Abstract

A new fiber-optic relative humidity (RH) sensor based on a thin-core fiber modal interferometer (TCFMI) with a fiber Bragg grating (FBG) in between is presented. Poly (N-ethyl-4-vinylpyridinium chloride) (P4VP·HCl) and poly (vinylsulfonic acid, sodium salt) (PVS) are layer-by-layer deposited on the side surface of the sensor for RH sensing. The fabrication of the sensing nanocoating is characterized by using UV-vis absorption spectroscopy, quartz crystal microbalance (QCM) and scanning electron microscopy (SEM). The incorporation of FBG in the middle of TCFMI can compensate the cross sensitivity of the sensor to temperature. The proposed sensor can detect the RH with resolution of 0.78% in a large RH range at different temperatures. A linear, fast and reversible response has been experimentally demonstrated.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. R. Story, D. W. Galipeau, and R. D. Mileham, “A study of low-cost sensors for measuring low relative humidity,” Sens. Actuators B Chem. 25(1–3), 681–685 (1995).
    [CrossRef]
  2. Y. Sakai, M. Matsuguchi, and T. Hurukawa, “Humidity sensor using cross-linked poly(chloromethyl styrene),” Sens. Actuators B Chem. 66(1–3), 135–138 (2000).
    [CrossRef]
  3. O. S. Wolfbeis, “Fiber-optic chemical sensors and biosensors,” Anal. Chem. 80(12), 4269–4283 (2008).
    [CrossRef] [PubMed]
  4. T. L. Yeo, T. Sun, and K. T. V. Grattan, “Fibre-optic sensor technologies for humidity and moisture measurement,” Sens. Actuators A Phys. 144(2), 280–295 (2008).
    [CrossRef]
  5. Q. Zhou, M. R. Shahriari, D. Kritz, and G. H. Sigel, “Porous fiber-optic sensor for high-sensitivity humidity measurements,” Anal. Chem. 60(20), 2317–2320 (1988).
    [CrossRef]
  6. B. D. Gupta and Ratnanjali, “A novel probe for a fiber optic humidity sensor,” Sens. Actuators B Chem. 80(2), 132–135 (2001).
    [CrossRef]
  7. T. E. Brook, M. N. Taib, and R. Narayanaswamy, “Extending the range of a fibre-optic relative-humidity sensor,” Sens. Actuators B Chem. 39(1–3), 272–276 (1997).
    [CrossRef]
  8. K. Ogawa, S. Tsuchiya, H. Kawakami, and T. Tsutsui, “Humidity-sensing effects of optical fibres with microporous SiO2 cladding,” Electron. Lett. 24(1), 42–43 (1988).
    [CrossRef]
  9. L. Xu, J. C. Fanguy, K. Soni, and S. Tao, “Optical fiber humidity sensor based on evanescent-wave scattering,” Opt. Lett. 29(11), 1191–1193 (2004).
    [CrossRef] [PubMed]
  10. H. E. Posch and O. S. Wolfbeis, “Fibre-optic humidity sensor based on fluorescence quenching,” Sens. Actuators 15(1), 77–83 (1988).
    [CrossRef]
  11. M. M. F. Choi and O. L. Tse, “Humidity-sensitive optode membrane based on a fluorescent dye immobilized in gelatin film,” Anal. Chim. Acta 378(1–3), 127–134 (1999).
    [CrossRef]
  12. S. J. Glenn, B. M. Cullum, R. B. Nair, D. A. Nivens, C. J. Murphy, and S. M. Angel, “Lifetime-based fiber-optic water sensor using a luminescent complex in a lithium-treated Nafion™ membrane,” Anal. Chim. Acta 448(1–2), 1–8 (2001).
    [CrossRef]
  13. O. McGaughey, J. V. Ros-Lis, A. Guckian, A. K. McEvoy, C. McDonagh, and B. D. MacCraith, “Development of a fluorescence lifetime-based sol–gel humidity sensor,” Anal. Chim. Acta 570(1), 15–20 (2006).
    [CrossRef]
  14. T. L. Yeo, T. Sun, K. T. V. Grattan, D. Parry, R. Lade, and B. D. Powell, “Characterisation of a polymer-coated fibre Bragg grating sensor for relative humidity sensing,” Sens. Actuators B Chem. 110(1), 148–156 (2005).
    [CrossRef]
  15. X. F. Huang, D. R. Sheng, K. F. Cen, and H. Zhou, “Low-cost relative humidity sensor based on thermoplastic polyimide-coated fiber Bragg grating,” Sens. Actuators B Chem. 127(2), 518–524 (2007).
    [CrossRef]
  16. P. Kronenberg, P. K. Rastogi, P. Giaccari, and H. G. Limberger, “Relative humidity sensor with optical fiber Bragg gratings,” Opt. Lett. 27(16), 1385–1387 (2002).
    [CrossRef]
  17. Y. Liu, L. Wang, M. Zhang, D. Tu, X. Mao, and Y. Liao, “Long-period grating relative humidity sensor with hydrogel coating,” IEEE Photon. Technol. Lett. 19(12), 880–882 (2007).
    [CrossRef]
  18. J. M. Corres, I. del Villar, I. R. Matias, and F. J. Arregui, “Two-layer nanocoatings in long-period fiber gratings for improved sensitivity of humidity sensors,” IEEE Trans. NanoTechnol. 7(4), 394–400 (2008).
    [CrossRef]
  19. S. Muto, O. Suzuki, T. Amano, and M. Morisawa, “A plastic optical fibre sensor for real-time humidity monitoring,” Meas. Sci. Technol. 14(6), 746–750 (2003).
    [CrossRef]
  20. S. K. Khijwania, K. L. Srinivasan, and J. P. Singh, “An evanescent-wave optical fiber relative humidity sensor with enhanced sensitivity,” Sens. Actuators B Chem. 104(2), 217–222 (2005).
    [CrossRef]
  21. J. M. Corres, F. J. Arregui, and I. R. Matias, “Design of humidity sensors based on tapered optical fibers,” J. Lightwave Technol. 24(11), 4329–4336 (2006).
    [CrossRef]
  22. L. Zhang, F. Gu, J. Lou, X. Yin, and L. Tong, “Fast detection of humidity with a subwavelength-diameter fiber taper coated with gelatin film,” Opt. Express 16(17), 13349–13353 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-17-13349 .
    [CrossRef] [PubMed]
  23. F. Mitschke, “Fiber-optic sensor for humidity,” Opt. Lett. 14(17), 967–969 (1989).
    [CrossRef] [PubMed]
  24. F. J. Arregui, Y. Liu, I. R. Matias, and R. O. Claus, “Optical fiber humidity sensor using a nano Fabry–Perot cavity formed by the ionic self-assembly method,” Sens. Actuators B Chem. 59(1), 54–59 (1999).
    [CrossRef]
  25. T.-H. Xia, A. P. Zhang, B. Gu, and J.-J. Zhu, “Fiber-optic refractive-index sensors based on transmissive and reflective thin-core fiber modal interferometers,” Opt. Commun. 283(10), 2136–2139 (2010).
    [CrossRef]
  26. B. Gu, M.-J. Yin, A. P. Zhang, J.-W. Qian, and S. He, “Low-cost high-performance fiber-optic pH sensor based on thin-core fiber modal interferometer,” Opt. Express 17(25), 22296–22302 (2009), http://www.opticsinfobase.org/abstract.cfm?uri=oe-17-25-22296 .
    [CrossRef]
  27. P. Zhang, J. W. Qian, Q. F. An, B. Y. Du, X. Q. Liu, and Q. Zhao, “Influences of solution property and charge density on the self-assembly behavior of water-insoluble polyelectrolyte sulfonated poly(sulphone) sodium salts,” Langmuir 24(5), 2110–2117 (2008).
    [CrossRef] [PubMed]
  28. G. Decher, “Fuzzy nanoassemblies: toward layered polymeric multicomposites,” Science 277(5330), 1232–1237 (1997).
    [CrossRef]
  29. G. Z. Sauerbrey, “Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung,” Z. Phys. 155(2), 206–222 (1959).
    [CrossRef]

2010

T.-H. Xia, A. P. Zhang, B. Gu, and J.-J. Zhu, “Fiber-optic refractive-index sensors based on transmissive and reflective thin-core fiber modal interferometers,” Opt. Commun. 283(10), 2136–2139 (2010).
[CrossRef]

2009

2008

P. Zhang, J. W. Qian, Q. F. An, B. Y. Du, X. Q. Liu, and Q. Zhao, “Influences of solution property and charge density on the self-assembly behavior of water-insoluble polyelectrolyte sulfonated poly(sulphone) sodium salts,” Langmuir 24(5), 2110–2117 (2008).
[CrossRef] [PubMed]

L. Zhang, F. Gu, J. Lou, X. Yin, and L. Tong, “Fast detection of humidity with a subwavelength-diameter fiber taper coated with gelatin film,” Opt. Express 16(17), 13349–13353 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-17-13349 .
[CrossRef] [PubMed]

O. S. Wolfbeis, “Fiber-optic chemical sensors and biosensors,” Anal. Chem. 80(12), 4269–4283 (2008).
[CrossRef] [PubMed]

T. L. Yeo, T. Sun, and K. T. V. Grattan, “Fibre-optic sensor technologies for humidity and moisture measurement,” Sens. Actuators A Phys. 144(2), 280–295 (2008).
[CrossRef]

J. M. Corres, I. del Villar, I. R. Matias, and F. J. Arregui, “Two-layer nanocoatings in long-period fiber gratings for improved sensitivity of humidity sensors,” IEEE Trans. NanoTechnol. 7(4), 394–400 (2008).
[CrossRef]

2007

X. F. Huang, D. R. Sheng, K. F. Cen, and H. Zhou, “Low-cost relative humidity sensor based on thermoplastic polyimide-coated fiber Bragg grating,” Sens. Actuators B Chem. 127(2), 518–524 (2007).
[CrossRef]

Y. Liu, L. Wang, M. Zhang, D. Tu, X. Mao, and Y. Liao, “Long-period grating relative humidity sensor with hydrogel coating,” IEEE Photon. Technol. Lett. 19(12), 880–882 (2007).
[CrossRef]

2006

J. M. Corres, F. J. Arregui, and I. R. Matias, “Design of humidity sensors based on tapered optical fibers,” J. Lightwave Technol. 24(11), 4329–4336 (2006).
[CrossRef]

O. McGaughey, J. V. Ros-Lis, A. Guckian, A. K. McEvoy, C. McDonagh, and B. D. MacCraith, “Development of a fluorescence lifetime-based sol–gel humidity sensor,” Anal. Chim. Acta 570(1), 15–20 (2006).
[CrossRef]

2005

T. L. Yeo, T. Sun, K. T. V. Grattan, D. Parry, R. Lade, and B. D. Powell, “Characterisation of a polymer-coated fibre Bragg grating sensor for relative humidity sensing,” Sens. Actuators B Chem. 110(1), 148–156 (2005).
[CrossRef]

S. K. Khijwania, K. L. Srinivasan, and J. P. Singh, “An evanescent-wave optical fiber relative humidity sensor with enhanced sensitivity,” Sens. Actuators B Chem. 104(2), 217–222 (2005).
[CrossRef]

2004

2003

S. Muto, O. Suzuki, T. Amano, and M. Morisawa, “A plastic optical fibre sensor for real-time humidity monitoring,” Meas. Sci. Technol. 14(6), 746–750 (2003).
[CrossRef]

2002

2001

S. J. Glenn, B. M. Cullum, R. B. Nair, D. A. Nivens, C. J. Murphy, and S. M. Angel, “Lifetime-based fiber-optic water sensor using a luminescent complex in a lithium-treated Nafion™ membrane,” Anal. Chim. Acta 448(1–2), 1–8 (2001).
[CrossRef]

B. D. Gupta and Ratnanjali, “A novel probe for a fiber optic humidity sensor,” Sens. Actuators B Chem. 80(2), 132–135 (2001).
[CrossRef]

2000

Y. Sakai, M. Matsuguchi, and T. Hurukawa, “Humidity sensor using cross-linked poly(chloromethyl styrene),” Sens. Actuators B Chem. 66(1–3), 135–138 (2000).
[CrossRef]

1999

M. M. F. Choi and O. L. Tse, “Humidity-sensitive optode membrane based on a fluorescent dye immobilized in gelatin film,” Anal. Chim. Acta 378(1–3), 127–134 (1999).
[CrossRef]

F. J. Arregui, Y. Liu, I. R. Matias, and R. O. Claus, “Optical fiber humidity sensor using a nano Fabry–Perot cavity formed by the ionic self-assembly method,” Sens. Actuators B Chem. 59(1), 54–59 (1999).
[CrossRef]

1997

G. Decher, “Fuzzy nanoassemblies: toward layered polymeric multicomposites,” Science 277(5330), 1232–1237 (1997).
[CrossRef]

T. E. Brook, M. N. Taib, and R. Narayanaswamy, “Extending the range of a fibre-optic relative-humidity sensor,” Sens. Actuators B Chem. 39(1–3), 272–276 (1997).
[CrossRef]

1995

P. R. Story, D. W. Galipeau, and R. D. Mileham, “A study of low-cost sensors for measuring low relative humidity,” Sens. Actuators B Chem. 25(1–3), 681–685 (1995).
[CrossRef]

1989

1988

Q. Zhou, M. R. Shahriari, D. Kritz, and G. H. Sigel, “Porous fiber-optic sensor for high-sensitivity humidity measurements,” Anal. Chem. 60(20), 2317–2320 (1988).
[CrossRef]

K. Ogawa, S. Tsuchiya, H. Kawakami, and T. Tsutsui, “Humidity-sensing effects of optical fibres with microporous SiO2 cladding,” Electron. Lett. 24(1), 42–43 (1988).
[CrossRef]

H. E. Posch and O. S. Wolfbeis, “Fibre-optic humidity sensor based on fluorescence quenching,” Sens. Actuators 15(1), 77–83 (1988).
[CrossRef]

1959

G. Z. Sauerbrey, “Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung,” Z. Phys. 155(2), 206–222 (1959).
[CrossRef]

Amano, T.

S. Muto, O. Suzuki, T. Amano, and M. Morisawa, “A plastic optical fibre sensor for real-time humidity monitoring,” Meas. Sci. Technol. 14(6), 746–750 (2003).
[CrossRef]

An, Q. F.

P. Zhang, J. W. Qian, Q. F. An, B. Y. Du, X. Q. Liu, and Q. Zhao, “Influences of solution property and charge density on the self-assembly behavior of water-insoluble polyelectrolyte sulfonated poly(sulphone) sodium salts,” Langmuir 24(5), 2110–2117 (2008).
[CrossRef] [PubMed]

Angel, S. M.

S. J. Glenn, B. M. Cullum, R. B. Nair, D. A. Nivens, C. J. Murphy, and S. M. Angel, “Lifetime-based fiber-optic water sensor using a luminescent complex in a lithium-treated Nafion™ membrane,” Anal. Chim. Acta 448(1–2), 1–8 (2001).
[CrossRef]

Arregui, F. J.

J. M. Corres, I. del Villar, I. R. Matias, and F. J. Arregui, “Two-layer nanocoatings in long-period fiber gratings for improved sensitivity of humidity sensors,” IEEE Trans. NanoTechnol. 7(4), 394–400 (2008).
[CrossRef]

J. M. Corres, F. J. Arregui, and I. R. Matias, “Design of humidity sensors based on tapered optical fibers,” J. Lightwave Technol. 24(11), 4329–4336 (2006).
[CrossRef]

F. J. Arregui, Y. Liu, I. R. Matias, and R. O. Claus, “Optical fiber humidity sensor using a nano Fabry–Perot cavity formed by the ionic self-assembly method,” Sens. Actuators B Chem. 59(1), 54–59 (1999).
[CrossRef]

Brook, T. E.

T. E. Brook, M. N. Taib, and R. Narayanaswamy, “Extending the range of a fibre-optic relative-humidity sensor,” Sens. Actuators B Chem. 39(1–3), 272–276 (1997).
[CrossRef]

Cen, K. F.

X. F. Huang, D. R. Sheng, K. F. Cen, and H. Zhou, “Low-cost relative humidity sensor based on thermoplastic polyimide-coated fiber Bragg grating,” Sens. Actuators B Chem. 127(2), 518–524 (2007).
[CrossRef]

Choi, M. M. F.

M. M. F. Choi and O. L. Tse, “Humidity-sensitive optode membrane based on a fluorescent dye immobilized in gelatin film,” Anal. Chim. Acta 378(1–3), 127–134 (1999).
[CrossRef]

Claus, R. O.

F. J. Arregui, Y. Liu, I. R. Matias, and R. O. Claus, “Optical fiber humidity sensor using a nano Fabry–Perot cavity formed by the ionic self-assembly method,” Sens. Actuators B Chem. 59(1), 54–59 (1999).
[CrossRef]

Corres, J. M.

J. M. Corres, I. del Villar, I. R. Matias, and F. J. Arregui, “Two-layer nanocoatings in long-period fiber gratings for improved sensitivity of humidity sensors,” IEEE Trans. NanoTechnol. 7(4), 394–400 (2008).
[CrossRef]

J. M. Corres, F. J. Arregui, and I. R. Matias, “Design of humidity sensors based on tapered optical fibers,” J. Lightwave Technol. 24(11), 4329–4336 (2006).
[CrossRef]

Cullum, B. M.

S. J. Glenn, B. M. Cullum, R. B. Nair, D. A. Nivens, C. J. Murphy, and S. M. Angel, “Lifetime-based fiber-optic water sensor using a luminescent complex in a lithium-treated Nafion™ membrane,” Anal. Chim. Acta 448(1–2), 1–8 (2001).
[CrossRef]

Decher, G.

G. Decher, “Fuzzy nanoassemblies: toward layered polymeric multicomposites,” Science 277(5330), 1232–1237 (1997).
[CrossRef]

del Villar, I.

J. M. Corres, I. del Villar, I. R. Matias, and F. J. Arregui, “Two-layer nanocoatings in long-period fiber gratings for improved sensitivity of humidity sensors,” IEEE Trans. NanoTechnol. 7(4), 394–400 (2008).
[CrossRef]

Du, B. Y.

P. Zhang, J. W. Qian, Q. F. An, B. Y. Du, X. Q. Liu, and Q. Zhao, “Influences of solution property and charge density on the self-assembly behavior of water-insoluble polyelectrolyte sulfonated poly(sulphone) sodium salts,” Langmuir 24(5), 2110–2117 (2008).
[CrossRef] [PubMed]

Fanguy, J. C.

Galipeau, D. W.

P. R. Story, D. W. Galipeau, and R. D. Mileham, “A study of low-cost sensors for measuring low relative humidity,” Sens. Actuators B Chem. 25(1–3), 681–685 (1995).
[CrossRef]

Giaccari, P.

Glenn, S. J.

S. J. Glenn, B. M. Cullum, R. B. Nair, D. A. Nivens, C. J. Murphy, and S. M. Angel, “Lifetime-based fiber-optic water sensor using a luminescent complex in a lithium-treated Nafion™ membrane,” Anal. Chim. Acta 448(1–2), 1–8 (2001).
[CrossRef]

Grattan, K. T. V.

T. L. Yeo, T. Sun, and K. T. V. Grattan, “Fibre-optic sensor technologies for humidity and moisture measurement,” Sens. Actuators A Phys. 144(2), 280–295 (2008).
[CrossRef]

T. L. Yeo, T. Sun, K. T. V. Grattan, D. Parry, R. Lade, and B. D. Powell, “Characterisation of a polymer-coated fibre Bragg grating sensor for relative humidity sensing,” Sens. Actuators B Chem. 110(1), 148–156 (2005).
[CrossRef]

Gu, B.

T.-H. Xia, A. P. Zhang, B. Gu, and J.-J. Zhu, “Fiber-optic refractive-index sensors based on transmissive and reflective thin-core fiber modal interferometers,” Opt. Commun. 283(10), 2136–2139 (2010).
[CrossRef]

B. Gu, M.-J. Yin, A. P. Zhang, J.-W. Qian, and S. He, “Low-cost high-performance fiber-optic pH sensor based on thin-core fiber modal interferometer,” Opt. Express 17(25), 22296–22302 (2009), http://www.opticsinfobase.org/abstract.cfm?uri=oe-17-25-22296 .
[CrossRef]

Gu, F.

Guckian, A.

O. McGaughey, J. V. Ros-Lis, A. Guckian, A. K. McEvoy, C. McDonagh, and B. D. MacCraith, “Development of a fluorescence lifetime-based sol–gel humidity sensor,” Anal. Chim. Acta 570(1), 15–20 (2006).
[CrossRef]

Gupta, B. D.

B. D. Gupta and Ratnanjali, “A novel probe for a fiber optic humidity sensor,” Sens. Actuators B Chem. 80(2), 132–135 (2001).
[CrossRef]

He, S.

Huang, X. F.

X. F. Huang, D. R. Sheng, K. F. Cen, and H. Zhou, “Low-cost relative humidity sensor based on thermoplastic polyimide-coated fiber Bragg grating,” Sens. Actuators B Chem. 127(2), 518–524 (2007).
[CrossRef]

Hurukawa, T.

Y. Sakai, M. Matsuguchi, and T. Hurukawa, “Humidity sensor using cross-linked poly(chloromethyl styrene),” Sens. Actuators B Chem. 66(1–3), 135–138 (2000).
[CrossRef]

Kawakami, H.

K. Ogawa, S. Tsuchiya, H. Kawakami, and T. Tsutsui, “Humidity-sensing effects of optical fibres with microporous SiO2 cladding,” Electron. Lett. 24(1), 42–43 (1988).
[CrossRef]

Khijwania, S. K.

S. K. Khijwania, K. L. Srinivasan, and J. P. Singh, “An evanescent-wave optical fiber relative humidity sensor with enhanced sensitivity,” Sens. Actuators B Chem. 104(2), 217–222 (2005).
[CrossRef]

Kritz, D.

Q. Zhou, M. R. Shahriari, D. Kritz, and G. H. Sigel, “Porous fiber-optic sensor for high-sensitivity humidity measurements,” Anal. Chem. 60(20), 2317–2320 (1988).
[CrossRef]

Kronenberg, P.

Lade, R.

T. L. Yeo, T. Sun, K. T. V. Grattan, D. Parry, R. Lade, and B. D. Powell, “Characterisation of a polymer-coated fibre Bragg grating sensor for relative humidity sensing,” Sens. Actuators B Chem. 110(1), 148–156 (2005).
[CrossRef]

Liao, Y.

Y. Liu, L. Wang, M. Zhang, D. Tu, X. Mao, and Y. Liao, “Long-period grating relative humidity sensor with hydrogel coating,” IEEE Photon. Technol. Lett. 19(12), 880–882 (2007).
[CrossRef]

Limberger, H. G.

Liu, X. Q.

P. Zhang, J. W. Qian, Q. F. An, B. Y. Du, X. Q. Liu, and Q. Zhao, “Influences of solution property and charge density on the self-assembly behavior of water-insoluble polyelectrolyte sulfonated poly(sulphone) sodium salts,” Langmuir 24(5), 2110–2117 (2008).
[CrossRef] [PubMed]

Liu, Y.

Y. Liu, L. Wang, M. Zhang, D. Tu, X. Mao, and Y. Liao, “Long-period grating relative humidity sensor with hydrogel coating,” IEEE Photon. Technol. Lett. 19(12), 880–882 (2007).
[CrossRef]

F. J. Arregui, Y. Liu, I. R. Matias, and R. O. Claus, “Optical fiber humidity sensor using a nano Fabry–Perot cavity formed by the ionic self-assembly method,” Sens. Actuators B Chem. 59(1), 54–59 (1999).
[CrossRef]

Lou, J.

MacCraith, B. D.

O. McGaughey, J. V. Ros-Lis, A. Guckian, A. K. McEvoy, C. McDonagh, and B. D. MacCraith, “Development of a fluorescence lifetime-based sol–gel humidity sensor,” Anal. Chim. Acta 570(1), 15–20 (2006).
[CrossRef]

Mao, X.

Y. Liu, L. Wang, M. Zhang, D. Tu, X. Mao, and Y. Liao, “Long-period grating relative humidity sensor with hydrogel coating,” IEEE Photon. Technol. Lett. 19(12), 880–882 (2007).
[CrossRef]

Matias, I. R.

J. M. Corres, I. del Villar, I. R. Matias, and F. J. Arregui, “Two-layer nanocoatings in long-period fiber gratings for improved sensitivity of humidity sensors,” IEEE Trans. NanoTechnol. 7(4), 394–400 (2008).
[CrossRef]

J. M. Corres, F. J. Arregui, and I. R. Matias, “Design of humidity sensors based on tapered optical fibers,” J. Lightwave Technol. 24(11), 4329–4336 (2006).
[CrossRef]

F. J. Arregui, Y. Liu, I. R. Matias, and R. O. Claus, “Optical fiber humidity sensor using a nano Fabry–Perot cavity formed by the ionic self-assembly method,” Sens. Actuators B Chem. 59(1), 54–59 (1999).
[CrossRef]

Matsuguchi, M.

Y. Sakai, M. Matsuguchi, and T. Hurukawa, “Humidity sensor using cross-linked poly(chloromethyl styrene),” Sens. Actuators B Chem. 66(1–3), 135–138 (2000).
[CrossRef]

McDonagh, C.

O. McGaughey, J. V. Ros-Lis, A. Guckian, A. K. McEvoy, C. McDonagh, and B. D. MacCraith, “Development of a fluorescence lifetime-based sol–gel humidity sensor,” Anal. Chim. Acta 570(1), 15–20 (2006).
[CrossRef]

McEvoy, A. K.

O. McGaughey, J. V. Ros-Lis, A. Guckian, A. K. McEvoy, C. McDonagh, and B. D. MacCraith, “Development of a fluorescence lifetime-based sol–gel humidity sensor,” Anal. Chim. Acta 570(1), 15–20 (2006).
[CrossRef]

McGaughey, O.

O. McGaughey, J. V. Ros-Lis, A. Guckian, A. K. McEvoy, C. McDonagh, and B. D. MacCraith, “Development of a fluorescence lifetime-based sol–gel humidity sensor,” Anal. Chim. Acta 570(1), 15–20 (2006).
[CrossRef]

Mileham, R. D.

P. R. Story, D. W. Galipeau, and R. D. Mileham, “A study of low-cost sensors for measuring low relative humidity,” Sens. Actuators B Chem. 25(1–3), 681–685 (1995).
[CrossRef]

Mitschke, F.

Morisawa, M.

S. Muto, O. Suzuki, T. Amano, and M. Morisawa, “A plastic optical fibre sensor for real-time humidity monitoring,” Meas. Sci. Technol. 14(6), 746–750 (2003).
[CrossRef]

Murphy, C. J.

S. J. Glenn, B. M. Cullum, R. B. Nair, D. A. Nivens, C. J. Murphy, and S. M. Angel, “Lifetime-based fiber-optic water sensor using a luminescent complex in a lithium-treated Nafion™ membrane,” Anal. Chim. Acta 448(1–2), 1–8 (2001).
[CrossRef]

Muto, S.

S. Muto, O. Suzuki, T. Amano, and M. Morisawa, “A plastic optical fibre sensor for real-time humidity monitoring,” Meas. Sci. Technol. 14(6), 746–750 (2003).
[CrossRef]

Nair, R. B.

S. J. Glenn, B. M. Cullum, R. B. Nair, D. A. Nivens, C. J. Murphy, and S. M. Angel, “Lifetime-based fiber-optic water sensor using a luminescent complex in a lithium-treated Nafion™ membrane,” Anal. Chim. Acta 448(1–2), 1–8 (2001).
[CrossRef]

Narayanaswamy, R.

T. E. Brook, M. N. Taib, and R. Narayanaswamy, “Extending the range of a fibre-optic relative-humidity sensor,” Sens. Actuators B Chem. 39(1–3), 272–276 (1997).
[CrossRef]

Nivens, D. A.

S. J. Glenn, B. M. Cullum, R. B. Nair, D. A. Nivens, C. J. Murphy, and S. M. Angel, “Lifetime-based fiber-optic water sensor using a luminescent complex in a lithium-treated Nafion™ membrane,” Anal. Chim. Acta 448(1–2), 1–8 (2001).
[CrossRef]

Ogawa, K.

K. Ogawa, S. Tsuchiya, H. Kawakami, and T. Tsutsui, “Humidity-sensing effects of optical fibres with microporous SiO2 cladding,” Electron. Lett. 24(1), 42–43 (1988).
[CrossRef]

Parry, D.

T. L. Yeo, T. Sun, K. T. V. Grattan, D. Parry, R. Lade, and B. D. Powell, “Characterisation of a polymer-coated fibre Bragg grating sensor for relative humidity sensing,” Sens. Actuators B Chem. 110(1), 148–156 (2005).
[CrossRef]

Posch, H. E.

H. E. Posch and O. S. Wolfbeis, “Fibre-optic humidity sensor based on fluorescence quenching,” Sens. Actuators 15(1), 77–83 (1988).
[CrossRef]

Powell, B. D.

T. L. Yeo, T. Sun, K. T. V. Grattan, D. Parry, R. Lade, and B. D. Powell, “Characterisation of a polymer-coated fibre Bragg grating sensor for relative humidity sensing,” Sens. Actuators B Chem. 110(1), 148–156 (2005).
[CrossRef]

Qian, J. W.

P. Zhang, J. W. Qian, Q. F. An, B. Y. Du, X. Q. Liu, and Q. Zhao, “Influences of solution property and charge density on the self-assembly behavior of water-insoluble polyelectrolyte sulfonated poly(sulphone) sodium salts,” Langmuir 24(5), 2110–2117 (2008).
[CrossRef] [PubMed]

Qian, J.-W.

Rastogi, P. K.

Ratnanjali,

B. D. Gupta and Ratnanjali, “A novel probe for a fiber optic humidity sensor,” Sens. Actuators B Chem. 80(2), 132–135 (2001).
[CrossRef]

Ros-Lis, J. V.

O. McGaughey, J. V. Ros-Lis, A. Guckian, A. K. McEvoy, C. McDonagh, and B. D. MacCraith, “Development of a fluorescence lifetime-based sol–gel humidity sensor,” Anal. Chim. Acta 570(1), 15–20 (2006).
[CrossRef]

Sakai, Y.

Y. Sakai, M. Matsuguchi, and T. Hurukawa, “Humidity sensor using cross-linked poly(chloromethyl styrene),” Sens. Actuators B Chem. 66(1–3), 135–138 (2000).
[CrossRef]

Sauerbrey, G. Z.

G. Z. Sauerbrey, “Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung,” Z. Phys. 155(2), 206–222 (1959).
[CrossRef]

Shahriari, M. R.

Q. Zhou, M. R. Shahriari, D. Kritz, and G. H. Sigel, “Porous fiber-optic sensor for high-sensitivity humidity measurements,” Anal. Chem. 60(20), 2317–2320 (1988).
[CrossRef]

Sheng, D. R.

X. F. Huang, D. R. Sheng, K. F. Cen, and H. Zhou, “Low-cost relative humidity sensor based on thermoplastic polyimide-coated fiber Bragg grating,” Sens. Actuators B Chem. 127(2), 518–524 (2007).
[CrossRef]

Sigel, G. H.

Q. Zhou, M. R. Shahriari, D. Kritz, and G. H. Sigel, “Porous fiber-optic sensor for high-sensitivity humidity measurements,” Anal. Chem. 60(20), 2317–2320 (1988).
[CrossRef]

Singh, J. P.

S. K. Khijwania, K. L. Srinivasan, and J. P. Singh, “An evanescent-wave optical fiber relative humidity sensor with enhanced sensitivity,” Sens. Actuators B Chem. 104(2), 217–222 (2005).
[CrossRef]

Soni, K.

Srinivasan, K. L.

S. K. Khijwania, K. L. Srinivasan, and J. P. Singh, “An evanescent-wave optical fiber relative humidity sensor with enhanced sensitivity,” Sens. Actuators B Chem. 104(2), 217–222 (2005).
[CrossRef]

Story, P. R.

P. R. Story, D. W. Galipeau, and R. D. Mileham, “A study of low-cost sensors for measuring low relative humidity,” Sens. Actuators B Chem. 25(1–3), 681–685 (1995).
[CrossRef]

Sun, T.

T. L. Yeo, T. Sun, and K. T. V. Grattan, “Fibre-optic sensor technologies for humidity and moisture measurement,” Sens. Actuators A Phys. 144(2), 280–295 (2008).
[CrossRef]

T. L. Yeo, T. Sun, K. T. V. Grattan, D. Parry, R. Lade, and B. D. Powell, “Characterisation of a polymer-coated fibre Bragg grating sensor for relative humidity sensing,” Sens. Actuators B Chem. 110(1), 148–156 (2005).
[CrossRef]

Suzuki, O.

S. Muto, O. Suzuki, T. Amano, and M. Morisawa, “A plastic optical fibre sensor for real-time humidity monitoring,” Meas. Sci. Technol. 14(6), 746–750 (2003).
[CrossRef]

Taib, M. N.

T. E. Brook, M. N. Taib, and R. Narayanaswamy, “Extending the range of a fibre-optic relative-humidity sensor,” Sens. Actuators B Chem. 39(1–3), 272–276 (1997).
[CrossRef]

Tao, S.

Tong, L.

Tse, O. L.

M. M. F. Choi and O. L. Tse, “Humidity-sensitive optode membrane based on a fluorescent dye immobilized in gelatin film,” Anal. Chim. Acta 378(1–3), 127–134 (1999).
[CrossRef]

Tsuchiya, S.

K. Ogawa, S. Tsuchiya, H. Kawakami, and T. Tsutsui, “Humidity-sensing effects of optical fibres with microporous SiO2 cladding,” Electron. Lett. 24(1), 42–43 (1988).
[CrossRef]

Tsutsui, T.

K. Ogawa, S. Tsuchiya, H. Kawakami, and T. Tsutsui, “Humidity-sensing effects of optical fibres with microporous SiO2 cladding,” Electron. Lett. 24(1), 42–43 (1988).
[CrossRef]

Tu, D.

Y. Liu, L. Wang, M. Zhang, D. Tu, X. Mao, and Y. Liao, “Long-period grating relative humidity sensor with hydrogel coating,” IEEE Photon. Technol. Lett. 19(12), 880–882 (2007).
[CrossRef]

Wang, L.

Y. Liu, L. Wang, M. Zhang, D. Tu, X. Mao, and Y. Liao, “Long-period grating relative humidity sensor with hydrogel coating,” IEEE Photon. Technol. Lett. 19(12), 880–882 (2007).
[CrossRef]

Wolfbeis, O. S.

O. S. Wolfbeis, “Fiber-optic chemical sensors and biosensors,” Anal. Chem. 80(12), 4269–4283 (2008).
[CrossRef] [PubMed]

H. E. Posch and O. S. Wolfbeis, “Fibre-optic humidity sensor based on fluorescence quenching,” Sens. Actuators 15(1), 77–83 (1988).
[CrossRef]

Xia, T.-H.

T.-H. Xia, A. P. Zhang, B. Gu, and J.-J. Zhu, “Fiber-optic refractive-index sensors based on transmissive and reflective thin-core fiber modal interferometers,” Opt. Commun. 283(10), 2136–2139 (2010).
[CrossRef]

Xu, L.

Yeo, T. L.

T. L. Yeo, T. Sun, and K. T. V. Grattan, “Fibre-optic sensor technologies for humidity and moisture measurement,” Sens. Actuators A Phys. 144(2), 280–295 (2008).
[CrossRef]

T. L. Yeo, T. Sun, K. T. V. Grattan, D. Parry, R. Lade, and B. D. Powell, “Characterisation of a polymer-coated fibre Bragg grating sensor for relative humidity sensing,” Sens. Actuators B Chem. 110(1), 148–156 (2005).
[CrossRef]

Yin, M.-J.

Yin, X.

Zhang, A. P.

T.-H. Xia, A. P. Zhang, B. Gu, and J.-J. Zhu, “Fiber-optic refractive-index sensors based on transmissive and reflective thin-core fiber modal interferometers,” Opt. Commun. 283(10), 2136–2139 (2010).
[CrossRef]

B. Gu, M.-J. Yin, A. P. Zhang, J.-W. Qian, and S. He, “Low-cost high-performance fiber-optic pH sensor based on thin-core fiber modal interferometer,” Opt. Express 17(25), 22296–22302 (2009), http://www.opticsinfobase.org/abstract.cfm?uri=oe-17-25-22296 .
[CrossRef]

Zhang, L.

Zhang, M.

Y. Liu, L. Wang, M. Zhang, D. Tu, X. Mao, and Y. Liao, “Long-period grating relative humidity sensor with hydrogel coating,” IEEE Photon. Technol. Lett. 19(12), 880–882 (2007).
[CrossRef]

Zhang, P.

P. Zhang, J. W. Qian, Q. F. An, B. Y. Du, X. Q. Liu, and Q. Zhao, “Influences of solution property and charge density on the self-assembly behavior of water-insoluble polyelectrolyte sulfonated poly(sulphone) sodium salts,” Langmuir 24(5), 2110–2117 (2008).
[CrossRef] [PubMed]

Zhao, Q.

P. Zhang, J. W. Qian, Q. F. An, B. Y. Du, X. Q. Liu, and Q. Zhao, “Influences of solution property and charge density on the self-assembly behavior of water-insoluble polyelectrolyte sulfonated poly(sulphone) sodium salts,” Langmuir 24(5), 2110–2117 (2008).
[CrossRef] [PubMed]

Zhou, H.

X. F. Huang, D. R. Sheng, K. F. Cen, and H. Zhou, “Low-cost relative humidity sensor based on thermoplastic polyimide-coated fiber Bragg grating,” Sens. Actuators B Chem. 127(2), 518–524 (2007).
[CrossRef]

Zhou, Q.

Q. Zhou, M. R. Shahriari, D. Kritz, and G. H. Sigel, “Porous fiber-optic sensor for high-sensitivity humidity measurements,” Anal. Chem. 60(20), 2317–2320 (1988).
[CrossRef]

Zhu, J.-J.

T.-H. Xia, A. P. Zhang, B. Gu, and J.-J. Zhu, “Fiber-optic refractive-index sensors based on transmissive and reflective thin-core fiber modal interferometers,” Opt. Commun. 283(10), 2136–2139 (2010).
[CrossRef]

Anal. Chem.

O. S. Wolfbeis, “Fiber-optic chemical sensors and biosensors,” Anal. Chem. 80(12), 4269–4283 (2008).
[CrossRef] [PubMed]

Q. Zhou, M. R. Shahriari, D. Kritz, and G. H. Sigel, “Porous fiber-optic sensor for high-sensitivity humidity measurements,” Anal. Chem. 60(20), 2317–2320 (1988).
[CrossRef]

Anal. Chim. Acta

M. M. F. Choi and O. L. Tse, “Humidity-sensitive optode membrane based on a fluorescent dye immobilized in gelatin film,” Anal. Chim. Acta 378(1–3), 127–134 (1999).
[CrossRef]

S. J. Glenn, B. M. Cullum, R. B. Nair, D. A. Nivens, C. J. Murphy, and S. M. Angel, “Lifetime-based fiber-optic water sensor using a luminescent complex in a lithium-treated Nafion™ membrane,” Anal. Chim. Acta 448(1–2), 1–8 (2001).
[CrossRef]

O. McGaughey, J. V. Ros-Lis, A. Guckian, A. K. McEvoy, C. McDonagh, and B. D. MacCraith, “Development of a fluorescence lifetime-based sol–gel humidity sensor,” Anal. Chim. Acta 570(1), 15–20 (2006).
[CrossRef]

Electron. Lett.

K. Ogawa, S. Tsuchiya, H. Kawakami, and T. Tsutsui, “Humidity-sensing effects of optical fibres with microporous SiO2 cladding,” Electron. Lett. 24(1), 42–43 (1988).
[CrossRef]

IEEE Photon. Technol. Lett.

Y. Liu, L. Wang, M. Zhang, D. Tu, X. Mao, and Y. Liao, “Long-period grating relative humidity sensor with hydrogel coating,” IEEE Photon. Technol. Lett. 19(12), 880–882 (2007).
[CrossRef]

IEEE Trans. NanoTechnol.

J. M. Corres, I. del Villar, I. R. Matias, and F. J. Arregui, “Two-layer nanocoatings in long-period fiber gratings for improved sensitivity of humidity sensors,” IEEE Trans. NanoTechnol. 7(4), 394–400 (2008).
[CrossRef]

J. Lightwave Technol.

Langmuir

P. Zhang, J. W. Qian, Q. F. An, B. Y. Du, X. Q. Liu, and Q. Zhao, “Influences of solution property and charge density on the self-assembly behavior of water-insoluble polyelectrolyte sulfonated poly(sulphone) sodium salts,” Langmuir 24(5), 2110–2117 (2008).
[CrossRef] [PubMed]

Meas. Sci. Technol.

S. Muto, O. Suzuki, T. Amano, and M. Morisawa, “A plastic optical fibre sensor for real-time humidity monitoring,” Meas. Sci. Technol. 14(6), 746–750 (2003).
[CrossRef]

Opt. Commun.

T.-H. Xia, A. P. Zhang, B. Gu, and J.-J. Zhu, “Fiber-optic refractive-index sensors based on transmissive and reflective thin-core fiber modal interferometers,” Opt. Commun. 283(10), 2136–2139 (2010).
[CrossRef]

Opt. Express

Opt. Lett.

Science

G. Decher, “Fuzzy nanoassemblies: toward layered polymeric multicomposites,” Science 277(5330), 1232–1237 (1997).
[CrossRef]

Sens. Actuators

H. E. Posch and O. S. Wolfbeis, “Fibre-optic humidity sensor based on fluorescence quenching,” Sens. Actuators 15(1), 77–83 (1988).
[CrossRef]

Sens. Actuators A Phys.

T. L. Yeo, T. Sun, and K. T. V. Grattan, “Fibre-optic sensor technologies for humidity and moisture measurement,” Sens. Actuators A Phys. 144(2), 280–295 (2008).
[CrossRef]

Sens. Actuators B Chem.

P. R. Story, D. W. Galipeau, and R. D. Mileham, “A study of low-cost sensors for measuring low relative humidity,” Sens. Actuators B Chem. 25(1–3), 681–685 (1995).
[CrossRef]

Y. Sakai, M. Matsuguchi, and T. Hurukawa, “Humidity sensor using cross-linked poly(chloromethyl styrene),” Sens. Actuators B Chem. 66(1–3), 135–138 (2000).
[CrossRef]

B. D. Gupta and Ratnanjali, “A novel probe for a fiber optic humidity sensor,” Sens. Actuators B Chem. 80(2), 132–135 (2001).
[CrossRef]

T. E. Brook, M. N. Taib, and R. Narayanaswamy, “Extending the range of a fibre-optic relative-humidity sensor,” Sens. Actuators B Chem. 39(1–3), 272–276 (1997).
[CrossRef]

S. K. Khijwania, K. L. Srinivasan, and J. P. Singh, “An evanescent-wave optical fiber relative humidity sensor with enhanced sensitivity,” Sens. Actuators B Chem. 104(2), 217–222 (2005).
[CrossRef]

T. L. Yeo, T. Sun, K. T. V. Grattan, D. Parry, R. Lade, and B. D. Powell, “Characterisation of a polymer-coated fibre Bragg grating sensor for relative humidity sensing,” Sens. Actuators B Chem. 110(1), 148–156 (2005).
[CrossRef]

X. F. Huang, D. R. Sheng, K. F. Cen, and H. Zhou, “Low-cost relative humidity sensor based on thermoplastic polyimide-coated fiber Bragg grating,” Sens. Actuators B Chem. 127(2), 518–524 (2007).
[CrossRef]

F. J. Arregui, Y. Liu, I. R. Matias, and R. O. Claus, “Optical fiber humidity sensor using a nano Fabry–Perot cavity formed by the ionic self-assembly method,” Sens. Actuators B Chem. 59(1), 54–59 (1999).
[CrossRef]

Z. Phys.

G. Z. Sauerbrey, “Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung,” Z. Phys. 155(2), 206–222 (1959).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic configuration of the fiber-optic RH sensor based on an FBG incorporated TCFMI (a) and its reflection spectrum (b) and transmission spectra (c) before (solid curve) and after (dashed curve) self-assembling of sensing nanocoating.

Fig. 2
Fig. 2

The spectral response of the sensor to the change of external refractive index (a) and temperature (b).

Fig. 3
Fig. 3

Chemical structures of the materials (a) and schematic diagrams of electrostatic self-assembly technique (b).

Fig. 4
Fig. 4

Growth of absorption (a) and thickness (b) of (P4VP·HCl /PVS)10 bilayers as a function of bilayer number.

Fig. 5
Fig. 5

Scanning electron microscopy images of the surface of optical fiber without (a) and with (b) self-assembled nanocoating. Both scale bars in the above two images are 1 μm.

Fig. 6
Fig. 6

The measured responses of the sensor to RH at different temperatures (a), the shift of reflection spectra with the increment of temperature (b) and the evolution of transmission spectra with the increment of humidity when the temperature is 40 °C (c).

Fig. 7
Fig. 7

The dynamic response of the fabricated RH sensor to the change of humidity.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

d f = Z q Δ f 2 f 0 f ρ f = ( 5.87 × 10 2 ) Δ f ( n m ) ,

Metrics