Abstract

By controlling the extinction ratio (ER) and overshooting level of the down-stream amplified spontaneous emission (ASE) with a gain-saturation semiconductor optical amplifier (SOA), the down-stream data-erased ASE carrier is re-encoded in an injection-locked weak-resonant-cavity Fabry-Perot laser diode (WRC-FPLD) up-stream transmitter to implement all-ASE based bi-directional WDM-PON system. The effect of ER on the up-stream transmission performance of the down-stream data-erased ASE injection-locked WRC-FPLD is elucidated via the gain-saturation model. It is observed that the communication criterion with a bit-error-rate of <10−9 at 2.488 Gbit/s can be met only when ER is reduced to <3 dB and overshooting level <-5 dB. The up-stream WRC-FPLD re-encoded ASE data-stream could improve its signal-to-noise ratio (SNR) to 6.4 dB by minimizing the ER and overshooting level of the down-stream data-erased ASE to 2.4 dB and −7.8 dB, respectively, with the gain-saturated SOA. The SNR can also be improved with higher power injecting into the up-stream transmitter until saturation occurs and the optimal window of the ASE injection power is between −7 and −3 dBm.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Iwatsuki, J. Kani, H. Suzuki, and M. Fujiwara, “Access and metro networks based on WDM technologies,” J. Lightwave Technol. 22(11), 2623–2630 (2004).
    [CrossRef]
  2. K.-Y. Liou and G. Raybon, “Operation of an LED with a single-mode semiconductor amplifier as a broad-band 1.3-μm transmitter source,” IEEE Photon. Technol. Lett. 7(9), 1025–1027 (1995).
    [CrossRef]
  3. D.-K. Jung, H. Kim, K. H. Han, and Y. C. Chung, “Spectrum-sliced bidirectional passive optical network for simultaneous transmission of WDM and digital broadcast video signals,” Electron. Lett. 37(5), 308–309 (2001).
    [CrossRef]
  4. S.-M. Lee, M.-H. Kim, and C.-H. Lee, “Demonstration of a bidirectional 80-km-reach DWDM-PON with 8-Gbs capacity,” IEEE Photon. Technol. Lett. 19(6), 405–407 (2007).
    [CrossRef]
  5. H. Takesue and T. Sugie, “Wavelength channel data rewrite using saturated SOA modulator for WDM networks with centralized light sources,” J. Lightwave Technol. 21(11), 2546–2556 (2003).
    [CrossRef]
  6. G.-R. Lin, H.-L. Wang, G.-C. Lin, Y.-H. Huang, Y.-H. Lin, and T.-K. Cheng, “Comparison on injection-locked Fabry–Perot laser diode with front-facet reflectivity of 1% and 30% for optical data transmission in WDM-PON system,” J. Lightwave Technol. 27(14), 2779–2785 (2009).
    [CrossRef]
  7. Y.-H. Lin, G.-C. Lin, H.-L. Wang, Y.-C. Chi, and G.-R. Lin, “Compromised extinction and signal-to-noise ratios of weak-resonant-cavity laser diode transmitter injected by channelized and amplitude squeezed spontaneous-emission,” Opt. Express 18(5), 4457–4468 (2010).
    [CrossRef] [PubMed]
  8. N. Kashima, “Injection-locked Fabry–Pérot laser diode transmitters with semiconductor optical amplifier for WDM-PON,” J. Lightwave Technol. 27(12), 2132–2139 (2009).
    [CrossRef]
  9. G. P. Agrawal, Fiber-Optic Communication Systems, (Willy Inter-Science, 2002) Chap. 4–6.
  10. M. Zhao, G. Morthier, and R. Baets, “Analysis and optimization of intensity noise reduction in spectrum-sliced WDM systems using a saturated semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 14(3), 390–392 (2002).
    [CrossRef]
  11. M. Yoshino and K. Inoue, “Improvement of saturation output power in a semiconductor laser amplifier through pumping light injection,” IEEE Photon. Technol. Lett. 8(1), 58–59 (1996).
    [CrossRef]
  12. R. Maher, K. Shi, L. P. Barry, J. O’Carroll, B. Kelly, R. Phelan, J. O’Gorman, and P. M. Anandarajah, “Implementation of a cost-effective optical comb source in a WDM-PON with 10.7 Gb/s data to each ONU and 50 km reach,” Opt. Express 18(15), 15672–15681 (2010).
    [CrossRef] [PubMed]

2010 (2)

2009 (2)

2007 (1)

S.-M. Lee, M.-H. Kim, and C.-H. Lee, “Demonstration of a bidirectional 80-km-reach DWDM-PON with 8-Gbs capacity,” IEEE Photon. Technol. Lett. 19(6), 405–407 (2007).
[CrossRef]

2004 (1)

2003 (1)

2002 (1)

M. Zhao, G. Morthier, and R. Baets, “Analysis and optimization of intensity noise reduction in spectrum-sliced WDM systems using a saturated semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 14(3), 390–392 (2002).
[CrossRef]

2001 (1)

D.-K. Jung, H. Kim, K. H. Han, and Y. C. Chung, “Spectrum-sliced bidirectional passive optical network for simultaneous transmission of WDM and digital broadcast video signals,” Electron. Lett. 37(5), 308–309 (2001).
[CrossRef]

1996 (1)

M. Yoshino and K. Inoue, “Improvement of saturation output power in a semiconductor laser amplifier through pumping light injection,” IEEE Photon. Technol. Lett. 8(1), 58–59 (1996).
[CrossRef]

1995 (1)

K.-Y. Liou and G. Raybon, “Operation of an LED with a single-mode semiconductor amplifier as a broad-band 1.3-μm transmitter source,” IEEE Photon. Technol. Lett. 7(9), 1025–1027 (1995).
[CrossRef]

Anandarajah, P. M.

Baets, R.

M. Zhao, G. Morthier, and R. Baets, “Analysis and optimization of intensity noise reduction in spectrum-sliced WDM systems using a saturated semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 14(3), 390–392 (2002).
[CrossRef]

Barry, L. P.

Cheng, T.-K.

Chi, Y.-C.

Chung, Y. C.

D.-K. Jung, H. Kim, K. H. Han, and Y. C. Chung, “Spectrum-sliced bidirectional passive optical network for simultaneous transmission of WDM and digital broadcast video signals,” Electron. Lett. 37(5), 308–309 (2001).
[CrossRef]

Fujiwara, M.

Han, K. H.

D.-K. Jung, H. Kim, K. H. Han, and Y. C. Chung, “Spectrum-sliced bidirectional passive optical network for simultaneous transmission of WDM and digital broadcast video signals,” Electron. Lett. 37(5), 308–309 (2001).
[CrossRef]

Huang, Y.-H.

Inoue, K.

M. Yoshino and K. Inoue, “Improvement of saturation output power in a semiconductor laser amplifier through pumping light injection,” IEEE Photon. Technol. Lett. 8(1), 58–59 (1996).
[CrossRef]

Iwatsuki, K.

Jung, D.-K.

D.-K. Jung, H. Kim, K. H. Han, and Y. C. Chung, “Spectrum-sliced bidirectional passive optical network for simultaneous transmission of WDM and digital broadcast video signals,” Electron. Lett. 37(5), 308–309 (2001).
[CrossRef]

Kani, J.

Kashima, N.

Kelly, B.

Kim, H.

D.-K. Jung, H. Kim, K. H. Han, and Y. C. Chung, “Spectrum-sliced bidirectional passive optical network for simultaneous transmission of WDM and digital broadcast video signals,” Electron. Lett. 37(5), 308–309 (2001).
[CrossRef]

Kim, M.-H.

S.-M. Lee, M.-H. Kim, and C.-H. Lee, “Demonstration of a bidirectional 80-km-reach DWDM-PON with 8-Gbs capacity,” IEEE Photon. Technol. Lett. 19(6), 405–407 (2007).
[CrossRef]

Lee, C.-H.

S.-M. Lee, M.-H. Kim, and C.-H. Lee, “Demonstration of a bidirectional 80-km-reach DWDM-PON with 8-Gbs capacity,” IEEE Photon. Technol. Lett. 19(6), 405–407 (2007).
[CrossRef]

Lee, S.-M.

S.-M. Lee, M.-H. Kim, and C.-H. Lee, “Demonstration of a bidirectional 80-km-reach DWDM-PON with 8-Gbs capacity,” IEEE Photon. Technol. Lett. 19(6), 405–407 (2007).
[CrossRef]

Lin, G.-C.

Lin, G.-R.

Lin, Y.-H.

Liou, K.-Y.

K.-Y. Liou and G. Raybon, “Operation of an LED with a single-mode semiconductor amplifier as a broad-band 1.3-μm transmitter source,” IEEE Photon. Technol. Lett. 7(9), 1025–1027 (1995).
[CrossRef]

Maher, R.

Morthier, G.

M. Zhao, G. Morthier, and R. Baets, “Analysis and optimization of intensity noise reduction in spectrum-sliced WDM systems using a saturated semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 14(3), 390–392 (2002).
[CrossRef]

O’Carroll, J.

O’Gorman, J.

Phelan, R.

Raybon, G.

K.-Y. Liou and G. Raybon, “Operation of an LED with a single-mode semiconductor amplifier as a broad-band 1.3-μm transmitter source,” IEEE Photon. Technol. Lett. 7(9), 1025–1027 (1995).
[CrossRef]

Shi, K.

Sugie, T.

Suzuki, H.

Takesue, H.

Wang, H.-L.

Yoshino, M.

M. Yoshino and K. Inoue, “Improvement of saturation output power in a semiconductor laser amplifier through pumping light injection,” IEEE Photon. Technol. Lett. 8(1), 58–59 (1996).
[CrossRef]

Zhao, M.

M. Zhao, G. Morthier, and R. Baets, “Analysis and optimization of intensity noise reduction in spectrum-sliced WDM systems using a saturated semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 14(3), 390–392 (2002).
[CrossRef]

Electron. Lett. (1)

D.-K. Jung, H. Kim, K. H. Han, and Y. C. Chung, “Spectrum-sliced bidirectional passive optical network for simultaneous transmission of WDM and digital broadcast video signals,” Electron. Lett. 37(5), 308–309 (2001).
[CrossRef]

IEEE Photon. Technol. Lett. (4)

S.-M. Lee, M.-H. Kim, and C.-H. Lee, “Demonstration of a bidirectional 80-km-reach DWDM-PON with 8-Gbs capacity,” IEEE Photon. Technol. Lett. 19(6), 405–407 (2007).
[CrossRef]

K.-Y. Liou and G. Raybon, “Operation of an LED with a single-mode semiconductor amplifier as a broad-band 1.3-μm transmitter source,” IEEE Photon. Technol. Lett. 7(9), 1025–1027 (1995).
[CrossRef]

M. Zhao, G. Morthier, and R. Baets, “Analysis and optimization of intensity noise reduction in spectrum-sliced WDM systems using a saturated semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 14(3), 390–392 (2002).
[CrossRef]

M. Yoshino and K. Inoue, “Improvement of saturation output power in a semiconductor laser amplifier through pumping light injection,” IEEE Photon. Technol. Lett. 8(1), 58–59 (1996).
[CrossRef]

J. Lightwave Technol. (4)

Opt. Express (2)

Other (1)

G. P. Agrawal, Fiber-Optic Communication Systems, (Willy Inter-Science, 2002) Chap. 4–6.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Configuration of the DWDM-PON with WRC-FPLD injection-locked by the down-stream data-erased ASE carrier at optical network unit (ONU) end.

Fig. 2
Fig. 2

Measurements of RIN of the ASE with and without filtering by SOA [7].

Fig. 3
Fig. 3

The effects of ER and overshooting level of data-erased ASE carrier on the up-stream SNR.

Fig. 4
Fig. 4

The effects on the up-stream signal by detuning the ER and the overshooting level of data-erased ASE carrier. Conditions with different ER and overshooting level are designated by (a), (b), (c), (d).

Fig. 5
Fig. 5

The output power response of the SOA as a function of the input data-stream power.

Fig. 6
Fig. 6

Measured SNR (Dots) and simulated SNR (Solid) of the ASE injection-locked WRC-FPLD. Inset: Output power of injection-locked WRC-FPLD versus ASE power injecting into WRC-FPLD.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

Δ S N R [ + R I N o u t ( ω ) d ω / + R I N i n ( ω ) d ω ] 1 2
Δ P o u t Δ P i n = e j ( ω L / V g ) e α int L exp { 0 L Γ g ( N 0 ) ( j ω + 1 / τ c ) j ω + 1 τ c + Γ g ' P 0 ( z ) h ν A d z }
P o u t P i n = exp [ 0 L ( Γ g ( N 0 ) α int ) d z ]
R I N o u t R I N i n = 10 log ( | Δ P o u t P o u t | 2 / | Δ P i n P i n | 2 ) = 10 log ( | Δ P o u t Δ P i n | 2 / | P o u t P i n | 2 ) = - 20 log exp { 0 L Γ g ( N 0 ) Γ a 0 P 0 ( z ) h ν A ( 1 τ c + Γ a 0 P 0 ( z ) h ν A ) ω 2 + ( 1 τ c + Γ a 0 P 0 ( z ) h ν A ) 2 d z } - 20 ln { 0 L Γ g ( N 0 ) Γ a 0 P 0 ( z ) h ν A ( 1 τ c + Γ a 0 P 0 ( z ) h ν A ) d z } -20 ln { 0 L Γ g ( N 0 ) Γ a 0 P 0 ( z ) h ν A Γ a 0 P 0 ( z ) h ν A d z }   = -20 ln { Γ g ( N 0 ) L }           if  Γ a 0 P 0 ( z ) h ν A > > 1 τ c under strong external injection
S N R o u t =   < I > 2 σ 2   =   ( R G P i n j ) 2 σ 2 G P i n j 4 S s p Δ f ,
S N R o u t = G P i n j 4 S s p Δ f G 0 exp [ ( P o u t / P i n j ) 1 P o u t / P i n j P o u t P s a t ] P i n j 4 S s p Δ f ,
S N R = G 0 4 S s p Δ f P i n j exp { P o u t P i n j P s a t } = G 0 4 S s p Δ f P i n j exp { P o u t P i n j P s a t , 0 + Δ P s a t } = G 0 4 S s p Δ f P i n j exp { P o u t P i n j A h ν τ c a 0 + a i n j a 0 P i n j }

Metrics