Abstract

Wide bandgap semiconductors are promising materials for the development of polariton-based optoelectronic devices operating at room temperature (RT). We report the characteristics of ZnO-based microcavities (MCs) in the strong coupling regime at RT with a vacuum Rabi splitting of 72 meV. The impact of scattering states of excitons on polariton dispersion is investigated. Only the lower polariton branches (LPBs) can be clearly observed in ZnO MCs since the large vacuum Rabi splitting pushes the upper polariton branches (UPBs) into the scattering absorption states in the ZnO bulk active region. In addition, we systematically investigate the polariton relaxation bottleneck in bulk ZnO-based MCs. Angle-resolved photoluminescence measurements are performed from 100 to 300 K for different cavity-exciton detunings. A clear polariton relaxation bottleneck is observed at low temperature and large negative cavity detuning conditions. The bottleneck is suppressed with increasing temperature and decreasing detuning, due to more efficient phonon-assisted relaxation and a longer radiative lifetime of the polaritons.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
    [CrossRef] [PubMed]
  2. H. Deng, G. Weihs, C. Santori, J. Bloch, and Y. Yamamoto, “Condensation of semiconductor microcavity exciton polaritons,” Science 298(5591), 199–202 (2002).
    [CrossRef] [PubMed]
  3. C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett. 69(23), 3314–3317 (1992).
    [CrossRef] [PubMed]
  4. J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and S. Dang, “Bose-Einstein condensation of exciton polaritons,” Nature 443(7110), 409–414 (2006).
    [CrossRef] [PubMed]
  5. A. Amo, D. Sanvitto, F. P. Laussy, D. Ballarini, E. del Valle, M. D. Martin, A. Lemaître, J. Bloch, D. N. Krizhanovskii, M. S. Skolnick, C. Tejedor, and L. Viña, “Collective fluid dynamics of a polariton condensate in a semiconductor microcavity,” Nature 457(7227), 291–295 (2009).
    [CrossRef] [PubMed]
  6. G. Christmann, R. Butté, E. Feltin, J.-F. Carlin, and N. Grandjean, “Room temperature polariton lasing in a GaN/AlGaN multiple quantum well microcavity,” Appl. Phys. Lett. 93(5), 051102 (2008).
    [CrossRef]
  7. S. I. Tsintzos, N. T. Pelekanos, G. Konstantinidis, Z. Hatzopoulos, and P. G. Savvidis, “A GaAs polariton light-emitting diode operating near room temperature,” Nature 453(7193), 372–375 (2008).
    [CrossRef] [PubMed]
  8. M. Saba, C. Ciuti, J. Bloch, V. Thierry-Mieg, R. André, S. Dang, S. Kundermann, A. Mura, G. Bongiovanni, J. L. Staehli, and B. Deveaud, “High-temperature ultrafast polariton parametric amplification in semiconductor microcavities,” Nature 414(6865), 731–735 (2001).
    [CrossRef] [PubMed]
  9. I. R. Sellers, F. Semond, M. Leroux, J. Massies, M. Zamfirescu, F. Stokker-Cheregi, M. Gurioli, A. Vinattieri, M. Colocci, A. Tahraoui, and A. A. Khalifa, “Polariton emission and reflectivity in GaN microcavities as a function of angle and temperature,” Phys. Rev. B 74(19), 193308 (2006).
    [CrossRef]
  10. E. Feltin, G. Christmann, R. Butté, J.-F. Carlin, M. Mosca, and N. Grandjean, “Room temperature polariton luminescence from a GaN/AlGaN quantum well microcavity,” Appl. Phys. Lett. 89(7), 071107 (2006).
    [CrossRef]
  11. J.-R. Chen, T.-C. Lu, Y.-C. Wu, S.-C. Lin, W.-R. Liu, W.-F. Hsieh, C.-C. Kuo, and C.-C. Lee, “Large vacuum Rabi splitting in ZnO-based hybrid microcavities observed at room temperature,” Appl. Phys. Lett. 94(6), 061103 (2009).
    [CrossRef]
  12. D. G. Lidzey, D. D. C. Bradley, T. Virgili, A. Armitage, M. S. Skolnick, and S. Walker, “Room Temperature Polariton Emission from Strongly Coupled Organic Semiconductor Microcavities,” Phys. Rev. Lett. 82(16), 3316–3319 (1999).
    [CrossRef]
  13. S. Christopoulos, G. B. H. Von Högersthal, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J.-F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett. 98(12), 126405 (2007).
    [CrossRef] [PubMed]
  14. R. Butté, G. Christmann, E. Feltin, J.-F. Carlin, M. Mosca, M. Ilegems, and N. Grandjean, “Room-temperature polariton luminescence from a bulk GaN microcavity,” Phys. Rev. B 73(3), 033315 (2006).
    [CrossRef]
  15. F. Stokker-Cheregi, A. Vinattieri, F. Semond, M. Leroux, I. R. Sellers, J. Massies, D. Solnyshkov, G. Malpuech, M. Colocci, and M. Gurioli, “Polariton relaxation bottleneck and its thermal suppression in bulk GaN microcavities,” Appl. Phys. Lett. 92(4), 042119 (2008).
    [CrossRef]
  16. A. Teke, Ü. Özgür, S. Doğan, X. Gu, H. Morkoç, B. Nemeth, J. Nause, and H. O. Everitt, “Excitonic fine structure and recombination dynamics in single-crystalline ZnO,” Phys. Rev. B 70(19), 195207 (2004).
    [CrossRef]
  17. M. Zamfirescu, A. Kavokin, B. Gil, G. Malpuech, and M. Kaliteevski, “ZnO as a material mostly adapted for the realization of room-temperature polariton lasers,” Phys. Rev. B 65(16), 161205 (2002).
    [CrossRef]
  18. R. Johne, D. D. Solnyshkov, and G. Malpuech, “Theory of exciton-polariton lasing at room temperature in ZnO microcavities,” Appl. Phys. Lett. 93(21), 211105 (2008).
    [CrossRef]
  19. R. Shimada, J. Xie, V. Avrutin, Ü. Özgür, and H. Morkoç, “Cavity polaritons in ZnO-based hybrid microcavities,” Appl. Phys. Lett. 92(1), 011127 (2008).
    [CrossRef]
  20. F. Médard, J. Zúñiga-Perez, P. Disseix, M. Mihailovic, J. Leymarie, A. Vasson, F. Semond, E. Frayssinet, J. C. Moreno, M. Leroux, S. Faure, and T. Guillet, “Experimental observation of strong light-matter coupling in ZnO microcavities: Influence of large excitonic absorption,” Phys. Rev. B 79(12), 125302 (2009).
    [CrossRef]
  21. S. Faure, C. Brimont, T. Guillet, T. Bretagnon, B. Gil, F. Médard, D. Lagarde, P. Disseix, J. Leymarie, J. Zúñiga-Pérez, M. Leroux, E. Frayssinet, J. C. Moreno, F. Semond, and S. Bouchoule, “Relaxation and emission of Bragg-mode and cavity-mode polaritons in a ZnO microcavity at room temperature,” Appl. Phys. Lett. 95(12), 121102 (2009).
    [CrossRef]
  22. R. Schmidt-Grund, B. Rheinländer, C. Czekalla, G. Benndorf, H. Hochmuth, M. Lorenz, and M. Grundmann, “Exciton–polariton formation at room temperature in a planar ZnO resonator structure,” Appl. Phys. B 93(2-3), 331–337 (2008).
    [CrossRef]
  23. C. Sturm, H. Hilmer, R. Schmidt-Grund, and M. Grundmann, “Observation of strong exciton–photon coupling at temperatures up to 410 K,” N. J. Phys. 11(7), 073044 (2009).
    [CrossRef]
  24. S. Faure, T. Guillet, P. Lefebvre, T. Bretagnon, and B. Gil, “Comparison of strong coupling regimes in bulk GaAs, GaN, and ZnO semiconductor microcavities,” Phys. Rev. B 78(23), 235323 (2008).
    [CrossRef]
  25. J.-R. Chen, S.-C. Ling, C.-T. Hung, T.-S. Ko, T.-C. Lu, H.-C. Kuo, and S.-C. Wang, “High-reflectivity ultraviolet AlN/AlGaN distributed Bragg reflectors grown by metalorganic chemical vapor deposition,” J. Cryst. Growth 310(23), 4871–4875 (2008).
    [CrossRef]
  26. A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S. F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, and M. Kawasaki, “Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO,” Nat. Mater. 4(1), 42–46 (2005).
    [CrossRef]
  27. R. E. Sherriff, D. C. Reynolds, D. C. Look, B. Jogai, J. E. Hoelscher, T. C. Collins, G. Cantwell, and W. C. Harsch, “Photoluminescence measurements from the two polar faces of ZnO,” J. Appl. Phys. 88(6), 3454 (2000).
    [CrossRef]
  28. S. W. Jung, W. I. Park, H. D. Cheong, G. C. Yi, H. M. Jang, S. Hong, and T. Joo, “Time-resolved and time-integrated photoluminescence in ZnO epilayers grown on Al2O3(0001) by metalorganic vapor phase,” Appl. Phys. Lett. 80(11), 1924–1926 (2002).
    [CrossRef]
  29. K. Vanheusden, C. H. Seager, W. L. Warren, D. R. Tallant, and J. A. Voigt, “Correlation between photoluminescence and oxygen vacancies in ZnO phosphors,” Appl. Phys. Lett. 68(3), 403–405 (1996).
    [CrossRef]
  30. Y. Chen, D. M. Bagnall, H. Koh, K. Park, K. Hiraga, Z. Zhu, and T. Yao, “Plasma assisted molecular beam epitaxy of ZnO on c-plane sapphire: Growth and characterization,” J. Appl. Phys. 84(7), 3912–3918 (1998).
    [CrossRef]
  31. E. S. Shim, H. S. Kang, J. S. Kang, J. H. Kim, and S. Y. Lee, “Effect of the variation of film thickness on the structural and optical properties of ZnO thin films deposited on sapphire substrate using PLD,” Appl. Surf. Sci. 186(1-4), 474–476 (2002).
    [CrossRef]
  32. N. Antoine-Vincent, F. Natali, D. Byrne, A. Vasson, P. Disseix, J. Leymarie, M. Leroux, F. Semond, and J. Massies, “Observation of Rabi splitting in a bulk GaN microcavity grown on silicon,” Phys. Rev. B 68(15), 153313 (2003).
    [CrossRef]
  33. M. Mihailovic, A. L. Henneghien, S. Faure, P. Disseix, J. Leymarie, A. Vasson, D. A. Buell, F. Semond, C. Morhain, and J. Zúñiga Pérez, “Optical and excitonic properties of ZnO films,” Opt. Mater. 31(3), 532–536 (2009).
    [CrossRef]
  34. S. F. Chichibu, T. Sota, G. Cantwell, D. B. Eason, and C. W. Litton, “Polarized photoreflectance spectra of excitonic polaritons in a ZnO single crystal,” J. Appl. Phys. 93(1), 756–758 (2003).
    [CrossRef]
  35. S. L. Chuang, Physics of Optoelectronic Devices, 1st ed. (Wiley, 1995)
  36. G. E. Jellison and L. A. Boatner, “Optical functions of uniaxial ZnO determined by generalized ellipsometry,” Phys. Rev. B 58(7), 3586–3589 (1998).
    [CrossRef]

2009 (6)

A. Amo, D. Sanvitto, F. P. Laussy, D. Ballarini, E. del Valle, M. D. Martin, A. Lemaître, J. Bloch, D. N. Krizhanovskii, M. S. Skolnick, C. Tejedor, and L. Viña, “Collective fluid dynamics of a polariton condensate in a semiconductor microcavity,” Nature 457(7227), 291–295 (2009).
[CrossRef] [PubMed]

J.-R. Chen, T.-C. Lu, Y.-C. Wu, S.-C. Lin, W.-R. Liu, W.-F. Hsieh, C.-C. Kuo, and C.-C. Lee, “Large vacuum Rabi splitting in ZnO-based hybrid microcavities observed at room temperature,” Appl. Phys. Lett. 94(6), 061103 (2009).
[CrossRef]

C. Sturm, H. Hilmer, R. Schmidt-Grund, and M. Grundmann, “Observation of strong exciton–photon coupling at temperatures up to 410 K,” N. J. Phys. 11(7), 073044 (2009).
[CrossRef]

F. Médard, J. Zúñiga-Perez, P. Disseix, M. Mihailovic, J. Leymarie, A. Vasson, F. Semond, E. Frayssinet, J. C. Moreno, M. Leroux, S. Faure, and T. Guillet, “Experimental observation of strong light-matter coupling in ZnO microcavities: Influence of large excitonic absorption,” Phys. Rev. B 79(12), 125302 (2009).
[CrossRef]

S. Faure, C. Brimont, T. Guillet, T. Bretagnon, B. Gil, F. Médard, D. Lagarde, P. Disseix, J. Leymarie, J. Zúñiga-Pérez, M. Leroux, E. Frayssinet, J. C. Moreno, F. Semond, and S. Bouchoule, “Relaxation and emission of Bragg-mode and cavity-mode polaritons in a ZnO microcavity at room temperature,” Appl. Phys. Lett. 95(12), 121102 (2009).
[CrossRef]

M. Mihailovic, A. L. Henneghien, S. Faure, P. Disseix, J. Leymarie, A. Vasson, D. A. Buell, F. Semond, C. Morhain, and J. Zúñiga Pérez, “Optical and excitonic properties of ZnO films,” Opt. Mater. 31(3), 532–536 (2009).
[CrossRef]

2008 (8)

R. Schmidt-Grund, B. Rheinländer, C. Czekalla, G. Benndorf, H. Hochmuth, M. Lorenz, and M. Grundmann, “Exciton–polariton formation at room temperature in a planar ZnO resonator structure,” Appl. Phys. B 93(2-3), 331–337 (2008).
[CrossRef]

S. Faure, T. Guillet, P. Lefebvre, T. Bretagnon, and B. Gil, “Comparison of strong coupling regimes in bulk GaAs, GaN, and ZnO semiconductor microcavities,” Phys. Rev. B 78(23), 235323 (2008).
[CrossRef]

J.-R. Chen, S.-C. Ling, C.-T. Hung, T.-S. Ko, T.-C. Lu, H.-C. Kuo, and S.-C. Wang, “High-reflectivity ultraviolet AlN/AlGaN distributed Bragg reflectors grown by metalorganic chemical vapor deposition,” J. Cryst. Growth 310(23), 4871–4875 (2008).
[CrossRef]

F. Stokker-Cheregi, A. Vinattieri, F. Semond, M. Leroux, I. R. Sellers, J. Massies, D. Solnyshkov, G. Malpuech, M. Colocci, and M. Gurioli, “Polariton relaxation bottleneck and its thermal suppression in bulk GaN microcavities,” Appl. Phys. Lett. 92(4), 042119 (2008).
[CrossRef]

R. Johne, D. D. Solnyshkov, and G. Malpuech, “Theory of exciton-polariton lasing at room temperature in ZnO microcavities,” Appl. Phys. Lett. 93(21), 211105 (2008).
[CrossRef]

R. Shimada, J. Xie, V. Avrutin, Ü. Özgür, and H. Morkoç, “Cavity polaritons in ZnO-based hybrid microcavities,” Appl. Phys. Lett. 92(1), 011127 (2008).
[CrossRef]

G. Christmann, R. Butté, E. Feltin, J.-F. Carlin, and N. Grandjean, “Room temperature polariton lasing in a GaN/AlGaN multiple quantum well microcavity,” Appl. Phys. Lett. 93(5), 051102 (2008).
[CrossRef]

S. I. Tsintzos, N. T. Pelekanos, G. Konstantinidis, Z. Hatzopoulos, and P. G. Savvidis, “A GaAs polariton light-emitting diode operating near room temperature,” Nature 453(7193), 372–375 (2008).
[CrossRef] [PubMed]

2007 (1)

S. Christopoulos, G. B. H. Von Högersthal, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J.-F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett. 98(12), 126405 (2007).
[CrossRef] [PubMed]

2006 (4)

R. Butté, G. Christmann, E. Feltin, J.-F. Carlin, M. Mosca, M. Ilegems, and N. Grandjean, “Room-temperature polariton luminescence from a bulk GaN microcavity,” Phys. Rev. B 73(3), 033315 (2006).
[CrossRef]

I. R. Sellers, F. Semond, M. Leroux, J. Massies, M. Zamfirescu, F. Stokker-Cheregi, M. Gurioli, A. Vinattieri, M. Colocci, A. Tahraoui, and A. A. Khalifa, “Polariton emission and reflectivity in GaN microcavities as a function of angle and temperature,” Phys. Rev. B 74(19), 193308 (2006).
[CrossRef]

E. Feltin, G. Christmann, R. Butté, J.-F. Carlin, M. Mosca, and N. Grandjean, “Room temperature polariton luminescence from a GaN/AlGaN quantum well microcavity,” Appl. Phys. Lett. 89(7), 071107 (2006).
[CrossRef]

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and S. Dang, “Bose-Einstein condensation of exciton polaritons,” Nature 443(7110), 409–414 (2006).
[CrossRef] [PubMed]

2005 (1)

A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S. F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, and M. Kawasaki, “Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO,” Nat. Mater. 4(1), 42–46 (2005).
[CrossRef]

2004 (1)

A. Teke, Ü. Özgür, S. Doğan, X. Gu, H. Morkoç, B. Nemeth, J. Nause, and H. O. Everitt, “Excitonic fine structure and recombination dynamics in single-crystalline ZnO,” Phys. Rev. B 70(19), 195207 (2004).
[CrossRef]

2003 (3)

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[CrossRef] [PubMed]

N. Antoine-Vincent, F. Natali, D. Byrne, A. Vasson, P. Disseix, J. Leymarie, M. Leroux, F. Semond, and J. Massies, “Observation of Rabi splitting in a bulk GaN microcavity grown on silicon,” Phys. Rev. B 68(15), 153313 (2003).
[CrossRef]

S. F. Chichibu, T. Sota, G. Cantwell, D. B. Eason, and C. W. Litton, “Polarized photoreflectance spectra of excitonic polaritons in a ZnO single crystal,” J. Appl. Phys. 93(1), 756–758 (2003).
[CrossRef]

2002 (4)

E. S. Shim, H. S. Kang, J. S. Kang, J. H. Kim, and S. Y. Lee, “Effect of the variation of film thickness on the structural and optical properties of ZnO thin films deposited on sapphire substrate using PLD,” Appl. Surf. Sci. 186(1-4), 474–476 (2002).
[CrossRef]

S. W. Jung, W. I. Park, H. D. Cheong, G. C. Yi, H. M. Jang, S. Hong, and T. Joo, “Time-resolved and time-integrated photoluminescence in ZnO epilayers grown on Al2O3(0001) by metalorganic vapor phase,” Appl. Phys. Lett. 80(11), 1924–1926 (2002).
[CrossRef]

H. Deng, G. Weihs, C. Santori, J. Bloch, and Y. Yamamoto, “Condensation of semiconductor microcavity exciton polaritons,” Science 298(5591), 199–202 (2002).
[CrossRef] [PubMed]

M. Zamfirescu, A. Kavokin, B. Gil, G. Malpuech, and M. Kaliteevski, “ZnO as a material mostly adapted for the realization of room-temperature polariton lasers,” Phys. Rev. B 65(16), 161205 (2002).
[CrossRef]

2001 (1)

M. Saba, C. Ciuti, J. Bloch, V. Thierry-Mieg, R. André, S. Dang, S. Kundermann, A. Mura, G. Bongiovanni, J. L. Staehli, and B. Deveaud, “High-temperature ultrafast polariton parametric amplification in semiconductor microcavities,” Nature 414(6865), 731–735 (2001).
[CrossRef] [PubMed]

2000 (1)

R. E. Sherriff, D. C. Reynolds, D. C. Look, B. Jogai, J. E. Hoelscher, T. C. Collins, G. Cantwell, and W. C. Harsch, “Photoluminescence measurements from the two polar faces of ZnO,” J. Appl. Phys. 88(6), 3454 (2000).
[CrossRef]

1999 (1)

D. G. Lidzey, D. D. C. Bradley, T. Virgili, A. Armitage, M. S. Skolnick, and S. Walker, “Room Temperature Polariton Emission from Strongly Coupled Organic Semiconductor Microcavities,” Phys. Rev. Lett. 82(16), 3316–3319 (1999).
[CrossRef]

1998 (2)

Y. Chen, D. M. Bagnall, H. Koh, K. Park, K. Hiraga, Z. Zhu, and T. Yao, “Plasma assisted molecular beam epitaxy of ZnO on c-plane sapphire: Growth and characterization,” J. Appl. Phys. 84(7), 3912–3918 (1998).
[CrossRef]

G. E. Jellison and L. A. Boatner, “Optical functions of uniaxial ZnO determined by generalized ellipsometry,” Phys. Rev. B 58(7), 3586–3589 (1998).
[CrossRef]

1996 (1)

K. Vanheusden, C. H. Seager, W. L. Warren, D. R. Tallant, and J. A. Voigt, “Correlation between photoluminescence and oxygen vacancies in ZnO phosphors,” Appl. Phys. Lett. 68(3), 403–405 (1996).
[CrossRef]

1992 (1)

C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett. 69(23), 3314–3317 (1992).
[CrossRef] [PubMed]

Amo, A.

A. Amo, D. Sanvitto, F. P. Laussy, D. Ballarini, E. del Valle, M. D. Martin, A. Lemaître, J. Bloch, D. N. Krizhanovskii, M. S. Skolnick, C. Tejedor, and L. Viña, “Collective fluid dynamics of a polariton condensate in a semiconductor microcavity,” Nature 457(7227), 291–295 (2009).
[CrossRef] [PubMed]

André, R.

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and S. Dang, “Bose-Einstein condensation of exciton polaritons,” Nature 443(7110), 409–414 (2006).
[CrossRef] [PubMed]

M. Saba, C. Ciuti, J. Bloch, V. Thierry-Mieg, R. André, S. Dang, S. Kundermann, A. Mura, G. Bongiovanni, J. L. Staehli, and B. Deveaud, “High-temperature ultrafast polariton parametric amplification in semiconductor microcavities,” Nature 414(6865), 731–735 (2001).
[CrossRef] [PubMed]

Antoine-Vincent, N.

N. Antoine-Vincent, F. Natali, D. Byrne, A. Vasson, P. Disseix, J. Leymarie, M. Leroux, F. Semond, and J. Massies, “Observation of Rabi splitting in a bulk GaN microcavity grown on silicon,” Phys. Rev. B 68(15), 153313 (2003).
[CrossRef]

Arakawa, Y.

C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett. 69(23), 3314–3317 (1992).
[CrossRef] [PubMed]

Armitage, A.

D. G. Lidzey, D. D. C. Bradley, T. Virgili, A. Armitage, M. S. Skolnick, and S. Walker, “Room Temperature Polariton Emission from Strongly Coupled Organic Semiconductor Microcavities,” Phys. Rev. Lett. 82(16), 3316–3319 (1999).
[CrossRef]

Avrutin, V.

R. Shimada, J. Xie, V. Avrutin, Ü. Özgür, and H. Morkoç, “Cavity polaritons in ZnO-based hybrid microcavities,” Appl. Phys. Lett. 92(1), 011127 (2008).
[CrossRef]

Baas, A.

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and S. Dang, “Bose-Einstein condensation of exciton polaritons,” Nature 443(7110), 409–414 (2006).
[CrossRef] [PubMed]

Bagnall, D. M.

Y. Chen, D. M. Bagnall, H. Koh, K. Park, K. Hiraga, Z. Zhu, and T. Yao, “Plasma assisted molecular beam epitaxy of ZnO on c-plane sapphire: Growth and characterization,” J. Appl. Phys. 84(7), 3912–3918 (1998).
[CrossRef]

Ballarini, D.

A. Amo, D. Sanvitto, F. P. Laussy, D. Ballarini, E. del Valle, M. D. Martin, A. Lemaître, J. Bloch, D. N. Krizhanovskii, M. S. Skolnick, C. Tejedor, and L. Viña, “Collective fluid dynamics of a polariton condensate in a semiconductor microcavity,” Nature 457(7227), 291–295 (2009).
[CrossRef] [PubMed]

Baumberg, J. J.

S. Christopoulos, G. B. H. Von Högersthal, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J.-F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett. 98(12), 126405 (2007).
[CrossRef] [PubMed]

Benndorf, G.

R. Schmidt-Grund, B. Rheinländer, C. Czekalla, G. Benndorf, H. Hochmuth, M. Lorenz, and M. Grundmann, “Exciton–polariton formation at room temperature in a planar ZnO resonator structure,” Appl. Phys. B 93(2-3), 331–337 (2008).
[CrossRef]

Bloch, J.

A. Amo, D. Sanvitto, F. P. Laussy, D. Ballarini, E. del Valle, M. D. Martin, A. Lemaître, J. Bloch, D. N. Krizhanovskii, M. S. Skolnick, C. Tejedor, and L. Viña, “Collective fluid dynamics of a polariton condensate in a semiconductor microcavity,” Nature 457(7227), 291–295 (2009).
[CrossRef] [PubMed]

H. Deng, G. Weihs, C. Santori, J. Bloch, and Y. Yamamoto, “Condensation of semiconductor microcavity exciton polaritons,” Science 298(5591), 199–202 (2002).
[CrossRef] [PubMed]

M. Saba, C. Ciuti, J. Bloch, V. Thierry-Mieg, R. André, S. Dang, S. Kundermann, A. Mura, G. Bongiovanni, J. L. Staehli, and B. Deveaud, “High-temperature ultrafast polariton parametric amplification in semiconductor microcavities,” Nature 414(6865), 731–735 (2001).
[CrossRef] [PubMed]

Boatner, L. A.

G. E. Jellison and L. A. Boatner, “Optical functions of uniaxial ZnO determined by generalized ellipsometry,” Phys. Rev. B 58(7), 3586–3589 (1998).
[CrossRef]

Bongiovanni, G.

M. Saba, C. Ciuti, J. Bloch, V. Thierry-Mieg, R. André, S. Dang, S. Kundermann, A. Mura, G. Bongiovanni, J. L. Staehli, and B. Deveaud, “High-temperature ultrafast polariton parametric amplification in semiconductor microcavities,” Nature 414(6865), 731–735 (2001).
[CrossRef] [PubMed]

Bouchoule, S.

S. Faure, C. Brimont, T. Guillet, T. Bretagnon, B. Gil, F. Médard, D. Lagarde, P. Disseix, J. Leymarie, J. Zúñiga-Pérez, M. Leroux, E. Frayssinet, J. C. Moreno, F. Semond, and S. Bouchoule, “Relaxation and emission of Bragg-mode and cavity-mode polaritons in a ZnO microcavity at room temperature,” Appl. Phys. Lett. 95(12), 121102 (2009).
[CrossRef]

Bradley, D. D. C.

D. G. Lidzey, D. D. C. Bradley, T. Virgili, A. Armitage, M. S. Skolnick, and S. Walker, “Room Temperature Polariton Emission from Strongly Coupled Organic Semiconductor Microcavities,” Phys. Rev. Lett. 82(16), 3316–3319 (1999).
[CrossRef]

Bretagnon, T.

S. Faure, C. Brimont, T. Guillet, T. Bretagnon, B. Gil, F. Médard, D. Lagarde, P. Disseix, J. Leymarie, J. Zúñiga-Pérez, M. Leroux, E. Frayssinet, J. C. Moreno, F. Semond, and S. Bouchoule, “Relaxation and emission of Bragg-mode and cavity-mode polaritons in a ZnO microcavity at room temperature,” Appl. Phys. Lett. 95(12), 121102 (2009).
[CrossRef]

S. Faure, T. Guillet, P. Lefebvre, T. Bretagnon, and B. Gil, “Comparison of strong coupling regimes in bulk GaAs, GaN, and ZnO semiconductor microcavities,” Phys. Rev. B 78(23), 235323 (2008).
[CrossRef]

Brimont, C.

S. Faure, C. Brimont, T. Guillet, T. Bretagnon, B. Gil, F. Médard, D. Lagarde, P. Disseix, J. Leymarie, J. Zúñiga-Pérez, M. Leroux, E. Frayssinet, J. C. Moreno, F. Semond, and S. Bouchoule, “Relaxation and emission of Bragg-mode and cavity-mode polaritons in a ZnO microcavity at room temperature,” Appl. Phys. Lett. 95(12), 121102 (2009).
[CrossRef]

Buell, D. A.

M. Mihailovic, A. L. Henneghien, S. Faure, P. Disseix, J. Leymarie, A. Vasson, D. A. Buell, F. Semond, C. Morhain, and J. Zúñiga Pérez, “Optical and excitonic properties of ZnO films,” Opt. Mater. 31(3), 532–536 (2009).
[CrossRef]

Butté, R.

G. Christmann, R. Butté, E. Feltin, J.-F. Carlin, and N. Grandjean, “Room temperature polariton lasing in a GaN/AlGaN multiple quantum well microcavity,” Appl. Phys. Lett. 93(5), 051102 (2008).
[CrossRef]

S. Christopoulos, G. B. H. Von Högersthal, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J.-F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett. 98(12), 126405 (2007).
[CrossRef] [PubMed]

R. Butté, G. Christmann, E. Feltin, J.-F. Carlin, M. Mosca, M. Ilegems, and N. Grandjean, “Room-temperature polariton luminescence from a bulk GaN microcavity,” Phys. Rev. B 73(3), 033315 (2006).
[CrossRef]

E. Feltin, G. Christmann, R. Butté, J.-F. Carlin, M. Mosca, and N. Grandjean, “Room temperature polariton luminescence from a GaN/AlGaN quantum well microcavity,” Appl. Phys. Lett. 89(7), 071107 (2006).
[CrossRef]

Byrne, D.

N. Antoine-Vincent, F. Natali, D. Byrne, A. Vasson, P. Disseix, J. Leymarie, M. Leroux, F. Semond, and J. Massies, “Observation of Rabi splitting in a bulk GaN microcavity grown on silicon,” Phys. Rev. B 68(15), 153313 (2003).
[CrossRef]

Cantwell, G.

S. F. Chichibu, T. Sota, G. Cantwell, D. B. Eason, and C. W. Litton, “Polarized photoreflectance spectra of excitonic polaritons in a ZnO single crystal,” J. Appl. Phys. 93(1), 756–758 (2003).
[CrossRef]

R. E. Sherriff, D. C. Reynolds, D. C. Look, B. Jogai, J. E. Hoelscher, T. C. Collins, G. Cantwell, and W. C. Harsch, “Photoluminescence measurements from the two polar faces of ZnO,” J. Appl. Phys. 88(6), 3454 (2000).
[CrossRef]

Carlin, J.-F.

G. Christmann, R. Butté, E. Feltin, J.-F. Carlin, and N. Grandjean, “Room temperature polariton lasing in a GaN/AlGaN multiple quantum well microcavity,” Appl. Phys. Lett. 93(5), 051102 (2008).
[CrossRef]

S. Christopoulos, G. B. H. Von Högersthal, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J.-F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett. 98(12), 126405 (2007).
[CrossRef] [PubMed]

R. Butté, G. Christmann, E. Feltin, J.-F. Carlin, M. Mosca, M. Ilegems, and N. Grandjean, “Room-temperature polariton luminescence from a bulk GaN microcavity,” Phys. Rev. B 73(3), 033315 (2006).
[CrossRef]

E. Feltin, G. Christmann, R. Butté, J.-F. Carlin, M. Mosca, and N. Grandjean, “Room temperature polariton luminescence from a GaN/AlGaN quantum well microcavity,” Appl. Phys. Lett. 89(7), 071107 (2006).
[CrossRef]

Chen, J.-R.

J.-R. Chen, T.-C. Lu, Y.-C. Wu, S.-C. Lin, W.-R. Liu, W.-F. Hsieh, C.-C. Kuo, and C.-C. Lee, “Large vacuum Rabi splitting in ZnO-based hybrid microcavities observed at room temperature,” Appl. Phys. Lett. 94(6), 061103 (2009).
[CrossRef]

J.-R. Chen, S.-C. Ling, C.-T. Hung, T.-S. Ko, T.-C. Lu, H.-C. Kuo, and S.-C. Wang, “High-reflectivity ultraviolet AlN/AlGaN distributed Bragg reflectors grown by metalorganic chemical vapor deposition,” J. Cryst. Growth 310(23), 4871–4875 (2008).
[CrossRef]

Chen, Y.

Y. Chen, D. M. Bagnall, H. Koh, K. Park, K. Hiraga, Z. Zhu, and T. Yao, “Plasma assisted molecular beam epitaxy of ZnO on c-plane sapphire: Growth and characterization,” J. Appl. Phys. 84(7), 3912–3918 (1998).
[CrossRef]

Cheong, H. D.

S. W. Jung, W. I. Park, H. D. Cheong, G. C. Yi, H. M. Jang, S. Hong, and T. Joo, “Time-resolved and time-integrated photoluminescence in ZnO epilayers grown on Al2O3(0001) by metalorganic vapor phase,” Appl. Phys. Lett. 80(11), 1924–1926 (2002).
[CrossRef]

Chichibu, S. F.

A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S. F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, and M. Kawasaki, “Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO,” Nat. Mater. 4(1), 42–46 (2005).
[CrossRef]

S. F. Chichibu, T. Sota, G. Cantwell, D. B. Eason, and C. W. Litton, “Polarized photoreflectance spectra of excitonic polaritons in a ZnO single crystal,” J. Appl. Phys. 93(1), 756–758 (2003).
[CrossRef]

Christmann, G.

G. Christmann, R. Butté, E. Feltin, J.-F. Carlin, and N. Grandjean, “Room temperature polariton lasing in a GaN/AlGaN multiple quantum well microcavity,” Appl. Phys. Lett. 93(5), 051102 (2008).
[CrossRef]

S. Christopoulos, G. B. H. Von Högersthal, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J.-F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett. 98(12), 126405 (2007).
[CrossRef] [PubMed]

R. Butté, G. Christmann, E. Feltin, J.-F. Carlin, M. Mosca, M. Ilegems, and N. Grandjean, “Room-temperature polariton luminescence from a bulk GaN microcavity,” Phys. Rev. B 73(3), 033315 (2006).
[CrossRef]

E. Feltin, G. Christmann, R. Butté, J.-F. Carlin, M. Mosca, and N. Grandjean, “Room temperature polariton luminescence from a GaN/AlGaN quantum well microcavity,” Appl. Phys. Lett. 89(7), 071107 (2006).
[CrossRef]

Christopoulos, S.

S. Christopoulos, G. B. H. Von Högersthal, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J.-F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett. 98(12), 126405 (2007).
[CrossRef] [PubMed]

Ciuti, C.

M. Saba, C. Ciuti, J. Bloch, V. Thierry-Mieg, R. André, S. Dang, S. Kundermann, A. Mura, G. Bongiovanni, J. L. Staehli, and B. Deveaud, “High-temperature ultrafast polariton parametric amplification in semiconductor microcavities,” Nature 414(6865), 731–735 (2001).
[CrossRef] [PubMed]

Collins, T. C.

R. E. Sherriff, D. C. Reynolds, D. C. Look, B. Jogai, J. E. Hoelscher, T. C. Collins, G. Cantwell, and W. C. Harsch, “Photoluminescence measurements from the two polar faces of ZnO,” J. Appl. Phys. 88(6), 3454 (2000).
[CrossRef]

Colocci, M.

F. Stokker-Cheregi, A. Vinattieri, F. Semond, M. Leroux, I. R. Sellers, J. Massies, D. Solnyshkov, G. Malpuech, M. Colocci, and M. Gurioli, “Polariton relaxation bottleneck and its thermal suppression in bulk GaN microcavities,” Appl. Phys. Lett. 92(4), 042119 (2008).
[CrossRef]

I. R. Sellers, F. Semond, M. Leroux, J. Massies, M. Zamfirescu, F. Stokker-Cheregi, M. Gurioli, A. Vinattieri, M. Colocci, A. Tahraoui, and A. A. Khalifa, “Polariton emission and reflectivity in GaN microcavities as a function of angle and temperature,” Phys. Rev. B 74(19), 193308 (2006).
[CrossRef]

Czekalla, C.

R. Schmidt-Grund, B. Rheinländer, C. Czekalla, G. Benndorf, H. Hochmuth, M. Lorenz, and M. Grundmann, “Exciton–polariton formation at room temperature in a planar ZnO resonator structure,” Appl. Phys. B 93(2-3), 331–337 (2008).
[CrossRef]

Dang, S.

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and S. Dang, “Bose-Einstein condensation of exciton polaritons,” Nature 443(7110), 409–414 (2006).
[CrossRef] [PubMed]

M. Saba, C. Ciuti, J. Bloch, V. Thierry-Mieg, R. André, S. Dang, S. Kundermann, A. Mura, G. Bongiovanni, J. L. Staehli, and B. Deveaud, “High-temperature ultrafast polariton parametric amplification in semiconductor microcavities,” Nature 414(6865), 731–735 (2001).
[CrossRef] [PubMed]

del Valle, E.

A. Amo, D. Sanvitto, F. P. Laussy, D. Ballarini, E. del Valle, M. D. Martin, A. Lemaître, J. Bloch, D. N. Krizhanovskii, M. S. Skolnick, C. Tejedor, and L. Viña, “Collective fluid dynamics of a polariton condensate in a semiconductor microcavity,” Nature 457(7227), 291–295 (2009).
[CrossRef] [PubMed]

Deng, H.

H. Deng, G. Weihs, C. Santori, J. Bloch, and Y. Yamamoto, “Condensation of semiconductor microcavity exciton polaritons,” Science 298(5591), 199–202 (2002).
[CrossRef] [PubMed]

Deveaud, B.

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and S. Dang, “Bose-Einstein condensation of exciton polaritons,” Nature 443(7110), 409–414 (2006).
[CrossRef] [PubMed]

M. Saba, C. Ciuti, J. Bloch, V. Thierry-Mieg, R. André, S. Dang, S. Kundermann, A. Mura, G. Bongiovanni, J. L. Staehli, and B. Deveaud, “High-temperature ultrafast polariton parametric amplification in semiconductor microcavities,” Nature 414(6865), 731–735 (2001).
[CrossRef] [PubMed]

Disseix, P.

F. Médard, J. Zúñiga-Perez, P. Disseix, M. Mihailovic, J. Leymarie, A. Vasson, F. Semond, E. Frayssinet, J. C. Moreno, M. Leroux, S. Faure, and T. Guillet, “Experimental observation of strong light-matter coupling in ZnO microcavities: Influence of large excitonic absorption,” Phys. Rev. B 79(12), 125302 (2009).
[CrossRef]

S. Faure, C. Brimont, T. Guillet, T. Bretagnon, B. Gil, F. Médard, D. Lagarde, P. Disseix, J. Leymarie, J. Zúñiga-Pérez, M. Leroux, E. Frayssinet, J. C. Moreno, F. Semond, and S. Bouchoule, “Relaxation and emission of Bragg-mode and cavity-mode polaritons in a ZnO microcavity at room temperature,” Appl. Phys. Lett. 95(12), 121102 (2009).
[CrossRef]

M. Mihailovic, A. L. Henneghien, S. Faure, P. Disseix, J. Leymarie, A. Vasson, D. A. Buell, F. Semond, C. Morhain, and J. Zúñiga Pérez, “Optical and excitonic properties of ZnO films,” Opt. Mater. 31(3), 532–536 (2009).
[CrossRef]

N. Antoine-Vincent, F. Natali, D. Byrne, A. Vasson, P. Disseix, J. Leymarie, M. Leroux, F. Semond, and J. Massies, “Observation of Rabi splitting in a bulk GaN microcavity grown on silicon,” Phys. Rev. B 68(15), 153313 (2003).
[CrossRef]

Dogan, S.

A. Teke, Ü. Özgür, S. Doğan, X. Gu, H. Morkoç, B. Nemeth, J. Nause, and H. O. Everitt, “Excitonic fine structure and recombination dynamics in single-crystalline ZnO,” Phys. Rev. B 70(19), 195207 (2004).
[CrossRef]

Eason, D. B.

S. F. Chichibu, T. Sota, G. Cantwell, D. B. Eason, and C. W. Litton, “Polarized photoreflectance spectra of excitonic polaritons in a ZnO single crystal,” J. Appl. Phys. 93(1), 756–758 (2003).
[CrossRef]

Everitt, H. O.

A. Teke, Ü. Özgür, S. Doğan, X. Gu, H. Morkoç, B. Nemeth, J. Nause, and H. O. Everitt, “Excitonic fine structure and recombination dynamics in single-crystalline ZnO,” Phys. Rev. B 70(19), 195207 (2004).
[CrossRef]

Faure, S.

M. Mihailovic, A. L. Henneghien, S. Faure, P. Disseix, J. Leymarie, A. Vasson, D. A. Buell, F. Semond, C. Morhain, and J. Zúñiga Pérez, “Optical and excitonic properties of ZnO films,” Opt. Mater. 31(3), 532–536 (2009).
[CrossRef]

F. Médard, J. Zúñiga-Perez, P. Disseix, M. Mihailovic, J. Leymarie, A. Vasson, F. Semond, E. Frayssinet, J. C. Moreno, M. Leroux, S. Faure, and T. Guillet, “Experimental observation of strong light-matter coupling in ZnO microcavities: Influence of large excitonic absorption,” Phys. Rev. B 79(12), 125302 (2009).
[CrossRef]

S. Faure, C. Brimont, T. Guillet, T. Bretagnon, B. Gil, F. Médard, D. Lagarde, P. Disseix, J. Leymarie, J. Zúñiga-Pérez, M. Leroux, E. Frayssinet, J. C. Moreno, F. Semond, and S. Bouchoule, “Relaxation and emission of Bragg-mode and cavity-mode polaritons in a ZnO microcavity at room temperature,” Appl. Phys. Lett. 95(12), 121102 (2009).
[CrossRef]

S. Faure, T. Guillet, P. Lefebvre, T. Bretagnon, and B. Gil, “Comparison of strong coupling regimes in bulk GaAs, GaN, and ZnO semiconductor microcavities,” Phys. Rev. B 78(23), 235323 (2008).
[CrossRef]

Feltin, E.

G. Christmann, R. Butté, E. Feltin, J.-F. Carlin, and N. Grandjean, “Room temperature polariton lasing in a GaN/AlGaN multiple quantum well microcavity,” Appl. Phys. Lett. 93(5), 051102 (2008).
[CrossRef]

S. Christopoulos, G. B. H. Von Högersthal, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J.-F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett. 98(12), 126405 (2007).
[CrossRef] [PubMed]

R. Butté, G. Christmann, E. Feltin, J.-F. Carlin, M. Mosca, M. Ilegems, and N. Grandjean, “Room-temperature polariton luminescence from a bulk GaN microcavity,” Phys. Rev. B 73(3), 033315 (2006).
[CrossRef]

E. Feltin, G. Christmann, R. Butté, J.-F. Carlin, M. Mosca, and N. Grandjean, “Room temperature polariton luminescence from a GaN/AlGaN quantum well microcavity,” Appl. Phys. Lett. 89(7), 071107 (2006).
[CrossRef]

Frayssinet, E.

S. Faure, C. Brimont, T. Guillet, T. Bretagnon, B. Gil, F. Médard, D. Lagarde, P. Disseix, J. Leymarie, J. Zúñiga-Pérez, M. Leroux, E. Frayssinet, J. C. Moreno, F. Semond, and S. Bouchoule, “Relaxation and emission of Bragg-mode and cavity-mode polaritons in a ZnO microcavity at room temperature,” Appl. Phys. Lett. 95(12), 121102 (2009).
[CrossRef]

F. Médard, J. Zúñiga-Perez, P. Disseix, M. Mihailovic, J. Leymarie, A. Vasson, F. Semond, E. Frayssinet, J. C. Moreno, M. Leroux, S. Faure, and T. Guillet, “Experimental observation of strong light-matter coupling in ZnO microcavities: Influence of large excitonic absorption,” Phys. Rev. B 79(12), 125302 (2009).
[CrossRef]

Fuke, S.

A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S. F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, and M. Kawasaki, “Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO,” Nat. Mater. 4(1), 42–46 (2005).
[CrossRef]

Gil, B.

S. Faure, C. Brimont, T. Guillet, T. Bretagnon, B. Gil, F. Médard, D. Lagarde, P. Disseix, J. Leymarie, J. Zúñiga-Pérez, M. Leroux, E. Frayssinet, J. C. Moreno, F. Semond, and S. Bouchoule, “Relaxation and emission of Bragg-mode and cavity-mode polaritons in a ZnO microcavity at room temperature,” Appl. Phys. Lett. 95(12), 121102 (2009).
[CrossRef]

S. Faure, T. Guillet, P. Lefebvre, T. Bretagnon, and B. Gil, “Comparison of strong coupling regimes in bulk GaAs, GaN, and ZnO semiconductor microcavities,” Phys. Rev. B 78(23), 235323 (2008).
[CrossRef]

M. Zamfirescu, A. Kavokin, B. Gil, G. Malpuech, and M. Kaliteevski, “ZnO as a material mostly adapted for the realization of room-temperature polariton lasers,” Phys. Rev. B 65(16), 161205 (2002).
[CrossRef]

Grandjean, N.

G. Christmann, R. Butté, E. Feltin, J.-F. Carlin, and N. Grandjean, “Room temperature polariton lasing in a GaN/AlGaN multiple quantum well microcavity,” Appl. Phys. Lett. 93(5), 051102 (2008).
[CrossRef]

S. Christopoulos, G. B. H. Von Högersthal, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J.-F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett. 98(12), 126405 (2007).
[CrossRef] [PubMed]

R. Butté, G. Christmann, E. Feltin, J.-F. Carlin, M. Mosca, M. Ilegems, and N. Grandjean, “Room-temperature polariton luminescence from a bulk GaN microcavity,” Phys. Rev. B 73(3), 033315 (2006).
[CrossRef]

E. Feltin, G. Christmann, R. Butté, J.-F. Carlin, M. Mosca, and N. Grandjean, “Room temperature polariton luminescence from a GaN/AlGaN quantum well microcavity,” Appl. Phys. Lett. 89(7), 071107 (2006).
[CrossRef]

Grundmann, M.

C. Sturm, H. Hilmer, R. Schmidt-Grund, and M. Grundmann, “Observation of strong exciton–photon coupling at temperatures up to 410 K,” N. J. Phys. 11(7), 073044 (2009).
[CrossRef]

R. Schmidt-Grund, B. Rheinländer, C. Czekalla, G. Benndorf, H. Hochmuth, M. Lorenz, and M. Grundmann, “Exciton–polariton formation at room temperature in a planar ZnO resonator structure,” Appl. Phys. B 93(2-3), 331–337 (2008).
[CrossRef]

Grundy, A. J. D.

S. Christopoulos, G. B. H. Von Högersthal, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J.-F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett. 98(12), 126405 (2007).
[CrossRef] [PubMed]

Gu, X.

A. Teke, Ü. Özgür, S. Doğan, X. Gu, H. Morkoç, B. Nemeth, J. Nause, and H. O. Everitt, “Excitonic fine structure and recombination dynamics in single-crystalline ZnO,” Phys. Rev. B 70(19), 195207 (2004).
[CrossRef]

Guillet, T.

S. Faure, C. Brimont, T. Guillet, T. Bretagnon, B. Gil, F. Médard, D. Lagarde, P. Disseix, J. Leymarie, J. Zúñiga-Pérez, M. Leroux, E. Frayssinet, J. C. Moreno, F. Semond, and S. Bouchoule, “Relaxation and emission of Bragg-mode and cavity-mode polaritons in a ZnO microcavity at room temperature,” Appl. Phys. Lett. 95(12), 121102 (2009).
[CrossRef]

F. Médard, J. Zúñiga-Perez, P. Disseix, M. Mihailovic, J. Leymarie, A. Vasson, F. Semond, E. Frayssinet, J. C. Moreno, M. Leroux, S. Faure, and T. Guillet, “Experimental observation of strong light-matter coupling in ZnO microcavities: Influence of large excitonic absorption,” Phys. Rev. B 79(12), 125302 (2009).
[CrossRef]

S. Faure, T. Guillet, P. Lefebvre, T. Bretagnon, and B. Gil, “Comparison of strong coupling regimes in bulk GaAs, GaN, and ZnO semiconductor microcavities,” Phys. Rev. B 78(23), 235323 (2008).
[CrossRef]

Gurioli, M.

F. Stokker-Cheregi, A. Vinattieri, F. Semond, M. Leroux, I. R. Sellers, J. Massies, D. Solnyshkov, G. Malpuech, M. Colocci, and M. Gurioli, “Polariton relaxation bottleneck and its thermal suppression in bulk GaN microcavities,” Appl. Phys. Lett. 92(4), 042119 (2008).
[CrossRef]

I. R. Sellers, F. Semond, M. Leroux, J. Massies, M. Zamfirescu, F. Stokker-Cheregi, M. Gurioli, A. Vinattieri, M. Colocci, A. Tahraoui, and A. A. Khalifa, “Polariton emission and reflectivity in GaN microcavities as a function of angle and temperature,” Phys. Rev. B 74(19), 193308 (2006).
[CrossRef]

Harsch, W. C.

R. E. Sherriff, D. C. Reynolds, D. C. Look, B. Jogai, J. E. Hoelscher, T. C. Collins, G. Cantwell, and W. C. Harsch, “Photoluminescence measurements from the two polar faces of ZnO,” J. Appl. Phys. 88(6), 3454 (2000).
[CrossRef]

Hatzopoulos, Z.

S. I. Tsintzos, N. T. Pelekanos, G. Konstantinidis, Z. Hatzopoulos, and P. G. Savvidis, “A GaAs polariton light-emitting diode operating near room temperature,” Nature 453(7193), 372–375 (2008).
[CrossRef] [PubMed]

Henneghien, A. L.

M. Mihailovic, A. L. Henneghien, S. Faure, P. Disseix, J. Leymarie, A. Vasson, D. A. Buell, F. Semond, C. Morhain, and J. Zúñiga Pérez, “Optical and excitonic properties of ZnO films,” Opt. Mater. 31(3), 532–536 (2009).
[CrossRef]

Hilmer, H.

C. Sturm, H. Hilmer, R. Schmidt-Grund, and M. Grundmann, “Observation of strong exciton–photon coupling at temperatures up to 410 K,” N. J. Phys. 11(7), 073044 (2009).
[CrossRef]

Hiraga, K.

Y. Chen, D. M. Bagnall, H. Koh, K. Park, K. Hiraga, Z. Zhu, and T. Yao, “Plasma assisted molecular beam epitaxy of ZnO on c-plane sapphire: Growth and characterization,” J. Appl. Phys. 84(7), 3912–3918 (1998).
[CrossRef]

Hochmuth, H.

R. Schmidt-Grund, B. Rheinländer, C. Czekalla, G. Benndorf, H. Hochmuth, M. Lorenz, and M. Grundmann, “Exciton–polariton formation at room temperature in a planar ZnO resonator structure,” Appl. Phys. B 93(2-3), 331–337 (2008).
[CrossRef]

Hoelscher, J. E.

R. E. Sherriff, D. C. Reynolds, D. C. Look, B. Jogai, J. E. Hoelscher, T. C. Collins, G. Cantwell, and W. C. Harsch, “Photoluminescence measurements from the two polar faces of ZnO,” J. Appl. Phys. 88(6), 3454 (2000).
[CrossRef]

Hong, S.

S. W. Jung, W. I. Park, H. D. Cheong, G. C. Yi, H. M. Jang, S. Hong, and T. Joo, “Time-resolved and time-integrated photoluminescence in ZnO epilayers grown on Al2O3(0001) by metalorganic vapor phase,” Appl. Phys. Lett. 80(11), 1924–1926 (2002).
[CrossRef]

Hsieh, W.-F.

J.-R. Chen, T.-C. Lu, Y.-C. Wu, S.-C. Lin, W.-R. Liu, W.-F. Hsieh, C.-C. Kuo, and C.-C. Lee, “Large vacuum Rabi splitting in ZnO-based hybrid microcavities observed at room temperature,” Appl. Phys. Lett. 94(6), 061103 (2009).
[CrossRef]

Hung, C.-T.

J.-R. Chen, S.-C. Ling, C.-T. Hung, T.-S. Ko, T.-C. Lu, H.-C. Kuo, and S.-C. Wang, “High-reflectivity ultraviolet AlN/AlGaN distributed Bragg reflectors grown by metalorganic chemical vapor deposition,” J. Cryst. Growth 310(23), 4871–4875 (2008).
[CrossRef]

Ilegems, M.

R. Butté, G. Christmann, E. Feltin, J.-F. Carlin, M. Mosca, M. Ilegems, and N. Grandjean, “Room-temperature polariton luminescence from a bulk GaN microcavity,” Phys. Rev. B 73(3), 033315 (2006).
[CrossRef]

Ishikawa, A.

C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett. 69(23), 3314–3317 (1992).
[CrossRef] [PubMed]

Jang, H. M.

S. W. Jung, W. I. Park, H. D. Cheong, G. C. Yi, H. M. Jang, S. Hong, and T. Joo, “Time-resolved and time-integrated photoluminescence in ZnO epilayers grown on Al2O3(0001) by metalorganic vapor phase,” Appl. Phys. Lett. 80(11), 1924–1926 (2002).
[CrossRef]

Jeambrun, P.

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and S. Dang, “Bose-Einstein condensation of exciton polaritons,” Nature 443(7110), 409–414 (2006).
[CrossRef] [PubMed]

Jellison, G. E.

G. E. Jellison and L. A. Boatner, “Optical functions of uniaxial ZnO determined by generalized ellipsometry,” Phys. Rev. B 58(7), 3586–3589 (1998).
[CrossRef]

Jogai, B.

R. E. Sherriff, D. C. Reynolds, D. C. Look, B. Jogai, J. E. Hoelscher, T. C. Collins, G. Cantwell, and W. C. Harsch, “Photoluminescence measurements from the two polar faces of ZnO,” J. Appl. Phys. 88(6), 3454 (2000).
[CrossRef]

Johne, R.

R. Johne, D. D. Solnyshkov, and G. Malpuech, “Theory of exciton-polariton lasing at room temperature in ZnO microcavities,” Appl. Phys. Lett. 93(21), 211105 (2008).
[CrossRef]

Joo, T.

S. W. Jung, W. I. Park, H. D. Cheong, G. C. Yi, H. M. Jang, S. Hong, and T. Joo, “Time-resolved and time-integrated photoluminescence in ZnO epilayers grown on Al2O3(0001) by metalorganic vapor phase,” Appl. Phys. Lett. 80(11), 1924–1926 (2002).
[CrossRef]

Jung, S. W.

S. W. Jung, W. I. Park, H. D. Cheong, G. C. Yi, H. M. Jang, S. Hong, and T. Joo, “Time-resolved and time-integrated photoluminescence in ZnO epilayers grown on Al2O3(0001) by metalorganic vapor phase,” Appl. Phys. Lett. 80(11), 1924–1926 (2002).
[CrossRef]

Kaliteevski, M.

M. Zamfirescu, A. Kavokin, B. Gil, G. Malpuech, and M. Kaliteevski, “ZnO as a material mostly adapted for the realization of room-temperature polariton lasers,” Phys. Rev. B 65(16), 161205 (2002).
[CrossRef]

Kang, H. S.

E. S. Shim, H. S. Kang, J. S. Kang, J. H. Kim, and S. Y. Lee, “Effect of the variation of film thickness on the structural and optical properties of ZnO thin films deposited on sapphire substrate using PLD,” Appl. Surf. Sci. 186(1-4), 474–476 (2002).
[CrossRef]

Kang, J. S.

E. S. Shim, H. S. Kang, J. S. Kang, J. H. Kim, and S. Y. Lee, “Effect of the variation of film thickness on the structural and optical properties of ZnO thin films deposited on sapphire substrate using PLD,” Appl. Surf. Sci. 186(1-4), 474–476 (2002).
[CrossRef]

Kasprzak, J.

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and S. Dang, “Bose-Einstein condensation of exciton polaritons,” Nature 443(7110), 409–414 (2006).
[CrossRef] [PubMed]

Kavokin, A.

M. Zamfirescu, A. Kavokin, B. Gil, G. Malpuech, and M. Kaliteevski, “ZnO as a material mostly adapted for the realization of room-temperature polariton lasers,” Phys. Rev. B 65(16), 161205 (2002).
[CrossRef]

Kavokin, A. V.

S. Christopoulos, G. B. H. Von Högersthal, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J.-F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett. 98(12), 126405 (2007).
[CrossRef] [PubMed]

Kawasaki, M.

A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S. F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, and M. Kawasaki, “Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO,” Nat. Mater. 4(1), 42–46 (2005).
[CrossRef]

Keeling, J. M. J.

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and S. Dang, “Bose-Einstein condensation of exciton polaritons,” Nature 443(7110), 409–414 (2006).
[CrossRef] [PubMed]

Khalifa, A. A.

I. R. Sellers, F. Semond, M. Leroux, J. Massies, M. Zamfirescu, F. Stokker-Cheregi, M. Gurioli, A. Vinattieri, M. Colocci, A. Tahraoui, and A. A. Khalifa, “Polariton emission and reflectivity in GaN microcavities as a function of angle and temperature,” Phys. Rev. B 74(19), 193308 (2006).
[CrossRef]

Kim, J. H.

E. S. Shim, H. S. Kang, J. S. Kang, J. H. Kim, and S. Y. Lee, “Effect of the variation of film thickness on the structural and optical properties of ZnO thin films deposited on sapphire substrate using PLD,” Appl. Surf. Sci. 186(1-4), 474–476 (2002).
[CrossRef]

Ko, T.-S.

J.-R. Chen, S.-C. Ling, C.-T. Hung, T.-S. Ko, T.-C. Lu, H.-C. Kuo, and S.-C. Wang, “High-reflectivity ultraviolet AlN/AlGaN distributed Bragg reflectors grown by metalorganic chemical vapor deposition,” J. Cryst. Growth 310(23), 4871–4875 (2008).
[CrossRef]

Koh, H.

Y. Chen, D. M. Bagnall, H. Koh, K. Park, K. Hiraga, Z. Zhu, and T. Yao, “Plasma assisted molecular beam epitaxy of ZnO on c-plane sapphire: Growth and characterization,” J. Appl. Phys. 84(7), 3912–3918 (1998).
[CrossRef]

Koinuma, H.

A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S. F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, and M. Kawasaki, “Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO,” Nat. Mater. 4(1), 42–46 (2005).
[CrossRef]

Konstantinidis, G.

S. I. Tsintzos, N. T. Pelekanos, G. Konstantinidis, Z. Hatzopoulos, and P. G. Savvidis, “A GaAs polariton light-emitting diode operating near room temperature,” Nature 453(7193), 372–375 (2008).
[CrossRef] [PubMed]

Krizhanovskii, D. N.

A. Amo, D. Sanvitto, F. P. Laussy, D. Ballarini, E. del Valle, M. D. Martin, A. Lemaître, J. Bloch, D. N. Krizhanovskii, M. S. Skolnick, C. Tejedor, and L. Viña, “Collective fluid dynamics of a polariton condensate in a semiconductor microcavity,” Nature 457(7227), 291–295 (2009).
[CrossRef] [PubMed]

Kundermann, S.

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and S. Dang, “Bose-Einstein condensation of exciton polaritons,” Nature 443(7110), 409–414 (2006).
[CrossRef] [PubMed]

M. Saba, C. Ciuti, J. Bloch, V. Thierry-Mieg, R. André, S. Dang, S. Kundermann, A. Mura, G. Bongiovanni, J. L. Staehli, and B. Deveaud, “High-temperature ultrafast polariton parametric amplification in semiconductor microcavities,” Nature 414(6865), 731–735 (2001).
[CrossRef] [PubMed]

Kuo, C.-C.

J.-R. Chen, T.-C. Lu, Y.-C. Wu, S.-C. Lin, W.-R. Liu, W.-F. Hsieh, C.-C. Kuo, and C.-C. Lee, “Large vacuum Rabi splitting in ZnO-based hybrid microcavities observed at room temperature,” Appl. Phys. Lett. 94(6), 061103 (2009).
[CrossRef]

Kuo, H.-C.

J.-R. Chen, S.-C. Ling, C.-T. Hung, T.-S. Ko, T.-C. Lu, H.-C. Kuo, and S.-C. Wang, “High-reflectivity ultraviolet AlN/AlGaN distributed Bragg reflectors grown by metalorganic chemical vapor deposition,” J. Cryst. Growth 310(23), 4871–4875 (2008).
[CrossRef]

Lagarde, D.

S. Faure, C. Brimont, T. Guillet, T. Bretagnon, B. Gil, F. Médard, D. Lagarde, P. Disseix, J. Leymarie, J. Zúñiga-Pérez, M. Leroux, E. Frayssinet, J. C. Moreno, F. Semond, and S. Bouchoule, “Relaxation and emission of Bragg-mode and cavity-mode polaritons in a ZnO microcavity at room temperature,” Appl. Phys. Lett. 95(12), 121102 (2009).
[CrossRef]

Lagoudakis, P. G.

S. Christopoulos, G. B. H. Von Högersthal, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J.-F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett. 98(12), 126405 (2007).
[CrossRef] [PubMed]

Laussy, F. P.

A. Amo, D. Sanvitto, F. P. Laussy, D. Ballarini, E. del Valle, M. D. Martin, A. Lemaître, J. Bloch, D. N. Krizhanovskii, M. S. Skolnick, C. Tejedor, and L. Viña, “Collective fluid dynamics of a polariton condensate in a semiconductor microcavity,” Nature 457(7227), 291–295 (2009).
[CrossRef] [PubMed]

Lee, C.-C.

J.-R. Chen, T.-C. Lu, Y.-C. Wu, S.-C. Lin, W.-R. Liu, W.-F. Hsieh, C.-C. Kuo, and C.-C. Lee, “Large vacuum Rabi splitting in ZnO-based hybrid microcavities observed at room temperature,” Appl. Phys. Lett. 94(6), 061103 (2009).
[CrossRef]

Lee, S. Y.

E. S. Shim, H. S. Kang, J. S. Kang, J. H. Kim, and S. Y. Lee, “Effect of the variation of film thickness on the structural and optical properties of ZnO thin films deposited on sapphire substrate using PLD,” Appl. Surf. Sci. 186(1-4), 474–476 (2002).
[CrossRef]

Lefebvre, P.

S. Faure, T. Guillet, P. Lefebvre, T. Bretagnon, and B. Gil, “Comparison of strong coupling regimes in bulk GaAs, GaN, and ZnO semiconductor microcavities,” Phys. Rev. B 78(23), 235323 (2008).
[CrossRef]

Lemaître, A.

A. Amo, D. Sanvitto, F. P. Laussy, D. Ballarini, E. del Valle, M. D. Martin, A. Lemaître, J. Bloch, D. N. Krizhanovskii, M. S. Skolnick, C. Tejedor, and L. Viña, “Collective fluid dynamics of a polariton condensate in a semiconductor microcavity,” Nature 457(7227), 291–295 (2009).
[CrossRef] [PubMed]

Leroux, M.

S. Faure, C. Brimont, T. Guillet, T. Bretagnon, B. Gil, F. Médard, D. Lagarde, P. Disseix, J. Leymarie, J. Zúñiga-Pérez, M. Leroux, E. Frayssinet, J. C. Moreno, F. Semond, and S. Bouchoule, “Relaxation and emission of Bragg-mode and cavity-mode polaritons in a ZnO microcavity at room temperature,” Appl. Phys. Lett. 95(12), 121102 (2009).
[CrossRef]

F. Médard, J. Zúñiga-Perez, P. Disseix, M. Mihailovic, J. Leymarie, A. Vasson, F. Semond, E. Frayssinet, J. C. Moreno, M. Leroux, S. Faure, and T. Guillet, “Experimental observation of strong light-matter coupling in ZnO microcavities: Influence of large excitonic absorption,” Phys. Rev. B 79(12), 125302 (2009).
[CrossRef]

F. Stokker-Cheregi, A. Vinattieri, F. Semond, M. Leroux, I. R. Sellers, J. Massies, D. Solnyshkov, G. Malpuech, M. Colocci, and M. Gurioli, “Polariton relaxation bottleneck and its thermal suppression in bulk GaN microcavities,” Appl. Phys. Lett. 92(4), 042119 (2008).
[CrossRef]

I. R. Sellers, F. Semond, M. Leroux, J. Massies, M. Zamfirescu, F. Stokker-Cheregi, M. Gurioli, A. Vinattieri, M. Colocci, A. Tahraoui, and A. A. Khalifa, “Polariton emission and reflectivity in GaN microcavities as a function of angle and temperature,” Phys. Rev. B 74(19), 193308 (2006).
[CrossRef]

N. Antoine-Vincent, F. Natali, D. Byrne, A. Vasson, P. Disseix, J. Leymarie, M. Leroux, F. Semond, and J. Massies, “Observation of Rabi splitting in a bulk GaN microcavity grown on silicon,” Phys. Rev. B 68(15), 153313 (2003).
[CrossRef]

Leymarie, J.

M. Mihailovic, A. L. Henneghien, S. Faure, P. Disseix, J. Leymarie, A. Vasson, D. A. Buell, F. Semond, C. Morhain, and J. Zúñiga Pérez, “Optical and excitonic properties of ZnO films,” Opt. Mater. 31(3), 532–536 (2009).
[CrossRef]

S. Faure, C. Brimont, T. Guillet, T. Bretagnon, B. Gil, F. Médard, D. Lagarde, P. Disseix, J. Leymarie, J. Zúñiga-Pérez, M. Leroux, E. Frayssinet, J. C. Moreno, F. Semond, and S. Bouchoule, “Relaxation and emission of Bragg-mode and cavity-mode polaritons in a ZnO microcavity at room temperature,” Appl. Phys. Lett. 95(12), 121102 (2009).
[CrossRef]

F. Médard, J. Zúñiga-Perez, P. Disseix, M. Mihailovic, J. Leymarie, A. Vasson, F. Semond, E. Frayssinet, J. C. Moreno, M. Leroux, S. Faure, and T. Guillet, “Experimental observation of strong light-matter coupling in ZnO microcavities: Influence of large excitonic absorption,” Phys. Rev. B 79(12), 125302 (2009).
[CrossRef]

N. Antoine-Vincent, F. Natali, D. Byrne, A. Vasson, P. Disseix, J. Leymarie, M. Leroux, F. Semond, and J. Massies, “Observation of Rabi splitting in a bulk GaN microcavity grown on silicon,” Phys. Rev. B 68(15), 153313 (2003).
[CrossRef]

Lidzey, D. G.

D. G. Lidzey, D. D. C. Bradley, T. Virgili, A. Armitage, M. S. Skolnick, and S. Walker, “Room Temperature Polariton Emission from Strongly Coupled Organic Semiconductor Microcavities,” Phys. Rev. Lett. 82(16), 3316–3319 (1999).
[CrossRef]

Lin, S.-C.

J.-R. Chen, T.-C. Lu, Y.-C. Wu, S.-C. Lin, W.-R. Liu, W.-F. Hsieh, C.-C. Kuo, and C.-C. Lee, “Large vacuum Rabi splitting in ZnO-based hybrid microcavities observed at room temperature,” Appl. Phys. Lett. 94(6), 061103 (2009).
[CrossRef]

Ling, S.-C.

J.-R. Chen, S.-C. Ling, C.-T. Hung, T.-S. Ko, T.-C. Lu, H.-C. Kuo, and S.-C. Wang, “High-reflectivity ultraviolet AlN/AlGaN distributed Bragg reflectors grown by metalorganic chemical vapor deposition,” J. Cryst. Growth 310(23), 4871–4875 (2008).
[CrossRef]

Littlewood, P. B.

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and S. Dang, “Bose-Einstein condensation of exciton polaritons,” Nature 443(7110), 409–414 (2006).
[CrossRef] [PubMed]

Litton, C. W.

S. F. Chichibu, T. Sota, G. Cantwell, D. B. Eason, and C. W. Litton, “Polarized photoreflectance spectra of excitonic polaritons in a ZnO single crystal,” J. Appl. Phys. 93(1), 756–758 (2003).
[CrossRef]

Liu, W.-R.

J.-R. Chen, T.-C. Lu, Y.-C. Wu, S.-C. Lin, W.-R. Liu, W.-F. Hsieh, C.-C. Kuo, and C.-C. Lee, “Large vacuum Rabi splitting in ZnO-based hybrid microcavities observed at room temperature,” Appl. Phys. Lett. 94(6), 061103 (2009).
[CrossRef]

Look, D. C.

R. E. Sherriff, D. C. Reynolds, D. C. Look, B. Jogai, J. E. Hoelscher, T. C. Collins, G. Cantwell, and W. C. Harsch, “Photoluminescence measurements from the two polar faces of ZnO,” J. Appl. Phys. 88(6), 3454 (2000).
[CrossRef]

Lorenz, M.

R. Schmidt-Grund, B. Rheinländer, C. Czekalla, G. Benndorf, H. Hochmuth, M. Lorenz, and M. Grundmann, “Exciton–polariton formation at room temperature in a planar ZnO resonator structure,” Appl. Phys. B 93(2-3), 331–337 (2008).
[CrossRef]

Lu, T.-C.

J.-R. Chen, T.-C. Lu, Y.-C. Wu, S.-C. Lin, W.-R. Liu, W.-F. Hsieh, C.-C. Kuo, and C.-C. Lee, “Large vacuum Rabi splitting in ZnO-based hybrid microcavities observed at room temperature,” Appl. Phys. Lett. 94(6), 061103 (2009).
[CrossRef]

J.-R. Chen, S.-C. Ling, C.-T. Hung, T.-S. Ko, T.-C. Lu, H.-C. Kuo, and S.-C. Wang, “High-reflectivity ultraviolet AlN/AlGaN distributed Bragg reflectors grown by metalorganic chemical vapor deposition,” J. Cryst. Growth 310(23), 4871–4875 (2008).
[CrossRef]

Makino, T.

A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S. F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, and M. Kawasaki, “Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO,” Nat. Mater. 4(1), 42–46 (2005).
[CrossRef]

Malpuech, G.

R. Johne, D. D. Solnyshkov, and G. Malpuech, “Theory of exciton-polariton lasing at room temperature in ZnO microcavities,” Appl. Phys. Lett. 93(21), 211105 (2008).
[CrossRef]

F. Stokker-Cheregi, A. Vinattieri, F. Semond, M. Leroux, I. R. Sellers, J. Massies, D. Solnyshkov, G. Malpuech, M. Colocci, and M. Gurioli, “Polariton relaxation bottleneck and its thermal suppression in bulk GaN microcavities,” Appl. Phys. Lett. 92(4), 042119 (2008).
[CrossRef]

M. Zamfirescu, A. Kavokin, B. Gil, G. Malpuech, and M. Kaliteevski, “ZnO as a material mostly adapted for the realization of room-temperature polariton lasers,” Phys. Rev. B 65(16), 161205 (2002).
[CrossRef]

Marchetti, F. M.

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and S. Dang, “Bose-Einstein condensation of exciton polaritons,” Nature 443(7110), 409–414 (2006).
[CrossRef] [PubMed]

Martin, M. D.

A. Amo, D. Sanvitto, F. P. Laussy, D. Ballarini, E. del Valle, M. D. Martin, A. Lemaître, J. Bloch, D. N. Krizhanovskii, M. S. Skolnick, C. Tejedor, and L. Viña, “Collective fluid dynamics of a polariton condensate in a semiconductor microcavity,” Nature 457(7227), 291–295 (2009).
[CrossRef] [PubMed]

Massies, J.

F. Stokker-Cheregi, A. Vinattieri, F. Semond, M. Leroux, I. R. Sellers, J. Massies, D. Solnyshkov, G. Malpuech, M. Colocci, and M. Gurioli, “Polariton relaxation bottleneck and its thermal suppression in bulk GaN microcavities,” Appl. Phys. Lett. 92(4), 042119 (2008).
[CrossRef]

I. R. Sellers, F. Semond, M. Leroux, J. Massies, M. Zamfirescu, F. Stokker-Cheregi, M. Gurioli, A. Vinattieri, M. Colocci, A. Tahraoui, and A. A. Khalifa, “Polariton emission and reflectivity in GaN microcavities as a function of angle and temperature,” Phys. Rev. B 74(19), 193308 (2006).
[CrossRef]

N. Antoine-Vincent, F. Natali, D. Byrne, A. Vasson, P. Disseix, J. Leymarie, M. Leroux, F. Semond, and J. Massies, “Observation of Rabi splitting in a bulk GaN microcavity grown on silicon,” Phys. Rev. B 68(15), 153313 (2003).
[CrossRef]

Médard, F.

S. Faure, C. Brimont, T. Guillet, T. Bretagnon, B. Gil, F. Médard, D. Lagarde, P. Disseix, J. Leymarie, J. Zúñiga-Pérez, M. Leroux, E. Frayssinet, J. C. Moreno, F. Semond, and S. Bouchoule, “Relaxation and emission of Bragg-mode and cavity-mode polaritons in a ZnO microcavity at room temperature,” Appl. Phys. Lett. 95(12), 121102 (2009).
[CrossRef]

F. Médard, J. Zúñiga-Perez, P. Disseix, M. Mihailovic, J. Leymarie, A. Vasson, F. Semond, E. Frayssinet, J. C. Moreno, M. Leroux, S. Faure, and T. Guillet, “Experimental observation of strong light-matter coupling in ZnO microcavities: Influence of large excitonic absorption,” Phys. Rev. B 79(12), 125302 (2009).
[CrossRef]

Mihailovic, M.

F. Médard, J. Zúñiga-Perez, P. Disseix, M. Mihailovic, J. Leymarie, A. Vasson, F. Semond, E. Frayssinet, J. C. Moreno, M. Leroux, S. Faure, and T. Guillet, “Experimental observation of strong light-matter coupling in ZnO microcavities: Influence of large excitonic absorption,” Phys. Rev. B 79(12), 125302 (2009).
[CrossRef]

M. Mihailovic, A. L. Henneghien, S. Faure, P. Disseix, J. Leymarie, A. Vasson, D. A. Buell, F. Semond, C. Morhain, and J. Zúñiga Pérez, “Optical and excitonic properties of ZnO films,” Opt. Mater. 31(3), 532–536 (2009).
[CrossRef]

Moreno, J. C.

F. Médard, J. Zúñiga-Perez, P. Disseix, M. Mihailovic, J. Leymarie, A. Vasson, F. Semond, E. Frayssinet, J. C. Moreno, M. Leroux, S. Faure, and T. Guillet, “Experimental observation of strong light-matter coupling in ZnO microcavities: Influence of large excitonic absorption,” Phys. Rev. B 79(12), 125302 (2009).
[CrossRef]

S. Faure, C. Brimont, T. Guillet, T. Bretagnon, B. Gil, F. Médard, D. Lagarde, P. Disseix, J. Leymarie, J. Zúñiga-Pérez, M. Leroux, E. Frayssinet, J. C. Moreno, F. Semond, and S. Bouchoule, “Relaxation and emission of Bragg-mode and cavity-mode polaritons in a ZnO microcavity at room temperature,” Appl. Phys. Lett. 95(12), 121102 (2009).
[CrossRef]

Morhain, C.

M. Mihailovic, A. L. Henneghien, S. Faure, P. Disseix, J. Leymarie, A. Vasson, D. A. Buell, F. Semond, C. Morhain, and J. Zúñiga Pérez, “Optical and excitonic properties of ZnO films,” Opt. Mater. 31(3), 532–536 (2009).
[CrossRef]

Morkoç, H.

R. Shimada, J. Xie, V. Avrutin, Ü. Özgür, and H. Morkoç, “Cavity polaritons in ZnO-based hybrid microcavities,” Appl. Phys. Lett. 92(1), 011127 (2008).
[CrossRef]

A. Teke, Ü. Özgür, S. Doğan, X. Gu, H. Morkoç, B. Nemeth, J. Nause, and H. O. Everitt, “Excitonic fine structure and recombination dynamics in single-crystalline ZnO,” Phys. Rev. B 70(19), 195207 (2004).
[CrossRef]

Mosca, M.

R. Butté, G. Christmann, E. Feltin, J.-F. Carlin, M. Mosca, M. Ilegems, and N. Grandjean, “Room-temperature polariton luminescence from a bulk GaN microcavity,” Phys. Rev. B 73(3), 033315 (2006).
[CrossRef]

E. Feltin, G. Christmann, R. Butté, J.-F. Carlin, M. Mosca, and N. Grandjean, “Room temperature polariton luminescence from a GaN/AlGaN quantum well microcavity,” Appl. Phys. Lett. 89(7), 071107 (2006).
[CrossRef]

Mura, A.

M. Saba, C. Ciuti, J. Bloch, V. Thierry-Mieg, R. André, S. Dang, S. Kundermann, A. Mura, G. Bongiovanni, J. L. Staehli, and B. Deveaud, “High-temperature ultrafast polariton parametric amplification in semiconductor microcavities,” Nature 414(6865), 731–735 (2001).
[CrossRef] [PubMed]

Natali, F.

N. Antoine-Vincent, F. Natali, D. Byrne, A. Vasson, P. Disseix, J. Leymarie, M. Leroux, F. Semond, and J. Massies, “Observation of Rabi splitting in a bulk GaN microcavity grown on silicon,” Phys. Rev. B 68(15), 153313 (2003).
[CrossRef]

Nause, J.

A. Teke, Ü. Özgür, S. Doğan, X. Gu, H. Morkoç, B. Nemeth, J. Nause, and H. O. Everitt, “Excitonic fine structure and recombination dynamics in single-crystalline ZnO,” Phys. Rev. B 70(19), 195207 (2004).
[CrossRef]

Nemeth, B.

A. Teke, Ü. Özgür, S. Doğan, X. Gu, H. Morkoç, B. Nemeth, J. Nause, and H. O. Everitt, “Excitonic fine structure and recombination dynamics in single-crystalline ZnO,” Phys. Rev. B 70(19), 195207 (2004).
[CrossRef]

Nishioka, M.

C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett. 69(23), 3314–3317 (1992).
[CrossRef] [PubMed]

Ohno, H.

A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S. F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, and M. Kawasaki, “Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO,” Nat. Mater. 4(1), 42–46 (2005).
[CrossRef]

Ohtani, K.

A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S. F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, and M. Kawasaki, “Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO,” Nat. Mater. 4(1), 42–46 (2005).
[CrossRef]

Ohtani, M.

A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S. F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, and M. Kawasaki, “Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO,” Nat. Mater. 4(1), 42–46 (2005).
[CrossRef]

Ohtomo, A.

A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S. F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, and M. Kawasaki, “Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO,” Nat. Mater. 4(1), 42–46 (2005).
[CrossRef]

Onuma, T.

A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S. F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, and M. Kawasaki, “Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO,” Nat. Mater. 4(1), 42–46 (2005).
[CrossRef]

Özgür, Ü.

R. Shimada, J. Xie, V. Avrutin, Ü. Özgür, and H. Morkoç, “Cavity polaritons in ZnO-based hybrid microcavities,” Appl. Phys. Lett. 92(1), 011127 (2008).
[CrossRef]

A. Teke, Ü. Özgür, S. Doğan, X. Gu, H. Morkoç, B. Nemeth, J. Nause, and H. O. Everitt, “Excitonic fine structure and recombination dynamics in single-crystalline ZnO,” Phys. Rev. B 70(19), 195207 (2004).
[CrossRef]

Park, K.

Y. Chen, D. M. Bagnall, H. Koh, K. Park, K. Hiraga, Z. Zhu, and T. Yao, “Plasma assisted molecular beam epitaxy of ZnO on c-plane sapphire: Growth and characterization,” J. Appl. Phys. 84(7), 3912–3918 (1998).
[CrossRef]

Park, W. I.

S. W. Jung, W. I. Park, H. D. Cheong, G. C. Yi, H. M. Jang, S. Hong, and T. Joo, “Time-resolved and time-integrated photoluminescence in ZnO epilayers grown on Al2O3(0001) by metalorganic vapor phase,” Appl. Phys. Lett. 80(11), 1924–1926 (2002).
[CrossRef]

Pelekanos, N. T.

S. I. Tsintzos, N. T. Pelekanos, G. Konstantinidis, Z. Hatzopoulos, and P. G. Savvidis, “A GaAs polariton light-emitting diode operating near room temperature,” Nature 453(7193), 372–375 (2008).
[CrossRef] [PubMed]

Reynolds, D. C.

R. E. Sherriff, D. C. Reynolds, D. C. Look, B. Jogai, J. E. Hoelscher, T. C. Collins, G. Cantwell, and W. C. Harsch, “Photoluminescence measurements from the two polar faces of ZnO,” J. Appl. Phys. 88(6), 3454 (2000).
[CrossRef]

Rheinländer, B.

R. Schmidt-Grund, B. Rheinländer, C. Czekalla, G. Benndorf, H. Hochmuth, M. Lorenz, and M. Grundmann, “Exciton–polariton formation at room temperature in a planar ZnO resonator structure,” Appl. Phys. B 93(2-3), 331–337 (2008).
[CrossRef]

Richard, M.

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and S. Dang, “Bose-Einstein condensation of exciton polaritons,” Nature 443(7110), 409–414 (2006).
[CrossRef] [PubMed]

Saba, M.

M. Saba, C. Ciuti, J. Bloch, V. Thierry-Mieg, R. André, S. Dang, S. Kundermann, A. Mura, G. Bongiovanni, J. L. Staehli, and B. Deveaud, “High-temperature ultrafast polariton parametric amplification in semiconductor microcavities,” Nature 414(6865), 731–735 (2001).
[CrossRef] [PubMed]

Santori, C.

H. Deng, G. Weihs, C. Santori, J. Bloch, and Y. Yamamoto, “Condensation of semiconductor microcavity exciton polaritons,” Science 298(5591), 199–202 (2002).
[CrossRef] [PubMed]

Sanvitto, D.

A. Amo, D. Sanvitto, F. P. Laussy, D. Ballarini, E. del Valle, M. D. Martin, A. Lemaître, J. Bloch, D. N. Krizhanovskii, M. S. Skolnick, C. Tejedor, and L. Viña, “Collective fluid dynamics of a polariton condensate in a semiconductor microcavity,” Nature 457(7227), 291–295 (2009).
[CrossRef] [PubMed]

Savona, V.

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and S. Dang, “Bose-Einstein condensation of exciton polaritons,” Nature 443(7110), 409–414 (2006).
[CrossRef] [PubMed]

Savvidis, P. G.

S. I. Tsintzos, N. T. Pelekanos, G. Konstantinidis, Z. Hatzopoulos, and P. G. Savvidis, “A GaAs polariton light-emitting diode operating near room temperature,” Nature 453(7193), 372–375 (2008).
[CrossRef] [PubMed]

Schmidt-Grund, R.

C. Sturm, H. Hilmer, R. Schmidt-Grund, and M. Grundmann, “Observation of strong exciton–photon coupling at temperatures up to 410 K,” N. J. Phys. 11(7), 073044 (2009).
[CrossRef]

R. Schmidt-Grund, B. Rheinländer, C. Czekalla, G. Benndorf, H. Hochmuth, M. Lorenz, and M. Grundmann, “Exciton–polariton formation at room temperature in a planar ZnO resonator structure,” Appl. Phys. B 93(2-3), 331–337 (2008).
[CrossRef]

Seager, C. H.

K. Vanheusden, C. H. Seager, W. L. Warren, D. R. Tallant, and J. A. Voigt, “Correlation between photoluminescence and oxygen vacancies in ZnO phosphors,” Appl. Phys. Lett. 68(3), 403–405 (1996).
[CrossRef]

Segawa, Y.

A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S. F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, and M. Kawasaki, “Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO,” Nat. Mater. 4(1), 42–46 (2005).
[CrossRef]

Sellers, I. R.

F. Stokker-Cheregi, A. Vinattieri, F. Semond, M. Leroux, I. R. Sellers, J. Massies, D. Solnyshkov, G. Malpuech, M. Colocci, and M. Gurioli, “Polariton relaxation bottleneck and its thermal suppression in bulk GaN microcavities,” Appl. Phys. Lett. 92(4), 042119 (2008).
[CrossRef]

I. R. Sellers, F. Semond, M. Leroux, J. Massies, M. Zamfirescu, F. Stokker-Cheregi, M. Gurioli, A. Vinattieri, M. Colocci, A. Tahraoui, and A. A. Khalifa, “Polariton emission and reflectivity in GaN microcavities as a function of angle and temperature,” Phys. Rev. B 74(19), 193308 (2006).
[CrossRef]

Semond, F.

S. Faure, C. Brimont, T. Guillet, T. Bretagnon, B. Gil, F. Médard, D. Lagarde, P. Disseix, J. Leymarie, J. Zúñiga-Pérez, M. Leroux, E. Frayssinet, J. C. Moreno, F. Semond, and S. Bouchoule, “Relaxation and emission of Bragg-mode and cavity-mode polaritons in a ZnO microcavity at room temperature,” Appl. Phys. Lett. 95(12), 121102 (2009).
[CrossRef]

F. Médard, J. Zúñiga-Perez, P. Disseix, M. Mihailovic, J. Leymarie, A. Vasson, F. Semond, E. Frayssinet, J. C. Moreno, M. Leroux, S. Faure, and T. Guillet, “Experimental observation of strong light-matter coupling in ZnO microcavities: Influence of large excitonic absorption,” Phys. Rev. B 79(12), 125302 (2009).
[CrossRef]

M. Mihailovic, A. L. Henneghien, S. Faure, P. Disseix, J. Leymarie, A. Vasson, D. A. Buell, F. Semond, C. Morhain, and J. Zúñiga Pérez, “Optical and excitonic properties of ZnO films,” Opt. Mater. 31(3), 532–536 (2009).
[CrossRef]

F. Stokker-Cheregi, A. Vinattieri, F. Semond, M. Leroux, I. R. Sellers, J. Massies, D. Solnyshkov, G. Malpuech, M. Colocci, and M. Gurioli, “Polariton relaxation bottleneck and its thermal suppression in bulk GaN microcavities,” Appl. Phys. Lett. 92(4), 042119 (2008).
[CrossRef]

I. R. Sellers, F. Semond, M. Leroux, J. Massies, M. Zamfirescu, F. Stokker-Cheregi, M. Gurioli, A. Vinattieri, M. Colocci, A. Tahraoui, and A. A. Khalifa, “Polariton emission and reflectivity in GaN microcavities as a function of angle and temperature,” Phys. Rev. B 74(19), 193308 (2006).
[CrossRef]

N. Antoine-Vincent, F. Natali, D. Byrne, A. Vasson, P. Disseix, J. Leymarie, M. Leroux, F. Semond, and J. Massies, “Observation of Rabi splitting in a bulk GaN microcavity grown on silicon,” Phys. Rev. B 68(15), 153313 (2003).
[CrossRef]

Sherriff, R. E.

R. E. Sherriff, D. C. Reynolds, D. C. Look, B. Jogai, J. E. Hoelscher, T. C. Collins, G. Cantwell, and W. C. Harsch, “Photoluminescence measurements from the two polar faces of ZnO,” J. Appl. Phys. 88(6), 3454 (2000).
[CrossRef]

Shim, E. S.

E. S. Shim, H. S. Kang, J. S. Kang, J. H. Kim, and S. Y. Lee, “Effect of the variation of film thickness on the structural and optical properties of ZnO thin films deposited on sapphire substrate using PLD,” Appl. Surf. Sci. 186(1-4), 474–476 (2002).
[CrossRef]

Shimada, R.

R. Shimada, J. Xie, V. Avrutin, Ü. Özgür, and H. Morkoç, “Cavity polaritons in ZnO-based hybrid microcavities,” Appl. Phys. Lett. 92(1), 011127 (2008).
[CrossRef]

Skolnick, M. S.

A. Amo, D. Sanvitto, F. P. Laussy, D. Ballarini, E. del Valle, M. D. Martin, A. Lemaître, J. Bloch, D. N. Krizhanovskii, M. S. Skolnick, C. Tejedor, and L. Viña, “Collective fluid dynamics of a polariton condensate in a semiconductor microcavity,” Nature 457(7227), 291–295 (2009).
[CrossRef] [PubMed]

D. G. Lidzey, D. D. C. Bradley, T. Virgili, A. Armitage, M. S. Skolnick, and S. Walker, “Room Temperature Polariton Emission from Strongly Coupled Organic Semiconductor Microcavities,” Phys. Rev. Lett. 82(16), 3316–3319 (1999).
[CrossRef]

Solnyshkov, D.

F. Stokker-Cheregi, A. Vinattieri, F. Semond, M. Leroux, I. R. Sellers, J. Massies, D. Solnyshkov, G. Malpuech, M. Colocci, and M. Gurioli, “Polariton relaxation bottleneck and its thermal suppression in bulk GaN microcavities,” Appl. Phys. Lett. 92(4), 042119 (2008).
[CrossRef]

Solnyshkov, D. D.

R. Johne, D. D. Solnyshkov, and G. Malpuech, “Theory of exciton-polariton lasing at room temperature in ZnO microcavities,” Appl. Phys. Lett. 93(21), 211105 (2008).
[CrossRef]

Sota, T.

S. F. Chichibu, T. Sota, G. Cantwell, D. B. Eason, and C. W. Litton, “Polarized photoreflectance spectra of excitonic polaritons in a ZnO single crystal,” J. Appl. Phys. 93(1), 756–758 (2003).
[CrossRef]

Staehli, J. L.

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and S. Dang, “Bose-Einstein condensation of exciton polaritons,” Nature 443(7110), 409–414 (2006).
[CrossRef] [PubMed]

M. Saba, C. Ciuti, J. Bloch, V. Thierry-Mieg, R. André, S. Dang, S. Kundermann, A. Mura, G. Bongiovanni, J. L. Staehli, and B. Deveaud, “High-temperature ultrafast polariton parametric amplification in semiconductor microcavities,” Nature 414(6865), 731–735 (2001).
[CrossRef] [PubMed]

Stokker-Cheregi, F.

F. Stokker-Cheregi, A. Vinattieri, F. Semond, M. Leroux, I. R. Sellers, J. Massies, D. Solnyshkov, G. Malpuech, M. Colocci, and M. Gurioli, “Polariton relaxation bottleneck and its thermal suppression in bulk GaN microcavities,” Appl. Phys. Lett. 92(4), 042119 (2008).
[CrossRef]

I. R. Sellers, F. Semond, M. Leroux, J. Massies, M. Zamfirescu, F. Stokker-Cheregi, M. Gurioli, A. Vinattieri, M. Colocci, A. Tahraoui, and A. A. Khalifa, “Polariton emission and reflectivity in GaN microcavities as a function of angle and temperature,” Phys. Rev. B 74(19), 193308 (2006).
[CrossRef]

Sturm, C.

C. Sturm, H. Hilmer, R. Schmidt-Grund, and M. Grundmann, “Observation of strong exciton–photon coupling at temperatures up to 410 K,” N. J. Phys. 11(7), 073044 (2009).
[CrossRef]

Sumiya, M.

A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S. F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, and M. Kawasaki, “Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO,” Nat. Mater. 4(1), 42–46 (2005).
[CrossRef]

Szymanska, M. H.

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and S. Dang, “Bose-Einstein condensation of exciton polaritons,” Nature 443(7110), 409–414 (2006).
[CrossRef] [PubMed]

Tahraoui, A.

I. R. Sellers, F. Semond, M. Leroux, J. Massies, M. Zamfirescu, F. Stokker-Cheregi, M. Gurioli, A. Vinattieri, M. Colocci, A. Tahraoui, and A. A. Khalifa, “Polariton emission and reflectivity in GaN microcavities as a function of angle and temperature,” Phys. Rev. B 74(19), 193308 (2006).
[CrossRef]

Tallant, D. R.

K. Vanheusden, C. H. Seager, W. L. Warren, D. R. Tallant, and J. A. Voigt, “Correlation between photoluminescence and oxygen vacancies in ZnO phosphors,” Appl. Phys. Lett. 68(3), 403–405 (1996).
[CrossRef]

Tejedor, C.

A. Amo, D. Sanvitto, F. P. Laussy, D. Ballarini, E. del Valle, M. D. Martin, A. Lemaître, J. Bloch, D. N. Krizhanovskii, M. S. Skolnick, C. Tejedor, and L. Viña, “Collective fluid dynamics of a polariton condensate in a semiconductor microcavity,” Nature 457(7227), 291–295 (2009).
[CrossRef] [PubMed]

Teke, A.

A. Teke, Ü. Özgür, S. Doğan, X. Gu, H. Morkoç, B. Nemeth, J. Nause, and H. O. Everitt, “Excitonic fine structure and recombination dynamics in single-crystalline ZnO,” Phys. Rev. B 70(19), 195207 (2004).
[CrossRef]

Thierry-Mieg, V.

M. Saba, C. Ciuti, J. Bloch, V. Thierry-Mieg, R. André, S. Dang, S. Kundermann, A. Mura, G. Bongiovanni, J. L. Staehli, and B. Deveaud, “High-temperature ultrafast polariton parametric amplification in semiconductor microcavities,” Nature 414(6865), 731–735 (2001).
[CrossRef] [PubMed]

Tsintzos, S. I.

S. I. Tsintzos, N. T. Pelekanos, G. Konstantinidis, Z. Hatzopoulos, and P. G. Savvidis, “A GaAs polariton light-emitting diode operating near room temperature,” Nature 453(7193), 372–375 (2008).
[CrossRef] [PubMed]

Tsukazaki, A.

A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S. F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, and M. Kawasaki, “Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO,” Nat. Mater. 4(1), 42–46 (2005).
[CrossRef]

Vahala, K. J.

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[CrossRef] [PubMed]

Vanheusden, K.

K. Vanheusden, C. H. Seager, W. L. Warren, D. R. Tallant, and J. A. Voigt, “Correlation between photoluminescence and oxygen vacancies in ZnO phosphors,” Appl. Phys. Lett. 68(3), 403–405 (1996).
[CrossRef]

Vasson, A.

M. Mihailovic, A. L. Henneghien, S. Faure, P. Disseix, J. Leymarie, A. Vasson, D. A. Buell, F. Semond, C. Morhain, and J. Zúñiga Pérez, “Optical and excitonic properties of ZnO films,” Opt. Mater. 31(3), 532–536 (2009).
[CrossRef]

F. Médard, J. Zúñiga-Perez, P. Disseix, M. Mihailovic, J. Leymarie, A. Vasson, F. Semond, E. Frayssinet, J. C. Moreno, M. Leroux, S. Faure, and T. Guillet, “Experimental observation of strong light-matter coupling in ZnO microcavities: Influence of large excitonic absorption,” Phys. Rev. B 79(12), 125302 (2009).
[CrossRef]

N. Antoine-Vincent, F. Natali, D. Byrne, A. Vasson, P. Disseix, J. Leymarie, M. Leroux, F. Semond, and J. Massies, “Observation of Rabi splitting in a bulk GaN microcavity grown on silicon,” Phys. Rev. B 68(15), 153313 (2003).
[CrossRef]

Viña, L.

A. Amo, D. Sanvitto, F. P. Laussy, D. Ballarini, E. del Valle, M. D. Martin, A. Lemaître, J. Bloch, D. N. Krizhanovskii, M. S. Skolnick, C. Tejedor, and L. Viña, “Collective fluid dynamics of a polariton condensate in a semiconductor microcavity,” Nature 457(7227), 291–295 (2009).
[CrossRef] [PubMed]

Vinattieri, A.

F. Stokker-Cheregi, A. Vinattieri, F. Semond, M. Leroux, I. R. Sellers, J. Massies, D. Solnyshkov, G. Malpuech, M. Colocci, and M. Gurioli, “Polariton relaxation bottleneck and its thermal suppression in bulk GaN microcavities,” Appl. Phys. Lett. 92(4), 042119 (2008).
[CrossRef]

I. R. Sellers, F. Semond, M. Leroux, J. Massies, M. Zamfirescu, F. Stokker-Cheregi, M. Gurioli, A. Vinattieri, M. Colocci, A. Tahraoui, and A. A. Khalifa, “Polariton emission and reflectivity in GaN microcavities as a function of angle and temperature,” Phys. Rev. B 74(19), 193308 (2006).
[CrossRef]

Virgili, T.

D. G. Lidzey, D. D. C. Bradley, T. Virgili, A. Armitage, M. S. Skolnick, and S. Walker, “Room Temperature Polariton Emission from Strongly Coupled Organic Semiconductor Microcavities,” Phys. Rev. Lett. 82(16), 3316–3319 (1999).
[CrossRef]

Voigt, J. A.

K. Vanheusden, C. H. Seager, W. L. Warren, D. R. Tallant, and J. A. Voigt, “Correlation between photoluminescence and oxygen vacancies in ZnO phosphors,” Appl. Phys. Lett. 68(3), 403–405 (1996).
[CrossRef]

Von Högersthal, G. B. H.

S. Christopoulos, G. B. H. Von Högersthal, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J.-F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett. 98(12), 126405 (2007).
[CrossRef] [PubMed]

Walker, S.

D. G. Lidzey, D. D. C. Bradley, T. Virgili, A. Armitage, M. S. Skolnick, and S. Walker, “Room Temperature Polariton Emission from Strongly Coupled Organic Semiconductor Microcavities,” Phys. Rev. Lett. 82(16), 3316–3319 (1999).
[CrossRef]

Wang, S.-C.

J.-R. Chen, S.-C. Ling, C.-T. Hung, T.-S. Ko, T.-C. Lu, H.-C. Kuo, and S.-C. Wang, “High-reflectivity ultraviolet AlN/AlGaN distributed Bragg reflectors grown by metalorganic chemical vapor deposition,” J. Cryst. Growth 310(23), 4871–4875 (2008).
[CrossRef]

Warren, W. L.

K. Vanheusden, C. H. Seager, W. L. Warren, D. R. Tallant, and J. A. Voigt, “Correlation between photoluminescence and oxygen vacancies in ZnO phosphors,” Appl. Phys. Lett. 68(3), 403–405 (1996).
[CrossRef]

Weihs, G.

H. Deng, G. Weihs, C. Santori, J. Bloch, and Y. Yamamoto, “Condensation of semiconductor microcavity exciton polaritons,” Science 298(5591), 199–202 (2002).
[CrossRef] [PubMed]

Weisbuch, C.

C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett. 69(23), 3314–3317 (1992).
[CrossRef] [PubMed]

Wu, Y.-C.

J.-R. Chen, T.-C. Lu, Y.-C. Wu, S.-C. Lin, W.-R. Liu, W.-F. Hsieh, C.-C. Kuo, and C.-C. Lee, “Large vacuum Rabi splitting in ZnO-based hybrid microcavities observed at room temperature,” Appl. Phys. Lett. 94(6), 061103 (2009).
[CrossRef]

Xie, J.

R. Shimada, J. Xie, V. Avrutin, Ü. Özgür, and H. Morkoç, “Cavity polaritons in ZnO-based hybrid microcavities,” Appl. Phys. Lett. 92(1), 011127 (2008).
[CrossRef]

Yamamoto, Y.

H. Deng, G. Weihs, C. Santori, J. Bloch, and Y. Yamamoto, “Condensation of semiconductor microcavity exciton polaritons,” Science 298(5591), 199–202 (2002).
[CrossRef] [PubMed]

Yao, T.

Y. Chen, D. M. Bagnall, H. Koh, K. Park, K. Hiraga, Z. Zhu, and T. Yao, “Plasma assisted molecular beam epitaxy of ZnO on c-plane sapphire: Growth and characterization,” J. Appl. Phys. 84(7), 3912–3918 (1998).
[CrossRef]

Yi, G. C.

S. W. Jung, W. I. Park, H. D. Cheong, G. C. Yi, H. M. Jang, S. Hong, and T. Joo, “Time-resolved and time-integrated photoluminescence in ZnO epilayers grown on Al2O3(0001) by metalorganic vapor phase,” Appl. Phys. Lett. 80(11), 1924–1926 (2002).
[CrossRef]

Zamfirescu, M.

I. R. Sellers, F. Semond, M. Leroux, J. Massies, M. Zamfirescu, F. Stokker-Cheregi, M. Gurioli, A. Vinattieri, M. Colocci, A. Tahraoui, and A. A. Khalifa, “Polariton emission and reflectivity in GaN microcavities as a function of angle and temperature,” Phys. Rev. B 74(19), 193308 (2006).
[CrossRef]

M. Zamfirescu, A. Kavokin, B. Gil, G. Malpuech, and M. Kaliteevski, “ZnO as a material mostly adapted for the realization of room-temperature polariton lasers,” Phys. Rev. B 65(16), 161205 (2002).
[CrossRef]

Zhu, Z.

Y. Chen, D. M. Bagnall, H. Koh, K. Park, K. Hiraga, Z. Zhu, and T. Yao, “Plasma assisted molecular beam epitaxy of ZnO on c-plane sapphire: Growth and characterization,” J. Appl. Phys. 84(7), 3912–3918 (1998).
[CrossRef]

Zúñiga Pérez, J.

M. Mihailovic, A. L. Henneghien, S. Faure, P. Disseix, J. Leymarie, A. Vasson, D. A. Buell, F. Semond, C. Morhain, and J. Zúñiga Pérez, “Optical and excitonic properties of ZnO films,” Opt. Mater. 31(3), 532–536 (2009).
[CrossRef]

Zúñiga-Perez, J.

F. Médard, J. Zúñiga-Perez, P. Disseix, M. Mihailovic, J. Leymarie, A. Vasson, F. Semond, E. Frayssinet, J. C. Moreno, M. Leroux, S. Faure, and T. Guillet, “Experimental observation of strong light-matter coupling in ZnO microcavities: Influence of large excitonic absorption,” Phys. Rev. B 79(12), 125302 (2009).
[CrossRef]

Zúñiga-Pérez, J.

S. Faure, C. Brimont, T. Guillet, T. Bretagnon, B. Gil, F. Médard, D. Lagarde, P. Disseix, J. Leymarie, J. Zúñiga-Pérez, M. Leroux, E. Frayssinet, J. C. Moreno, F. Semond, and S. Bouchoule, “Relaxation and emission of Bragg-mode and cavity-mode polaritons in a ZnO microcavity at room temperature,” Appl. Phys. Lett. 95(12), 121102 (2009).
[CrossRef]

Appl. Phys. B (1)

R. Schmidt-Grund, B. Rheinländer, C. Czekalla, G. Benndorf, H. Hochmuth, M. Lorenz, and M. Grundmann, “Exciton–polariton formation at room temperature in a planar ZnO resonator structure,” Appl. Phys. B 93(2-3), 331–337 (2008).
[CrossRef]

Appl. Phys. Lett. (9)

R. Johne, D. D. Solnyshkov, and G. Malpuech, “Theory of exciton-polariton lasing at room temperature in ZnO microcavities,” Appl. Phys. Lett. 93(21), 211105 (2008).
[CrossRef]

R. Shimada, J. Xie, V. Avrutin, Ü. Özgür, and H. Morkoç, “Cavity polaritons in ZnO-based hybrid microcavities,” Appl. Phys. Lett. 92(1), 011127 (2008).
[CrossRef]

S. Faure, C. Brimont, T. Guillet, T. Bretagnon, B. Gil, F. Médard, D. Lagarde, P. Disseix, J. Leymarie, J. Zúñiga-Pérez, M. Leroux, E. Frayssinet, J. C. Moreno, F. Semond, and S. Bouchoule, “Relaxation and emission of Bragg-mode and cavity-mode polaritons in a ZnO microcavity at room temperature,” Appl. Phys. Lett. 95(12), 121102 (2009).
[CrossRef]

S. W. Jung, W. I. Park, H. D. Cheong, G. C. Yi, H. M. Jang, S. Hong, and T. Joo, “Time-resolved and time-integrated photoluminescence in ZnO epilayers grown on Al2O3(0001) by metalorganic vapor phase,” Appl. Phys. Lett. 80(11), 1924–1926 (2002).
[CrossRef]

K. Vanheusden, C. H. Seager, W. L. Warren, D. R. Tallant, and J. A. Voigt, “Correlation between photoluminescence and oxygen vacancies in ZnO phosphors,” Appl. Phys. Lett. 68(3), 403–405 (1996).
[CrossRef]

G. Christmann, R. Butté, E. Feltin, J.-F. Carlin, and N. Grandjean, “Room temperature polariton lasing in a GaN/AlGaN multiple quantum well microcavity,” Appl. Phys. Lett. 93(5), 051102 (2008).
[CrossRef]

E. Feltin, G. Christmann, R. Butté, J.-F. Carlin, M. Mosca, and N. Grandjean, “Room temperature polariton luminescence from a GaN/AlGaN quantum well microcavity,” Appl. Phys. Lett. 89(7), 071107 (2006).
[CrossRef]

J.-R. Chen, T.-C. Lu, Y.-C. Wu, S.-C. Lin, W.-R. Liu, W.-F. Hsieh, C.-C. Kuo, and C.-C. Lee, “Large vacuum Rabi splitting in ZnO-based hybrid microcavities observed at room temperature,” Appl. Phys. Lett. 94(6), 061103 (2009).
[CrossRef]

F. Stokker-Cheregi, A. Vinattieri, F. Semond, M. Leroux, I. R. Sellers, J. Massies, D. Solnyshkov, G. Malpuech, M. Colocci, and M. Gurioli, “Polariton relaxation bottleneck and its thermal suppression in bulk GaN microcavities,” Appl. Phys. Lett. 92(4), 042119 (2008).
[CrossRef]

Appl. Surf. Sci. (1)

E. S. Shim, H. S. Kang, J. S. Kang, J. H. Kim, and S. Y. Lee, “Effect of the variation of film thickness on the structural and optical properties of ZnO thin films deposited on sapphire substrate using PLD,” Appl. Surf. Sci. 186(1-4), 474–476 (2002).
[CrossRef]

J. Appl. Phys. (3)

Y. Chen, D. M. Bagnall, H. Koh, K. Park, K. Hiraga, Z. Zhu, and T. Yao, “Plasma assisted molecular beam epitaxy of ZnO on c-plane sapphire: Growth and characterization,” J. Appl. Phys. 84(7), 3912–3918 (1998).
[CrossRef]

S. F. Chichibu, T. Sota, G. Cantwell, D. B. Eason, and C. W. Litton, “Polarized photoreflectance spectra of excitonic polaritons in a ZnO single crystal,” J. Appl. Phys. 93(1), 756–758 (2003).
[CrossRef]

R. E. Sherriff, D. C. Reynolds, D. C. Look, B. Jogai, J. E. Hoelscher, T. C. Collins, G. Cantwell, and W. C. Harsch, “Photoluminescence measurements from the two polar faces of ZnO,” J. Appl. Phys. 88(6), 3454 (2000).
[CrossRef]

J. Cryst. Growth (1)

J.-R. Chen, S.-C. Ling, C.-T. Hung, T.-S. Ko, T.-C. Lu, H.-C. Kuo, and S.-C. Wang, “High-reflectivity ultraviolet AlN/AlGaN distributed Bragg reflectors grown by metalorganic chemical vapor deposition,” J. Cryst. Growth 310(23), 4871–4875 (2008).
[CrossRef]

N. J. Phys. (1)

C. Sturm, H. Hilmer, R. Schmidt-Grund, and M. Grundmann, “Observation of strong exciton–photon coupling at temperatures up to 410 K,” N. J. Phys. 11(7), 073044 (2009).
[CrossRef]

Nat. Mater. (1)

A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S. F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, and M. Kawasaki, “Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO,” Nat. Mater. 4(1), 42–46 (2005).
[CrossRef]

Nature (5)

S. I. Tsintzos, N. T. Pelekanos, G. Konstantinidis, Z. Hatzopoulos, and P. G. Savvidis, “A GaAs polariton light-emitting diode operating near room temperature,” Nature 453(7193), 372–375 (2008).
[CrossRef] [PubMed]

M. Saba, C. Ciuti, J. Bloch, V. Thierry-Mieg, R. André, S. Dang, S. Kundermann, A. Mura, G. Bongiovanni, J. L. Staehli, and B. Deveaud, “High-temperature ultrafast polariton parametric amplification in semiconductor microcavities,” Nature 414(6865), 731–735 (2001).
[CrossRef] [PubMed]

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[CrossRef] [PubMed]

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and S. Dang, “Bose-Einstein condensation of exciton polaritons,” Nature 443(7110), 409–414 (2006).
[CrossRef] [PubMed]

A. Amo, D. Sanvitto, F. P. Laussy, D. Ballarini, E. del Valle, M. D. Martin, A. Lemaître, J. Bloch, D. N. Krizhanovskii, M. S. Skolnick, C. Tejedor, and L. Viña, “Collective fluid dynamics of a polariton condensate in a semiconductor microcavity,” Nature 457(7227), 291–295 (2009).
[CrossRef] [PubMed]

Opt. Mater. (1)

M. Mihailovic, A. L. Henneghien, S. Faure, P. Disseix, J. Leymarie, A. Vasson, D. A. Buell, F. Semond, C. Morhain, and J. Zúñiga Pérez, “Optical and excitonic properties of ZnO films,” Opt. Mater. 31(3), 532–536 (2009).
[CrossRef]

Phys. Rev. B (8)

G. E. Jellison and L. A. Boatner, “Optical functions of uniaxial ZnO determined by generalized ellipsometry,” Phys. Rev. B 58(7), 3586–3589 (1998).
[CrossRef]

N. Antoine-Vincent, F. Natali, D. Byrne, A. Vasson, P. Disseix, J. Leymarie, M. Leroux, F. Semond, and J. Massies, “Observation of Rabi splitting in a bulk GaN microcavity grown on silicon,” Phys. Rev. B 68(15), 153313 (2003).
[CrossRef]

S. Faure, T. Guillet, P. Lefebvre, T. Bretagnon, and B. Gil, “Comparison of strong coupling regimes in bulk GaAs, GaN, and ZnO semiconductor microcavities,” Phys. Rev. B 78(23), 235323 (2008).
[CrossRef]

F. Médard, J. Zúñiga-Perez, P. Disseix, M. Mihailovic, J. Leymarie, A. Vasson, F. Semond, E. Frayssinet, J. C. Moreno, M. Leroux, S. Faure, and T. Guillet, “Experimental observation of strong light-matter coupling in ZnO microcavities: Influence of large excitonic absorption,” Phys. Rev. B 79(12), 125302 (2009).
[CrossRef]

I. R. Sellers, F. Semond, M. Leroux, J. Massies, M. Zamfirescu, F. Stokker-Cheregi, M. Gurioli, A. Vinattieri, M. Colocci, A. Tahraoui, and A. A. Khalifa, “Polariton emission and reflectivity in GaN microcavities as a function of angle and temperature,” Phys. Rev. B 74(19), 193308 (2006).
[CrossRef]

A. Teke, Ü. Özgür, S. Doğan, X. Gu, H. Morkoç, B. Nemeth, J. Nause, and H. O. Everitt, “Excitonic fine structure and recombination dynamics in single-crystalline ZnO,” Phys. Rev. B 70(19), 195207 (2004).
[CrossRef]

M. Zamfirescu, A. Kavokin, B. Gil, G. Malpuech, and M. Kaliteevski, “ZnO as a material mostly adapted for the realization of room-temperature polariton lasers,” Phys. Rev. B 65(16), 161205 (2002).
[CrossRef]

R. Butté, G. Christmann, E. Feltin, J.-F. Carlin, M. Mosca, M. Ilegems, and N. Grandjean, “Room-temperature polariton luminescence from a bulk GaN microcavity,” Phys. Rev. B 73(3), 033315 (2006).
[CrossRef]

Phys. Rev. Lett. (3)

C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett. 69(23), 3314–3317 (1992).
[CrossRef] [PubMed]

D. G. Lidzey, D. D. C. Bradley, T. Virgili, A. Armitage, M. S. Skolnick, and S. Walker, “Room Temperature Polariton Emission from Strongly Coupled Organic Semiconductor Microcavities,” Phys. Rev. Lett. 82(16), 3316–3319 (1999).
[CrossRef]

S. Christopoulos, G. B. H. Von Högersthal, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J.-F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett. 98(12), 126405 (2007).
[CrossRef] [PubMed]

Science (1)

H. Deng, G. Weihs, C. Santori, J. Bloch, and Y. Yamamoto, “Condensation of semiconductor microcavity exciton polaritons,” Science 298(5591), 199–202 (2002).
[CrossRef] [PubMed]

Other (1)

S. L. Chuang, Physics of Optoelectronic Devices, 1st ed. (Wiley, 1995)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) Schematic sketch of the ZnO MC structure. (b) Low-magnification cross-section SEM image of the 3λ/2 bulk ZnO hybrid MC structure. (c) Cross-section SEM image of the AlGaN/AlN and SiO2/HfO2 DBRs, and the 3λ/2 ZnO bulk layer under high magnification.

Fig. 2
Fig. 2

(a) An RT PL spectrum of the ZnO film grown on 30-pair AlN/AlGaN DBR. The half-cavity structure exhibited strong near-band-edge emission around 378 nm (3.28 eV). (b) An RT normal incidence PL spectrum of the full ZnO hybrid MC structure.

Fig. 3
Fig. 3

(a) Color map of the angular dispersion of measured reflectivity spectra from 8 to 38° at RT. The reflectivity spectra are normalized for the purpose of highlighting the variation of polariton dispersion curves. (b) Color maps of the calculated angle-resolved reflectivity spectra with taking into account the resonant exciton. (c) Simulation of angle-resolved reflectivity spectra for the bulk ZnO MCs after considering the absorption of scattering states.

Fig. 4
Fig. 4

Experimental (open blue circle) [36] and simulated (solid line) absorption spectra of a bulk ZnO at RT.

Fig. 5
Fig. 5

The experimental angle-resolved PL spectra of the ZnO MCs with approximate exciton-photon detunings of: (a) δ = −78 meV, and (b) δ = −26 meV at RT. The dashed line corresponds to the uncoupled exciton energy. The curve red line is a guide for the eyes, showing the dispersion of lower polariton branch.

Fig. 6
Fig. 6

2D color map of the PL intensity vs. energy and angle from the sample normal direction for three different positions on the sample with different detuning. The PL intensities are normalized to the maximum for each temperature and detuning. The horizontal dot lines show the exciton energies and the curve dashed and dotted lines represent the coupled LPB and uncoupled cavity photon mode, respectively.

Fig. 7
Fig. 7

The calculated exciton and cavity photon fractions for different exciton-photon detunings. There is a one-to-one correspondence between the mappings in Fig. 6 and the each of the calculated fractions vs. angle in Fig. 7 based on the same exciton-photon detunings.

Fig. 8
Fig. 8

PL intensities as a function of the detection angle for different excitation power densities at a temperature of 150 K for the detuning of −26 meV.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

ε r ( E ) = ε b + B E 0 2 E 2 + j Γ E ,
α ( ω ) = A 0 2 π 2 R y a 0 3 [ 4 γ / n 3 ( χ + 1 / n 2 ) 2 + γ 2 + d χ ' π γ S 3 D ( χ ' ) χ ' ( χ χ ' ) 2 + γ 2 ] ,
S 3 D ( χ ) = 2 π / χ 1 e 2 π / χ .
E L P ( θ ) = 1 2 [ E C + E X Ω 2 + δ 2 ] ,

Metrics