Abstract

We propose a novel photonic crystal fiber refractive index sensor which is based on the selectively resonant coupling between a conventional solid core and a microstructured core. The introduced microstructured core is realized by filling the air-holes in the core with low index analyte. We show that a detection limit (DL) of 2.02 × 10−6 refractive index unit (RIU) and a sensitivity of 8500 nm/RIU can be achieved for analyte with refractive index of 1.33.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Rindorf, J. B. Jensen, M. Dufva, L. H. Pedersen, P. E. Høiby, and O. Bang, “Photonic crystal fiber long-period gratings for biochemical sensing,” Opt. Express 14(18), 8224–8231 (2006), http://www.opticsinfobase.org/abstract.cfm?id=97940&CFID=12293554&CFTOKEN=19235945 .
    [CrossRef] [PubMed]
  2. L. Rindorf, P. E. Høiby, J. B. Jensen, L. H. Pedersen, O. Bang, and O. Geschke, “Towards biochips using microstructured optical fiber sensors,” Anal. Bioanal. Chem. 385(8), 1370–1375 (2006).
    [CrossRef] [PubMed]
  3. L. Rindorf and O. Bang, “Sensitivity of photonic crystal fiber grating sensors: biosensing, refractive index strain, and temperature sensing,” J. Opt. Soc. Am. B 25(3), 310–324 (2008).
    [CrossRef]
  4. J. R. Ott, M. Heuck, C. Agger, P. D. Rasmussen, and O. Bang, “Label-free and selective nonlinear fiber-optical biosensing,” Opt. Express 16(25), 20834–20847 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-25-20834 .
    [CrossRef] [PubMed]
  5. L. Rindorf and O. Bang, “Highly sensitive refractometer with a photonic-crystal-fiber long-period grating,” Opt. Lett. 33(6), 563–565 (2008).
    [CrossRef] [PubMed]
  6. A. Hassani and M. Skorobogatiy, “Design of the microstructured optical fiber-based surface plasmon resonance sensors with enhanced microfluidics,” Opt. Express 14(24), 11616–11621 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-24-11616 .
    [CrossRef] [PubMed]
  7. B. Gauvreau, A. Hassani, M. Fassi Fehri, A. Kabashin, and M. A. Skorobogatiy, “Photonic bandgap fiber-based Surface Plasmon Resonance sensors,” Opt. Express 15(18), 11413–11426 (2007), http://www.opticsinfobase.org/abstract.cfm?&id=141029 .
    [CrossRef] [PubMed]
  8. N. M. Litchinitser and E. Poliakov, “Antiresonant guiding microstructured optical fibers for sensing applications,” Appl. Phys. B 81(2-3), 347–351 (2005).
    [CrossRef]
  9. D. Noordegraaf, L. Scolari, J. Laegsgaard, T. Tanggaard Alkeskjold, G. Tartarini, E. Borelli, P. Bassi, J. Li, and S.-T. Wu, “Avoided-crossing-based liquid-crystal photonic-bandgap notch filter,” Opt. Lett. 33(9), 986–988 (2008).
    [CrossRef] [PubMed]
  10. Z. Wang, T. Taru, T. A. Birks, J. C. Knight, Y. Liu, and J. Du, “Coupling in dual-core photonic bandgap fibers: theory and experiment,” Opt. Express 15(8), 4795–4803 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-8-4795 .
    [CrossRef] [PubMed]
  11. J. Lægsgaard, “Directional coupling in twin-core photonic bandgap fibers,” Opt. Lett. 30(24), 3281–3283 (2005).
    [CrossRef]
  12. J. Laegsgaard, O. Bang, and A. Bjarklev, “Photonic crystal fiber design for broadband directional coupling,” Opt. Lett. 29(21), 2473–2475 (2004).
    [CrossRef] [PubMed]
  13. G. E. Town, W. Yuan, R. McCosker, and O. Bang, “Microstructured optical fiber refractive index sensor,” Opt. Lett. 35(6), 856–858 (2010).
    [CrossRef] [PubMed]
  14. W. Yuan, G. E. Town, and O. Bang, “Refractive index sensing in an all-solid twin-core photonic bandgap fiber,” IEEE Sens. J. 10(7), 1192–1199 (2010).
    [CrossRef]
  15. D. K. Wu, B. T. Kuhlmey, and B. J. Eggleton, “Ultrasensitive photonic crystal fiber refractive index sensor,” Opt. Lett. 34(3), 322–324 (2009).
    [CrossRef] [PubMed]
  16. M. C. Phan Huy, G. Laffont, V. Dewynter, P. Ferdinand, L. Labonté, D. Pagnoux, P. Roy, W. Blanc, and B. Dussardier, “Tilted Fiber Bragg Grating photowritten in microstructured optical fiber for improved refractive index measurement,” Opt. Express 14(22), 10359–10370 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=OE-14-22-10359 .
    [CrossRef] [PubMed]
  17. M. C. Phan Huy, G. Laffont, V. Dewynter, P. Ferdinand, P. Roy, J. L. Auguste, D. Pagnoux, W. Blanc, and B. Dussardier, “Three-hole microstructured optical fiber for efficient fiber Bragg grating refractometer,” Opt. Lett. 32(16), 2390–2392 (2007).
    [CrossRef] [PubMed]
  18. B. T. Kuhlmey, S. Coen, and S. Mahmoodian, “Coated photonic bandgap fibres for low-index sensing applications: cutoff analysis,” Opt. Express 17(18), 16306–16321 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-17-18-16306 .
    [CrossRef] [PubMed]
  19. M. Yan, P. Shum, and X. Yu, “Heterostructured photonic crystal fiber,” IEEE Photon. Technol. Lett. 17(7), 1438–1440 (2005).
    [CrossRef]
  20. C. M. B. Cordeiro, M. A. R. Franco, G. Chesini, E. C. S. Barretto, R. Lwin, C. H. Brito Cruz, and M. C. J. Large, “Microstructured-core optical fibre for evanescent sensing applications,” Opt. Express 14(26), 13056–13066 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=OE-14-26-130 .
    [CrossRef] [PubMed]
  21. M. Y. Chen, “Polarization and leakage properties of large-mode-area microstructured-core optical fibers,” Opt. Express 15(19), 12498–12507 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=OE-15-19-12498 .
    [CrossRef] [PubMed]
  22. K. Nielsen, H. K. Rasmussen, P. U. Jepsen, and O. Bang, “Broadband terahertz fiber directional coupler,” Opt. Lett. 35(17), 2879–2881 (2010).
    [CrossRef] [PubMed]
  23. W. P. Huang and C. L. Xu, “Simulation of three-dimensional optical waveguides by a full- vector beam propagation method,” IEEE J. Quantum Electron. 29(10), 2639–2649 (1993).
    [CrossRef]
  24. I. M. White and X. D. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express 16(2), 1020–1028 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-16-2-1020 .
    [CrossRef] [PubMed]
  25. J. Ju, Z. Wang, W. Jin, and M. S. Demokan, “Temperature sensitivity of a two-mode photonic crystal fiber interferometer sensor,” IEEE Photon. Technol. Lett. 18(20), 2168–2170 (2006).
    [CrossRef]

2010 (3)

2009 (2)

2008 (5)

2007 (4)

2006 (6)

M. C. Phan Huy, G. Laffont, V. Dewynter, P. Ferdinand, L. Labonté, D. Pagnoux, P. Roy, W. Blanc, and B. Dussardier, “Tilted Fiber Bragg Grating photowritten in microstructured optical fiber for improved refractive index measurement,” Opt. Express 14(22), 10359–10370 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=OE-14-22-10359 .
[CrossRef] [PubMed]

L. Rindorf, J. B. Jensen, M. Dufva, L. H. Pedersen, P. E. Høiby, and O. Bang, “Photonic crystal fiber long-period gratings for biochemical sensing,” Opt. Express 14(18), 8224–8231 (2006), http://www.opticsinfobase.org/abstract.cfm?id=97940&CFID=12293554&CFTOKEN=19235945 .
[CrossRef] [PubMed]

L. Rindorf, P. E. Høiby, J. B. Jensen, L. H. Pedersen, O. Bang, and O. Geschke, “Towards biochips using microstructured optical fiber sensors,” Anal. Bioanal. Chem. 385(8), 1370–1375 (2006).
[CrossRef] [PubMed]

A. Hassani and M. Skorobogatiy, “Design of the microstructured optical fiber-based surface plasmon resonance sensors with enhanced microfluidics,” Opt. Express 14(24), 11616–11621 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-24-11616 .
[CrossRef] [PubMed]

C. M. B. Cordeiro, M. A. R. Franco, G. Chesini, E. C. S. Barretto, R. Lwin, C. H. Brito Cruz, and M. C. J. Large, “Microstructured-core optical fibre for evanescent sensing applications,” Opt. Express 14(26), 13056–13066 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=OE-14-26-130 .
[CrossRef] [PubMed]

J. Ju, Z. Wang, W. Jin, and M. S. Demokan, “Temperature sensitivity of a two-mode photonic crystal fiber interferometer sensor,” IEEE Photon. Technol. Lett. 18(20), 2168–2170 (2006).
[CrossRef]

2005 (3)

M. Yan, P. Shum, and X. Yu, “Heterostructured photonic crystal fiber,” IEEE Photon. Technol. Lett. 17(7), 1438–1440 (2005).
[CrossRef]

N. M. Litchinitser and E. Poliakov, “Antiresonant guiding microstructured optical fibers for sensing applications,” Appl. Phys. B 81(2-3), 347–351 (2005).
[CrossRef]

J. Lægsgaard, “Directional coupling in twin-core photonic bandgap fibers,” Opt. Lett. 30(24), 3281–3283 (2005).
[CrossRef]

2004 (1)

1993 (1)

W. P. Huang and C. L. Xu, “Simulation of three-dimensional optical waveguides by a full- vector beam propagation method,” IEEE J. Quantum Electron. 29(10), 2639–2649 (1993).
[CrossRef]

Agger, C.

Auguste, J. L.

Bang, O.

W. Yuan, G. E. Town, and O. Bang, “Refractive index sensing in an all-solid twin-core photonic bandgap fiber,” IEEE Sens. J. 10(7), 1192–1199 (2010).
[CrossRef]

G. E. Town, W. Yuan, R. McCosker, and O. Bang, “Microstructured optical fiber refractive index sensor,” Opt. Lett. 35(6), 856–858 (2010).
[CrossRef] [PubMed]

K. Nielsen, H. K. Rasmussen, P. U. Jepsen, and O. Bang, “Broadband terahertz fiber directional coupler,” Opt. Lett. 35(17), 2879–2881 (2010).
[CrossRef] [PubMed]

J. R. Ott, M. Heuck, C. Agger, P. D. Rasmussen, and O. Bang, “Label-free and selective nonlinear fiber-optical biosensing,” Opt. Express 16(25), 20834–20847 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-25-20834 .
[CrossRef] [PubMed]

L. Rindorf and O. Bang, “Highly sensitive refractometer with a photonic-crystal-fiber long-period grating,” Opt. Lett. 33(6), 563–565 (2008).
[CrossRef] [PubMed]

L. Rindorf and O. Bang, “Sensitivity of photonic crystal fiber grating sensors: biosensing, refractive index strain, and temperature sensing,” J. Opt. Soc. Am. B 25(3), 310–324 (2008).
[CrossRef]

L. Rindorf, P. E. Høiby, J. B. Jensen, L. H. Pedersen, O. Bang, and O. Geschke, “Towards biochips using microstructured optical fiber sensors,” Anal. Bioanal. Chem. 385(8), 1370–1375 (2006).
[CrossRef] [PubMed]

L. Rindorf, J. B. Jensen, M. Dufva, L. H. Pedersen, P. E. Høiby, and O. Bang, “Photonic crystal fiber long-period gratings for biochemical sensing,” Opt. Express 14(18), 8224–8231 (2006), http://www.opticsinfobase.org/abstract.cfm?id=97940&CFID=12293554&CFTOKEN=19235945 .
[CrossRef] [PubMed]

J. Laegsgaard, O. Bang, and A. Bjarklev, “Photonic crystal fiber design for broadband directional coupling,” Opt. Lett. 29(21), 2473–2475 (2004).
[CrossRef] [PubMed]

Barretto, E. C. S.

Bassi, P.

Birks, T. A.

Bjarklev, A.

Blanc, W.

Borelli, E.

Brito Cruz, C. H.

Chen, M. Y.

Chesini, G.

Coen, S.

Cordeiro, C. M. B.

Demokan, M. S.

J. Ju, Z. Wang, W. Jin, and M. S. Demokan, “Temperature sensitivity of a two-mode photonic crystal fiber interferometer sensor,” IEEE Photon. Technol. Lett. 18(20), 2168–2170 (2006).
[CrossRef]

Dewynter, V.

Du, J.

Dufva, M.

Dussardier, B.

Eggleton, B. J.

Fan, X. D.

Fassi Fehri, M.

Ferdinand, P.

Franco, M. A. R.

Gauvreau, B.

Geschke, O.

L. Rindorf, P. E. Høiby, J. B. Jensen, L. H. Pedersen, O. Bang, and O. Geschke, “Towards biochips using microstructured optical fiber sensors,” Anal. Bioanal. Chem. 385(8), 1370–1375 (2006).
[CrossRef] [PubMed]

Hassani, A.

Heuck, M.

Høiby, P. E.

Huang, W. P.

W. P. Huang and C. L. Xu, “Simulation of three-dimensional optical waveguides by a full- vector beam propagation method,” IEEE J. Quantum Electron. 29(10), 2639–2649 (1993).
[CrossRef]

Jensen, J. B.

Jepsen, P. U.

Jin, W.

J. Ju, Z. Wang, W. Jin, and M. S. Demokan, “Temperature sensitivity of a two-mode photonic crystal fiber interferometer sensor,” IEEE Photon. Technol. Lett. 18(20), 2168–2170 (2006).
[CrossRef]

Ju, J.

J. Ju, Z. Wang, W. Jin, and M. S. Demokan, “Temperature sensitivity of a two-mode photonic crystal fiber interferometer sensor,” IEEE Photon. Technol. Lett. 18(20), 2168–2170 (2006).
[CrossRef]

Kabashin, A.

Knight, J. C.

Kuhlmey, B. T.

Labonté, L.

Laegsgaard, J.

Lægsgaard, J.

Laegsgaard, J.

Laffont, G.

Large, M. C. J.

Li, J.

Litchinitser, N. M.

N. M. Litchinitser and E. Poliakov, “Antiresonant guiding microstructured optical fibers for sensing applications,” Appl. Phys. B 81(2-3), 347–351 (2005).
[CrossRef]

Liu, Y.

Lwin, R.

Mahmoodian, S.

McCosker, R.

Nielsen, K.

Noordegraaf, D.

Ott, J. R.

Pagnoux, D.

Pedersen, L. H.

Phan Huy, M. C.

Poliakov, E.

N. M. Litchinitser and E. Poliakov, “Antiresonant guiding microstructured optical fibers for sensing applications,” Appl. Phys. B 81(2-3), 347–351 (2005).
[CrossRef]

Rasmussen, H. K.

Rasmussen, P. D.

Rindorf, L.

Roy, P.

Scolari, L.

Shum, P.

M. Yan, P. Shum, and X. Yu, “Heterostructured photonic crystal fiber,” IEEE Photon. Technol. Lett. 17(7), 1438–1440 (2005).
[CrossRef]

Skorobogatiy, M.

Skorobogatiy, M. A.

Tanggaard Alkeskjold, T.

Tartarini, G.

Taru, T.

Town, G. E.

W. Yuan, G. E. Town, and O. Bang, “Refractive index sensing in an all-solid twin-core photonic bandgap fiber,” IEEE Sens. J. 10(7), 1192–1199 (2010).
[CrossRef]

G. E. Town, W. Yuan, R. McCosker, and O. Bang, “Microstructured optical fiber refractive index sensor,” Opt. Lett. 35(6), 856–858 (2010).
[CrossRef] [PubMed]

Wang, Z.

Z. Wang, T. Taru, T. A. Birks, J. C. Knight, Y. Liu, and J. Du, “Coupling in dual-core photonic bandgap fibers: theory and experiment,” Opt. Express 15(8), 4795–4803 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-8-4795 .
[CrossRef] [PubMed]

J. Ju, Z. Wang, W. Jin, and M. S. Demokan, “Temperature sensitivity of a two-mode photonic crystal fiber interferometer sensor,” IEEE Photon. Technol. Lett. 18(20), 2168–2170 (2006).
[CrossRef]

White, I. M.

Wu, D. K.

Wu, S.-T.

Xu, C. L.

W. P. Huang and C. L. Xu, “Simulation of three-dimensional optical waveguides by a full- vector beam propagation method,” IEEE J. Quantum Electron. 29(10), 2639–2649 (1993).
[CrossRef]

Yan, M.

M. Yan, P. Shum, and X. Yu, “Heterostructured photonic crystal fiber,” IEEE Photon. Technol. Lett. 17(7), 1438–1440 (2005).
[CrossRef]

Yu, X.

M. Yan, P. Shum, and X. Yu, “Heterostructured photonic crystal fiber,” IEEE Photon. Technol. Lett. 17(7), 1438–1440 (2005).
[CrossRef]

Yuan, W.

W. Yuan, G. E. Town, and O. Bang, “Refractive index sensing in an all-solid twin-core photonic bandgap fiber,” IEEE Sens. J. 10(7), 1192–1199 (2010).
[CrossRef]

G. E. Town, W. Yuan, R. McCosker, and O. Bang, “Microstructured optical fiber refractive index sensor,” Opt. Lett. 35(6), 856–858 (2010).
[CrossRef] [PubMed]

Anal. Bioanal. Chem. (1)

L. Rindorf, P. E. Høiby, J. B. Jensen, L. H. Pedersen, O. Bang, and O. Geschke, “Towards biochips using microstructured optical fiber sensors,” Anal. Bioanal. Chem. 385(8), 1370–1375 (2006).
[CrossRef] [PubMed]

Appl. Phys. B (1)

N. M. Litchinitser and E. Poliakov, “Antiresonant guiding microstructured optical fibers for sensing applications,” Appl. Phys. B 81(2-3), 347–351 (2005).
[CrossRef]

IEEE J. Quantum Electron. (1)

W. P. Huang and C. L. Xu, “Simulation of three-dimensional optical waveguides by a full- vector beam propagation method,” IEEE J. Quantum Electron. 29(10), 2639–2649 (1993).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

M. Yan, P. Shum, and X. Yu, “Heterostructured photonic crystal fiber,” IEEE Photon. Technol. Lett. 17(7), 1438–1440 (2005).
[CrossRef]

J. Ju, Z. Wang, W. Jin, and M. S. Demokan, “Temperature sensitivity of a two-mode photonic crystal fiber interferometer sensor,” IEEE Photon. Technol. Lett. 18(20), 2168–2170 (2006).
[CrossRef]

IEEE Sens. J. (1)

W. Yuan, G. E. Town, and O. Bang, “Refractive index sensing in an all-solid twin-core photonic bandgap fiber,” IEEE Sens. J. 10(7), 1192–1199 (2010).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Express (10)

J. R. Ott, M. Heuck, C. Agger, P. D. Rasmussen, and O. Bang, “Label-free and selective nonlinear fiber-optical biosensing,” Opt. Express 16(25), 20834–20847 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-25-20834 .
[CrossRef] [PubMed]

A. Hassani and M. Skorobogatiy, “Design of the microstructured optical fiber-based surface plasmon resonance sensors with enhanced microfluidics,” Opt. Express 14(24), 11616–11621 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-24-11616 .
[CrossRef] [PubMed]

B. Gauvreau, A. Hassani, M. Fassi Fehri, A. Kabashin, and M. A. Skorobogatiy, “Photonic bandgap fiber-based Surface Plasmon Resonance sensors,” Opt. Express 15(18), 11413–11426 (2007), http://www.opticsinfobase.org/abstract.cfm?&id=141029 .
[CrossRef] [PubMed]

M. C. Phan Huy, G. Laffont, V. Dewynter, P. Ferdinand, L. Labonté, D. Pagnoux, P. Roy, W. Blanc, and B. Dussardier, “Tilted Fiber Bragg Grating photowritten in microstructured optical fiber for improved refractive index measurement,” Opt. Express 14(22), 10359–10370 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=OE-14-22-10359 .
[CrossRef] [PubMed]

Z. Wang, T. Taru, T. A. Birks, J. C. Knight, Y. Liu, and J. Du, “Coupling in dual-core photonic bandgap fibers: theory and experiment,” Opt. Express 15(8), 4795–4803 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-8-4795 .
[CrossRef] [PubMed]

C. M. B. Cordeiro, M. A. R. Franco, G. Chesini, E. C. S. Barretto, R. Lwin, C. H. Brito Cruz, and M. C. J. Large, “Microstructured-core optical fibre for evanescent sensing applications,” Opt. Express 14(26), 13056–13066 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=OE-14-26-130 .
[CrossRef] [PubMed]

M. Y. Chen, “Polarization and leakage properties of large-mode-area microstructured-core optical fibers,” Opt. Express 15(19), 12498–12507 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=OE-15-19-12498 .
[CrossRef] [PubMed]

I. M. White and X. D. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express 16(2), 1020–1028 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-16-2-1020 .
[CrossRef] [PubMed]

L. Rindorf, J. B. Jensen, M. Dufva, L. H. Pedersen, P. E. Høiby, and O. Bang, “Photonic crystal fiber long-period gratings for biochemical sensing,” Opt. Express 14(18), 8224–8231 (2006), http://www.opticsinfobase.org/abstract.cfm?id=97940&CFID=12293554&CFTOKEN=19235945 .
[CrossRef] [PubMed]

B. T. Kuhlmey, S. Coen, and S. Mahmoodian, “Coated photonic bandgap fibres for low-index sensing applications: cutoff analysis,” Opt. Express 17(18), 16306–16321 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-17-18-16306 .
[CrossRef] [PubMed]

Opt. Lett. (8)

K. Nielsen, H. K. Rasmussen, P. U. Jepsen, and O. Bang, “Broadband terahertz fiber directional coupler,” Opt. Lett. 35(17), 2879–2881 (2010).
[CrossRef] [PubMed]

J. Lægsgaard, “Directional coupling in twin-core photonic bandgap fibers,” Opt. Lett. 30(24), 3281–3283 (2005).
[CrossRef]

J. Laegsgaard, O. Bang, and A. Bjarklev, “Photonic crystal fiber design for broadband directional coupling,” Opt. Lett. 29(21), 2473–2475 (2004).
[CrossRef] [PubMed]

G. E. Town, W. Yuan, R. McCosker, and O. Bang, “Microstructured optical fiber refractive index sensor,” Opt. Lett. 35(6), 856–858 (2010).
[CrossRef] [PubMed]

M. C. Phan Huy, G. Laffont, V. Dewynter, P. Ferdinand, P. Roy, J. L. Auguste, D. Pagnoux, W. Blanc, and B. Dussardier, “Three-hole microstructured optical fiber for efficient fiber Bragg grating refractometer,” Opt. Lett. 32(16), 2390–2392 (2007).
[CrossRef] [PubMed]

D. K. Wu, B. T. Kuhlmey, and B. J. Eggleton, “Ultrasensitive photonic crystal fiber refractive index sensor,” Opt. Lett. 34(3), 322–324 (2009).
[CrossRef] [PubMed]

D. Noordegraaf, L. Scolari, J. Laegsgaard, T. Tanggaard Alkeskjold, G. Tartarini, E. Borelli, P. Bassi, J. Li, and S.-T. Wu, “Avoided-crossing-based liquid-crystal photonic-bandgap notch filter,” Opt. Lett. 33(9), 986–988 (2008).
[CrossRef] [PubMed]

L. Rindorf and O. Bang, “Highly sensitive refractometer with a photonic-crystal-fiber long-period grating,” Opt. Lett. 33(6), 563–565 (2008).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Schematic of a dual-core PCF with an analyte channel waveguide.

Fig. 2
Fig. 2

(a) Cross-section of an analyte-filled microstructured core optical fiber. The dark area denotes pure silica, the black areas denote analyte-filled channels and the white areas represent air holes. (b) Mode field profile of the microstructured core optical fiber.

Fig. 3
Fig. 3

Effective indexes curves of core A and core B for the vertical polarization with d/Λ = da/Λ = 0.4, and na = 1.33. The inset shows the cross-section of the proposed fiber.

Fig. 4
Fig. 4

The field distributions of the y-polarized mode in the proposed dual-core sensor at propagation distance (a) z = 0 mm, (b) z = 0.75 mm, (c) z = 1.50 mm, and (d) z = 2.25 mm.

Fig. 5
Fig. 5

Normalized transmission spectral of core B.

Fig. 6
Fig. 6

Variation of detection limit and sensitivity as a function of analyte index for the fiber with L = 2.25 mm.

Fig. 7
Fig. 7

Variation of sensitivity and detect limit as a function of deviation of fiber length from the optimum length.

Fig. 8
Fig. 8

Resonant wavelength shift Δλr as a function of temperature variation ΔT.

Fig. 9
Fig. 9

Effective indexes of the fundamental modes of the two cores, as a function of the operating wavelength λr, at different analyte indices.

Fig. 10
Fig. 10

Variation of resonant wavelength and coupling length in the proposed fiber as a function of analyte refractive index.

Fig. 11
Fig. 11

Cross-section of a dual-core PCF with an enlarged analyte-filled hole.

Fig. 12
Fig. 12

The effective index curves of the fundamental modes for Fiber І and Fiber ІІ.

Tables (2)

Tables Icon

Table 1 Numerical Results of the Proposed Fiber for the Detection of Different Analyte Refractive Indexes

Tables Icon

Table 2 Comparison of Two Different Couplers

Metrics