CrossRef]
  6. T. E. Dimmick, G. Rossi, and D. J. Blumenthal, “Optical Dispersion Monitoring Technique Using Double Sideband Subcarriers,” IEEE Photon. Technol. Lett. 12(7), 900–902 (2000).
    [CrossRef]
  7. G. Rossi, T. E. Dimmick, and D. J. Blumenthal, “Optical performance monitoring in reconfigurable WDM-optical networks using subcarrier multiplexing,” J. Lightwave Technol. 18(12), 1639–1648 (2000).
    [CrossRef]
  8. K. J. Park, C. J. Youn, J. H. Lee, and Y. C. Chung, “Performance Comparisons of Chromatic Dispersion-Monitoring Techniques Using Pilot Tones,” IEEE Photon. Technol. Lett. 15(6), 873–875 (2003).
    [CrossRef]
  9. Z. Pan, Y. Xie, S. A. Havstad, Q. Yub, A. E. Willner, V. Grubsky, D. S. Starodubovc, and J. Feinberg, “Real-time group-velocity dispersion monitoring and automated compensation without modifications of the transmitter,” Opt. Commun. 230, 145–149 (2003).
    [CrossRef]
  10. N. Liu, W. Zhong, Y. Wen, and Z. Li, “New transmitter configuration for subcarrier multiplexed DPSK systems and its applications to chromatic dispersion monitoring,” Opt. Express 15(3), 839–844 (2007).
    [CrossRef] [PubMed]
  11. B. Fu, and R. Hui, “Fiber chromatic dispersion and polarization-mode dispersion monitoring using coherent detection,” IEEE Photon. Technol. Lett. 17(7), 1561–1563 (2005).
    [CrossRef]
  12. Y. K. Lizé, J.-Y. Yang, L. Christen, X. Wu, S. Nuccio, T. Wu, A.E. Willner, R. Kashyap, and F. Seguin, “Simultaneous and Independent Monitoring of OSNR, Chromatic and Polarization Mode Dispersion for NRZ-OOK, DPSK and Duo binary,” OFC/NFOEC2007, Paper OThN2.
  13. B. Kozicki, A. Maruta, and K. Kitayama, “Transparent performance monitoring of RZ-DQPSK systems employing delay-tap sampling,” J. Opt. Netw. 6, 1257–1269 (2007).
    [CrossRef]
  14. B. Kozicki, A. Maruta, and K. Kitayama, “Experimental Demonstration of optical performance monitoring for RZ-DPSK signal using delay tap sampling,” Opt. Express 16(6), 3566–3576 (2008).
    [CrossRef] [PubMed]
  15. T. Anderson, K. Clarke, D. Beaman, H. Ferra, M. Birk, G. Zhang, and P. Magill, “Experimental Demonstration of Multi-Impairment Monitoring on a commercial 10 Gbit/s NRZ WDM channel,” OFC/NFOEC2009, paper OTHh7.
  16. Z. Li, and G. Li, “In-line performance monitoring for RZ-DPSK signals using asynchronous amplitude histogram evaluation,” IEEE Photon. Technol. Lett. 18(3), 472–474 (2006).
    [CrossRef]
  17. D. Sandel, V. Mirvoda, F. Wust, R. Noe, and C.-J. Weiske, “Signed online chromatic dispersion detection at 40 Gbit/s based on arrival time detection with 60 attosecond dynamic accuracy,” Electron. Lett. 38(17), 984–985 (2002).
    [CrossRef]
  18. R. Noé, D. Sandel, S. Bhandare, F. Wst, B. Milivojevic, and V. Mirvoda, “Signed online chromatic-dispersion monitoring by synchronous detection of FM-induced arrival-time modulations in the clock-recovery phase-locked loop,” J. Opt. Netw. 3(8), 589–600 (2004).
    [CrossRef]
  19. Y. Takushima, H. Yoshimi, Y. Ozeki, K. Kikuchi, H. Yamauchi, and H. Taga, “In-Service Dispersion Monitoring in 32×10.7 Gbps-WDM-Transmission System Over Transatlantic Distance Using Optical Frequency-Modulation Method,” J. Lightwave Technol. 22(1), 257–265 (2004).
    [CrossRef]
  20. N. Liu, W. Zhong, X. Yi, Y. Wang, and C. Lu, “Chromatic dispersion monitoring using the power ratio of two RF tones with a dispersion offset,” OFC2004, paper MF 81.
    [CrossRef]
  21. H. Kawakami, E. Yoshida, H. Kubota, and Y. Miyamoto, “Novel signed chromatic dispersion monitoring technique based on asymmetric waveform distortion in DQPSK receiver,” OECC2008, paper WeK-3.
  22. Z. Li, J. Zhao, L. Cheng, Y. Yang, C. Lu, A. P. T. Lau, C. Yu, H. Y. Tam, and P. K. A. Wai, “Signed CD Monitoring of 100-Gbit/s CS-RZ DQPSK Signal by Evaluating the Asymmetry Ratio of Delay-tap Sampling,” Opt. Express 18(3), 3149–3157 (2010).
    [CrossRef] [PubMed]
  23. J. Zhao, Z. Li, D. Liu, L. Cheng, C. Lu, and H. Y. Tam, “NRZ-DPSK and RZ-DPSK Signals Signed Chromatic Dispersion Monitoring Using Asynchronous Delay-Tap Sampling,” J. Lightwave Technol. 27(23), 5295–5301 (2009).
    [CrossRef]
  24. Y. Han, C. Kim, and G. Li, “Simplified receiver implementation for optical differential 8-level phase-shift keying,” Electron. Lett. 40(21), 1372–1373 (2004).
    [CrossRef]
  25. K. J. Park, C. J. Youn, J. H. Lee, and Y. C. Chung, “Effect of self-phase modulation on group-velocity dispersion measurement technique using PM-AM conversion,” Electron. Lett. 38(21), 1247–1248 (2002).
    [CrossRef]
  26. C. Youn, “Effects of SPM and PMD on chromatic dispersion monitoring techniques using pilot tones,” OFC2003, paper WP2.
    [CrossRef]

2010 (1)

2009 (1)

2008 (2)

2007 (2)

2006 (1)

Z. Li, and G. Li, “In-line performance monitoring for RZ-DPSK signals using asynchronous amplitude histogram evaluation,” IEEE Photon. Technol. Lett. 18(3), 472–474 (2006).
[CrossRef]

2005 (1)

B. Fu, and R. Hui, “Fiber chromatic dispersion and polarization-mode dispersion monitoring using coherent detection,” IEEE Photon. Technol. Lett. 17(7), 1561–1563 (2005).
[CrossRef]

2004 (4)

2003 (2)

K. J. Park, C. J. Youn, J. H. Lee, and Y. C. Chung, “Performance Comparisons of Chromatic Dispersion-Monitoring Techniques Using Pilot Tones,” IEEE Photon. Technol. Lett. 15(6), 873–875 (2003).
[CrossRef]

Z. Pan, Y. Xie, S. A. Havstad, Q. Yub, A. E. Willner, V. Grubsky, D. S. Starodubovc, and J. Feinberg, “Real-time group-velocity dispersion monitoring and automated compensation without modifications of the transmitter,” Opt. Commun. 230, 145–149 (2003).
[CrossRef]

2002 (3)

M. N. Petersen, Z. Pan, S. Lee, S. A. Havstad, and A. E. Willner, “Online chromatic dispersion monitoring and compensation using a single in-band subcarrier tone,” IEEE Photon. Technol. Lett. 14(4), 570–572 (2002).
[CrossRef]

K. J. Park, C. J. Youn, J. H. Lee, and Y. C. Chung, “Effect of self-phase modulation on group-velocity dispersion measurement technique using PM-AM conversion,” Electron. Lett. 38(21), 1247–1248 (2002).
[CrossRef]

D. Sandel, V. Mirvoda, F. Wust, R. Noe, and C.-J. Weiske, “Signed online chromatic dispersion detection at 40 Gbit/s based on arrival time detection with 60 attosecond dynamic accuracy,” Electron. Lett. 38(17), 984–985 (2002).
[CrossRef]

2000 (2)

T. E. Dimmick, G. Rossi, and D. J. Blumenthal, “Optical Dispersion Monitoring Technique Using Double Sideband Subcarriers,” IEEE Photon. Technol. Lett. 12(7), 900–902 (2000).
[CrossRef]

G. Rossi, T. E. Dimmick, and D. J. Blumenthal, “Optical performance monitoring in reconfigurable WDM-optical networks using subcarrier multiplexing,” J. Lightwave Technol. 18(12), 1639–1648 (2000).
[CrossRef]

1986 (2)

A. R. Chraplyvy, R. W. Tkach, L. L. Buhl, and R. C. Alferness, “Phase modulation to amplitude modulation conversion of CW laser light in optical fibers,” Electron. Lett. 22(8), 409–411 (1986).
[CrossRef]

W. Hatton, and M. Nishimura, “Temperature dependence of chromatic dispersion in single mode fibers,” J. Lightwave Technol. 4(10), 15520–1555 (1986).
[CrossRef]

Alferness, R. C.

A. R. Chraplyvy, R. W. Tkach, L. L. Buhl, and R. C. Alferness, “Phase modulation to amplitude modulation conversion of CW laser light in optical fibers,” Electron. Lett. 22(8), 409–411 (1986).
[CrossRef]

Bach, R.

Barros, D. J. F.

Bhandare, S.

Blumenthal, D. J.

Buhl, L. L.

A. R. Chraplyvy, R. W. Tkach, L. L. Buhl, and R. C. Alferness, “Phase modulation to amplitude modulation conversion of CW laser light in optical fibers,” Electron. Lett. 22(8), 409–411 (1986).
[CrossRef]

Cheng, L.

Chraplyvy, A. R.

A. R. Chraplyvy, R. W. Tkach, L. L. Buhl, and R. C. Alferness, “Phase modulation to amplitude modulation conversion of CW laser light in optical fibers,” Electron. Lett. 22(8), 409–411 (1986).
[CrossRef]

Chung, Y. C.

K. J. Park, C. J. Youn, J. H. Lee, and Y. C. Chung, “Performance Comparisons of Chromatic Dispersion-Monitoring Techniques Using Pilot Tones,” IEEE Photon. Technol. Lett. 15(6), 873–875 (2003).
[CrossRef]

K. J. Park, C. J. Youn, J. H. Lee, and Y. C. Chung, “Effect of self-phase modulation on group-velocity dispersion measurement technique using PM-AM conversion,” Electron. Lett. 38(21), 1247–1248 (2002).
[CrossRef]

Dimmick, T. E.

G. Rossi, T. E. Dimmick, and D. J. Blumenthal, “Optical performance monitoring in reconfigurable WDM-optical networks using subcarrier multiplexing,” J. Lightwave Technol. 18(12), 1639–1648 (2000).
[CrossRef]

T. E. Dimmick, G. Rossi, and D. J. Blumenthal, “Optical Dispersion Monitoring Technique Using Double Sideband Subcarriers,” IEEE Photon. Technol. Lett. 12(7), 900–902 (2000).
[CrossRef]

Einstein, D.

Feinberg, J.

Z. Pan, Y. Xie, S. A. Havstad, Q. Yub, A. E. Willner, V. Grubsky, D. S. Starodubovc, and J. Feinberg, “Real-time group-velocity dispersion monitoring and automated compensation without modifications of the transmitter,” Opt. Commun. 230, 145–149 (2003).
[CrossRef]

Fu, B.

B. Fu, and R. Hui, “Fiber chromatic dispersion and polarization-mode dispersion monitoring using coherent detection,” IEEE Photon. Technol. Lett. 17(7), 1561–1563 (2005).
[CrossRef]

Grubsky, V.

Z. Pan, Y. Xie, S. A. Havstad, Q. Yub, A. E. Willner, V. Grubsky, D. S. Starodubovc, and J. Feinberg, “Real-time group-velocity dispersion monitoring and automated compensation without modifications of the transmitter,” Opt. Commun. 230, 145–149 (2003).
[CrossRef]

Han, Y.

Y. Han, C. Kim, and G. Li, “Simplified receiver implementation for optical differential 8-level phase-shift keying,” Electron. Lett. 40(21), 1372–1373 (2004).
[CrossRef]

Hatton, W.

W. Hatton, and M. Nishimura, “Temperature dependence of chromatic dispersion in single mode fibers,” J. Lightwave Technol. 4(10), 15520–1555 (1986).
[CrossRef]

Havstad, S. A.

Z. Pan, Y. Xie, S. A. Havstad, Q. Yub, A. E. Willner, V. Grubsky, D. S. Starodubovc, and J. Feinberg, “Real-time group-velocity dispersion monitoring and automated compensation without modifications of the transmitter,” Opt. Commun. 230, 145–149 (2003).
[CrossRef]

M. N. Petersen, Z. Pan, S. Lee, S. A. Havstad, and A. E. Willner, “Online chromatic dispersion monitoring and compensation using a single in-band subcarrier tone,” IEEE Photon. Technol. Lett. 14(4), 570–572 (2002).
[CrossRef]

Hui, R.

B. Fu, and R. Hui, “Fiber chromatic dispersion and polarization-mode dispersion monitoring using coherent detection,” IEEE Photon. Technol. Lett. 17(7), 1561–1563 (2005).
[CrossRef]

Ip, E.

Kahn, J. M.

Kikuchi, K.

Kilper, D. C.

Kim, C.

Y. Han, C. Kim, and G. Li, “Simplified receiver implementation for optical differential 8-level phase-shift keying,” Electron. Lett. 40(21), 1372–1373 (2004).
[CrossRef]

Kitayama, K.

Kozicki, B.

Landolsi, T.

Lau, A. P. T.

Lee, J. H.

K. J. Park, C. J. Youn, J. H. Lee, and Y. C. Chung, “Performance Comparisons of Chromatic Dispersion-Monitoring Techniques Using Pilot Tones,” IEEE Photon. Technol. Lett. 15(6), 873–875 (2003).
[CrossRef]

K. J. Park, C. J. Youn, J. H. Lee, and Y. C. Chung, “Effect of self-phase modulation on group-velocity dispersion measurement technique using PM-AM conversion,” Electron. Lett. 38(21), 1247–1248 (2002).
[CrossRef]

Lee, S.

M. N. Petersen, Z. Pan, S. Lee, S. A. Havstad, and A. E. Willner, “Online chromatic dispersion monitoring and compensation using a single in-band subcarrier tone,” IEEE Photon. Technol. Lett. 14(4), 570–572 (2002).
[CrossRef]

Li, G.

Z. Li, and G. Li, “In-line performance monitoring for RZ-DPSK signals using asynchronous amplitude histogram evaluation,” IEEE Photon. Technol. Lett. 18(3), 472–474 (2006).
[CrossRef]

Y. Han, C. Kim, and G. Li, “Simplified receiver implementation for optical differential 8-level phase-shift keying,” Electron. Lett. 40(21), 1372–1373 (2004).
[CrossRef]

Li, Z.

Liu, D.

Liu, N.

Lu, C.

Maruta, A.

Milivojevic, B.

Mirvoda, V.

R. Noé, D. Sandel, S. Bhandare, F. Wst, B. Milivojevic, and V. Mirvoda, “Signed online chromatic-dispersion monitoring by synchronous detection of FM-induced arrival-time modulations in the clock-recovery phase-locked loop,” J. Opt. Netw. 3(8), 589–600 (2004).
[CrossRef]

D. Sandel, V. Mirvoda, F. Wust, R. Noe, and C.-J. Weiske, “Signed online chromatic dispersion detection at 40 Gbit/s based on arrival time detection with 60 attosecond dynamic accuracy,” Electron. Lett. 38(17), 984–985 (2002).
[CrossRef]

Nishimura, M.

W. Hatton, and M. Nishimura, “Temperature dependence of chromatic dispersion in single mode fibers,” J. Lightwave Technol. 4(10), 15520–1555 (1986).
[CrossRef]

Noe, R.

D. Sandel, V. Mirvoda, F. Wust, R. Noe, and C.-J. Weiske, “Signed online chromatic dispersion detection at 40 Gbit/s based on arrival time detection with 60 attosecond dynamic accuracy,” Electron. Lett. 38(17), 984–985 (2002).
[CrossRef]

Noé, R.

Ostar, L.

Ozeki, Y.

Pan, Z.

Z. Pan, Y. Xie, S. A. Havstad, Q. Yub, A. E. Willner, V. Grubsky, D. S. Starodubovc, and J. Feinberg, “Real-time group-velocity dispersion monitoring and automated compensation without modifications of the transmitter,” Opt. Commun. 230, 145–149 (2003).
[CrossRef]

M. N. Petersen, Z. Pan, S. Lee, S. A. Havstad, and A. E. Willner, “Online chromatic dispersion monitoring and compensation using a single in-band subcarrier tone,” IEEE Photon. Technol. Lett. 14(4), 570–572 (2002).
[CrossRef]

Park, K. J.

K. J. Park, C. J. Youn, J. H. Lee, and Y. C. Chung, “Performance Comparisons of Chromatic Dispersion-Monitoring Techniques Using Pilot Tones,” IEEE Photon. Technol. Lett. 15(6), 873–875 (2003).
[CrossRef]

K. J. Park, C. J. Youn, J. H. Lee, and Y. C. Chung, “Effect of self-phase modulation on group-velocity dispersion measurement technique using PM-AM conversion,” Electron. Lett. 38(21), 1247–1248 (2002).
[CrossRef]

Petersen, M. N.

M. N. Petersen, Z. Pan, S. Lee, S. A. Havstad, and A. E. Willner, “Online chromatic dispersion monitoring and compensation using a single in-band subcarrier tone,” IEEE Photon. Technol. Lett. 14(4), 570–572 (2002).
[CrossRef]

Preiss, M.

Rossi, G.

G. Rossi, T. E. Dimmick, and D. J. Blumenthal, “Optical performance monitoring in reconfigurable WDM-optical networks using subcarrier multiplexing,” J. Lightwave Technol. 18(12), 1639–1648 (2000).
[CrossRef]

T. E. Dimmick, G. Rossi, and D. J. Blumenthal, “Optical Dispersion Monitoring Technique Using Double Sideband Subcarriers,” IEEE Photon. Technol. Lett. 12(7), 900–902 (2000).
[CrossRef]

Sandel, D.

R. Noé, D. Sandel, S. Bhandare, F. Wst, B. Milivojevic, and V. Mirvoda, “Signed online chromatic-dispersion monitoring by synchronous detection of FM-induced arrival-time modulations in the clock-recovery phase-locked loop,” J. Opt. Netw. 3(8), 589–600 (2004).
[CrossRef]

D. Sandel, V. Mirvoda, F. Wust, R. Noe, and C.-J. Weiske, “Signed online chromatic dispersion detection at 40 Gbit/s based on arrival time detection with 60 attosecond dynamic accuracy,” Electron. Lett. 38(17), 984–985 (2002).
[CrossRef]

Starodubovc, D. S.

Z. Pan, Y. Xie, S. A. Havstad, Q. Yub, A. E. Willner, V. Grubsky, D. S. Starodubovc, and J. Feinberg, “Real-time group-velocity dispersion monitoring and automated compensation without modifications of the transmitter,” Opt. Commun. 230, 145–149 (2003).
[CrossRef]

Taga, H.

Takushima, Y.

Tam, H. Y.

Tkach, R. W.

A. R. Chraplyvy, R. W. Tkach, L. L. Buhl, and R. C. Alferness, “Phase modulation to amplitude modulation conversion of CW laser light in optical fibers,” Electron. Lett. 22(8), 409–411 (1986).
[CrossRef]

Wai, P. K. A.

Weiske, C.-J.

D. Sandel, V. Mirvoda, F. Wust, R. Noe, and C.-J. Weiske, “Signed online chromatic dispersion detection at 40 Gbit/s based on arrival time detection with 60 attosecond dynamic accuracy,” Electron. Lett. 38(17), 984–985 (2002).
[CrossRef]

Wen, Y.

Willner, A. E.

D. C. Kilper, R. Bach, D. J. Blumenthal, D. Einstein, T. Landolsi, L. Ostar, M. Preiss, and A. E. Willner, “Optical Performance Monitoring,” J. Lightwave Technol. 22(1), 294–304 (2004).
[CrossRef]

Z. Pan, Y. Xie, S. A. Havstad, Q. Yub, A. E. Willner, V. Grubsky, D. S. Starodubovc, and J. Feinberg, “Real-time group-velocity dispersion monitoring and automated compensation without modifications of the transmitter,” Opt. Commun. 230, 145–149 (2003).
[CrossRef]

M. N. Petersen, Z. Pan, S. Lee, S. A. Havstad, and A. E. Willner, “Online chromatic dispersion monitoring and compensation using a single in-band subcarrier tone,” IEEE Photon. Technol. Lett. 14(4), 570–572 (2002).
[CrossRef]

Wst, F.

Wust, F.

D. Sandel, V. Mirvoda, F. Wust, R. Noe, and C.-J. Weiske, “Signed online chromatic dispersion detection at 40 Gbit/s based on arrival time detection with 60 attosecond dynamic accuracy,” Electron. Lett. 38(17), 984–985 (2002).
[CrossRef]

Xie, Y.

Z. Pan, Y. Xie, S. A. Havstad, Q. Yub, A. E. Willner, V. Grubsky, D. S. Starodubovc, and J. Feinberg, “Real-time group-velocity dispersion monitoring and automated compensation without modifications of the transmitter,” Opt. Commun. 230, 145–149 (2003).
[CrossRef]

Yamauchi, H.

Yang, Y.

Yoshimi, H.

Youn, C. J.

K. J. Park, C. J. Youn, J. H. Lee, and Y. C. Chung, “Performance Comparisons of Chromatic Dispersion-Monitoring Techniques Using Pilot Tones,” IEEE Photon. Technol. Lett. 15(6), 873–875 (2003).
[CrossRef]

K. J. Park, C. J. Youn, J. H. Lee, and Y. C. Chung, “Effect of self-phase modulation on group-velocity dispersion measurement technique using PM-AM conversion,” Electron. Lett. 38(21), 1247–1248 (2002).
[CrossRef]

Yu, C.

Yub, Q.

Z. Pan, Y. Xie, S. A. Havstad, Q. Yub, A. E. Willner, V. Grubsky, D. S. Starodubovc, and J. Feinberg, “Real-time group-velocity dispersion monitoring and automated compensation without modifications of the transmitter,” Opt. Commun. 230, 145–149 (2003).
[CrossRef]

Zhao, J.

Zhong, W.

Electron. Lett. (4)

A. R. Chraplyvy, R. W. Tkach, L. L. Buhl, and R. C. Alferness, “Phase modulation to amplitude modulation conversion of CW laser light in optical fibers,” Electron. Lett. 22(8), 409–411 (1986).
[CrossRef]

D. Sandel, V. Mirvoda, F. Wust, R. Noe, and C.-J. Weiske, “Signed online chromatic dispersion detection at 40 Gbit/s based on arrival time detection with 60 attosecond dynamic accuracy,” Electron. Lett. 38(17), 984–985 (2002).
[CrossRef]

Y. Han, C. Kim, and G. Li, “Simplified receiver implementation for optical differential 8-level phase-shift keying,” Electron. Lett. 40(21), 1372–1373 (2004).
[CrossRef]

K. J. Park, C. J. Youn, J. H. Lee, and Y. C. Chung, “Effect of self-phase modulation on group-velocity dispersion measurement technique using PM-AM conversion,” Electron. Lett. 38(21), 1247–1248 (2002).
[CrossRef]

IEEE Photon. Technol. Lett. (5)

M. N. Petersen, Z. Pan, S. Lee, S. A. Havstad, and A. E. Willner, “Online chromatic dispersion monitoring and compensation using a single in-band subcarrier tone,” IEEE Photon. Technol. Lett. 14(4), 570–572 (2002).
[CrossRef]

T. E. Dimmick, G. Rossi, and D. J. Blumenthal, “Optical Dispersion Monitoring Technique Using Double Sideband Subcarriers,” IEEE Photon. Technol. Lett. 12(7), 900–902 (2000).
[CrossRef]

K. J. Park, C. J. Youn, J. H. Lee, and Y. C. Chung, “Performance Comparisons of Chromatic Dispersion-Monitoring Techniques Using Pilot Tones,” IEEE Photon. Technol. Lett. 15(6), 873–875 (2003).
[CrossRef]

B. Fu, and R. Hui, “Fiber chromatic dispersion and polarization-mode dispersion monitoring using coherent detection,” IEEE Photon. Technol. Lett. 17(7), 1561–1563 (2005).
[CrossRef]

Z. Li, and G. Li, “In-line performance monitoring for RZ-DPSK signals using asynchronous amplitude histogram evaluation,” IEEE Photon. Technol. Lett. 18(3), 472–474 (2006).
[CrossRef]

J. Lightwave Technol. (5)

J. Opt. Netw. (2)

Opt. Commun. (1)

Z. Pan, Y. Xie, S. A. Havstad, Q. Yub, A. E. Willner, V. Grubsky, D. S. Starodubovc, and J. Feinberg, “Real-time group-velocity dispersion monitoring and automated compensation without modifications of the transmitter,” Opt. Commun. 230, 145–149 (2003).
[CrossRef]

Opt. Express (4)

Other (5)

C. Youn, “Effects of SPM and PMD on chromatic dispersion monitoring techniques using pilot tones,” OFC2003, paper WP2.
[CrossRef]

N. Liu, W. Zhong, X. Yi, Y. Wang, and C. Lu, “Chromatic dispersion monitoring using the power ratio of two RF tones with a dispersion offset,” OFC2004, paper MF 81.
[CrossRef]

H. Kawakami, E. Yoshida, H. Kubota, and Y. Miyamoto, “Novel signed chromatic dispersion monitoring technique based on asymmetric waveform distortion in DQPSK receiver,” OECC2008, paper WeK-3.

Y. K. Lizé, J.-Y. Yang, L. Christen, X. Wu, S. Nuccio, T. Wu, A.E. Willner, R. Kashyap, and F. Seguin, “Simultaneous and Independent Monitoring of OSNR, Chromatic and Polarization Mode Dispersion for NRZ-OOK, DPSK and Duo binary,” OFC/NFOEC2007, Paper OThN2.

T. Anderson, K. Clarke, D. Beaman, H. Ferra, M. Birk, G. Zhang, and P. Magill, “Experimental Demonstration of Multi-Impairment Monitoring on a commercial 10 Gbit/s NRZ WDM channel,” OFC/NFOEC2009, paper OTHh7.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Typical configuration for a DQPSK demodulator. ±π/4 phase shifters in the two arms of the 3-dB couplers are used to detect the in-phase and quadrature component of the received signal. The T here represents one-bit delay.

Fig. 2
Fig. 2

The term Im{z(t)} for a 40Gb/s (20GSym/s) RZ-DQPSK system with Gaussian pulse shape and ±136 ps/nm of accumulated CD. For a given CD value, the waveform is an odd function of t and hence asymmetric about t = 0. In addition, since Im{z(t)} is also an odd function of β2, the direction of the time asymmetry will be reversed when the sign of β2 is changed, thus explaining the observed waveform asymmetry that changes with the sign of accumulated CD.

Fig. 3
Fig. 3

Received eye diagrams for 40 Gb/s (20 GSym/s) DQPSK systems with various pulse shapes and residual dispersion of ±136 ps/nm. The eyes are asymmetric about their centers and such asymmetries change with the sign of β2.

Fig. 4
Fig. 4

D8PSK receiver configuration using two 3-dB couplers with −π/8 and 3π/8 phase shifters followed by simple digital logic circuits. The output signals y3π/8(t) and yπ/8(t) can be used for signed CD monitoring.

Fig. 5
Fig. 5

Eye diagrams corresponding to the received signal y3π/8(t) for a 60 Gb/s (20 GSym/s) RZ-D8PSK system with (a) −136 ps/nm (b) 0 ps/nm and (c) 136 ps/nm of residual CD.

Fig. 6
Fig. 6

Delay-tap plots obtained from the received signal y3π/8(t) for a 60 Gb/s (20 GSym/s) RZ-D8PSK system with (a) −136 ps/nm (b) 0 ps/nm and (c) 136 ps/nm of residual CD with delay value τ = 24 ps. The distances d1, d2 of sample pairs furthest away from both sides of the diagonal D (shown in (b))can be used to calculate a distance ratio d1/d2 for signed CD monitoring.

Fig. 7
Fig. 7

Distance ratio d1/d2 as a function of residual CD for a 60 Gb/s (20 GSym/s) RZ-D8PSK system. The distance ratio obtained from y3π/8(t) is more sensitive to residual CD compared with that from yπ/8(t).

Fig. 8
Fig. 8

Distance ratio d1/d2 as a function of residual CD for a 40 Gb/s RZ-DQPSK system in presence of SPM and PMD.

Equations (22)

Equations on this page are rendered with MathJax. Learn more.

E t ( t ) = k = x k b ( t k T )
H ( ω ) = e j β 2 ω 2 L / 2
h ( t ) = 1 2 β 2 L π e j ( t 2 2 β 2 L + π 4 ) .
E r ( t ) = k = x k A ( t k T )
A ( t ) = b ( t ) * g ( t ) * h ( t ) = p ( t ) * h ( t ) = e j π 4 1 2 β 2 L π p ( τ ) e j ( t τ ) 2 / 2 β 2 L d τ
E t ( t T ) = k = x k A ( t ( k + 1 ) T ) .
y I ( t ) = 𝔢 { e j π / 4 E r ( t ) E r * ( t T ) } and y Q ( t ) = 𝔢 { e j π / 4 E r ( t ) E r * ( t T ) } .
E r ( t ) E r * ( t T ) = ( k = x k A ( t k T ) ) ( k = x k A ( t ( k + 1 ) T ) ) * = m = n = x m x n * A ( t m T ) A * ( t ( n + 1 ) T ) .
E r ( t ) E r * ( t T ) = k = x k x k 1 * | A ( t k T ) | 2 + m , n = , m n , n + 1 x m x n * A ( t m T ) A * ( t ( n + 1 ) T ) + k = A ( t k T ) A * ( t ( k + 1 ) T ) .
E [ x m x n * ] = { 1 n = m 0 n m ,
E [ y I ( t ) ] = E [ 𝔢 { e j π / 4 E r ( t ) E r * ( t T ) } ] = 1 2 𝔢 { k = A ( t k T ) A * ( t ( k + 1 ) T ) } + 1 2 𝔪 { k = A ( t k T ) A * ( t ( k + 1 ) T ) }
z ( t k T ) = A ( t k T ) A * ( t ( k + 1 ) T ) + A ( t ( k 1 ) T ) A * ( t k T ) ,
E [ y I ( t ) ] = 1 2 2 k = ( 𝔢 { z ( t k T ) } + 𝔪 { z ( t k T ) } ) .
A ( t ) A * ( t T ) = 1 2 | β 2 | L π p ( τ 1 ) p * ( τ 2 ) e j 2 β 2 L [ ( t τ 1 ) 2 ( t T τ 2 ) 2 ] d τ 1 d τ 2 = 1 2 | β 2 | L π p ( τ 1 ) p ( τ 2 ) e j 2 β 2 L [ ( t τ 1 ) 2 ( t T τ 2 ) 2 ] d τ 1 d τ 2
w 1 ( t ) = 𝔪 { A ( t ) A * ( t T ) } = 1 2 | β 2 | L π p ( τ 1 ) p ( τ 2 ) sin ( ( t T τ 2 ) 2 ( t τ 1 ) 2 2 β 2 L ) d τ 1 d τ 2
w 2 ( t ) = 𝔪 { A ( t + T ) A * ( t ) } = 1 2 | β 2 | L π p ( τ 1 ) p ( τ 2 ) sin ( ( t τ 1 ) 2 ( t + T τ 2 ) 2 2 β 2 L ) d τ 1 d τ 2 .
w 1 ( t ) = 1 2 | β 2 | L π p ( τ 1 ) p ( τ 2 ) sin ( ( t T τ 2 ) 2 ( t τ 1 ) 2 2 β 2 L ) d τ 1 d τ 2 .
w 1 ( t ) = 1 2 | β 2 | L π p ( τ 3 ) p ( τ 4 ) sin ( ( t T + τ 4 ) 2 ( t + τ 3 ) 2 2 β 2 L ) d τ 3 d τ 4 = ( a ) 1 2 | β 2 | L π p ( τ 3 ) p ( τ 4 ) sin ( ( t + T τ 4 ) 2 ( t τ 3 ) 2 2 β 2 L ) d τ 3 d τ 4 = w 2 ( t ) .
𝔪 { z ( t ) } = w 1 ( t ) + w 2 ( t ) = 𝔪 { A ( t ) A * ( t T ) } + 𝔪 { A ( t + T ) A * ( t ) }
b ( t ) = e ( t / T o ) 2 .
A ( t ) = T o ( T o 2 j β 2 L ) 1 / 2 e t 2 2 ( T o 2 j β 2 L ) = T o ( T o 2 j β 2 L ) 1 / 2 e u t 2 j β 2 v t 2
Im { z ( t ) } = 1 2 2 T o 2 ( T o 4 + ( β 2 L ) 2 ) 1 / 2 e 2 u t 2 u T 2 × [ e 2 u t T Im { e j β 2 v [ ( t + T ) 2 + t 2 ] } + e 2 u t T Im { e j β 2 v [ t 2 + ( t T 2 ) ] } ] = 1 2 T o 2 ( T o 4 + ( β 2 L ) 2 ) 1 / 2 e 2 u t 2 u T 2 × [ cosh ( 2 u t T ) sin ( 2 v T β 2 t ) cos ( β 2 v T 2 ) sinh ( 2 u t T ) cos ( 2 v T β 2 t ) sin ( β 2 v T 2 ) ] .

Metrics