Abstract

We describe an active way of compensation for large dispersion induced in the femtosecond light pulses travelling in air for laser ranging. The pulse duration is consistently regulated at 250 fs by dispersion control, allowing sub-micrometer resolution in measuring long distances by means of time-of-flight measurement. This method could facilitate more reliable applications of femtosecond pulses for satellite laser ranging, laser altimetry and active LIDAR applications.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. J. Degnan, “Satellite laser ranging: current status and future prospects,” IEEE Trans. Geosci. Rem. Sens. GE-23(4), 398–413 (1985).
    [CrossRef]
  2. J. J. Degnan, “Millimeter accuracy satellite laser ranging: a review,” In: Smith, D.E., Turcotte, D.L. (Eds.), Contributions of Space Geodynamics: Technology. AGU Geodynamics Series25, 133–162 (1993).
  3. J. J. Degnan, “Photon-counting micro laser rangers, transponders, and altimeters,” Surv. Geophys. 22(5/6), 431–447 (2001).
    [CrossRef]
  4. J. J. Degnan, “Photon-counting multi-kilohertz microlaser altimeters for airborne and spaceborne topographic measurements,” J. Geodyn. 34(3-4), 503–549 (2002).
    [CrossRef]
  5. S. Pellegrini, G. S. Buller, J. M. Smith, A. M. Wallace, and S. Cova, “Laser-based distance measurement using picosecond resolution time-correlated single-photon counting,” Meas. Sci. Technol. 11(6), 712–716 (2000).
    [CrossRef]
  6. D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
    [CrossRef] [PubMed]
  7. R. Holzwarth, T. Udem, T. W. Hansch, J. C. Knight, W. J. Wadsworth, and P. S. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85(11), 2264–2267 (2000).
    [CrossRef] [PubMed]
  8. S.-W. Kim, “Metrology: Combs rule,” Nat. Photonics 3(6), 313–314 (2009).
    [CrossRef]
  9. K. Minoshima and H. Matsumoto, “High-accuracy measurement of 240-m distance in an optical tunnel by use of a compact femtosecond laser,” Appl. Opt. 39(30), 5512–5517 (2000).
    [CrossRef]
  10. J. Ye, “Absolute measurement of a long, arbitrary distance to less than an optical fringe,” Opt. Lett. 29(10), 1153–1155 (2004).
    [CrossRef] [PubMed]
  11. M. Cui, R. N. Schouten, N. Bhattacharya, and S. A. van den Berg, “Experimental demonstration of distance measurement with a femtosecond frequency comb laser,” J. Eur. Opt. Soc. Rapid Publ. 3, 08003 (2008).
    [CrossRef]
  12. K.-N. Joo and S.-W. Kim, “Absolute distance measurement by dispersive interferometry using a femtosecond pulse laser,” Opt. Express 14(13), 5954–5960 (2006).
    [CrossRef] [PubMed]
  13. K.-N. Joo, Y. Kim, and S.-W. Kim, “Distance measurements by combined method based on a femtosecond pulse laser,” Opt. Express 16(24), 19799–19806 (2008).
    [CrossRef] [PubMed]
  14. I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
    [CrossRef]
  15. J. Lee, Y.-J. Kim, K. Lee, S. Lee, and S.-W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010).
    [CrossRef]
  16. J. Kasparian, M. Rodriguez, and G. Méjea, “White-Light Filaments for Atmospheric Analysis,” Science 301(5629), 61–64 (2003).
    [CrossRef] [PubMed]
  17. J. W. Marini, and C. W. Murrey, “Correction of Laser Range Tracking Data for Atmospheric Refraction at Elevations above 10 Degrees,” Goddard Space Flight Center, Greenbelt, MD, NASA Tech. Rep. X-591–73–351(1973).
  18. J. B. Abshire and C. S. Gardner, “Atmospheric refractivity corrections in satellite laser ranging,” IEEE Trans. Geosci. Rem. Sens. GE-23(4), 398–413 (1985).
    [CrossRef]
  19. P. E. Ciddor, “Refractive index of air: new equations for the visible and near infrared,” Appl. Opt. 35(9), 1566–1573 (1996).
    [CrossRef] [PubMed]
  20. P. E. Ciddor, R. J. Hill, and Group Index, “Refractive Index or Air. 2,” Appl. Opt. 38(9), 1663–1667 (1999).
    [CrossRef]

2010

J. Lee, Y.-J. Kim, K. Lee, S. Lee, and S.-W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010).
[CrossRef]

2009

S.-W. Kim, “Metrology: Combs rule,” Nat. Photonics 3(6), 313–314 (2009).
[CrossRef]

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
[CrossRef]

2008

M. Cui, R. N. Schouten, N. Bhattacharya, and S. A. van den Berg, “Experimental demonstration of distance measurement with a femtosecond frequency comb laser,” J. Eur. Opt. Soc. Rapid Publ. 3, 08003 (2008).
[CrossRef]

K.-N. Joo, Y. Kim, and S.-W. Kim, “Distance measurements by combined method based on a femtosecond pulse laser,” Opt. Express 16(24), 19799–19806 (2008).
[CrossRef] [PubMed]

2006

2004

2003

J. Kasparian, M. Rodriguez, and G. Méjea, “White-Light Filaments for Atmospheric Analysis,” Science 301(5629), 61–64 (2003).
[CrossRef] [PubMed]

2002

J. J. Degnan, “Photon-counting multi-kilohertz microlaser altimeters for airborne and spaceborne topographic measurements,” J. Geodyn. 34(3-4), 503–549 (2002).
[CrossRef]

2001

J. J. Degnan, “Photon-counting micro laser rangers, transponders, and altimeters,” Surv. Geophys. 22(5/6), 431–447 (2001).
[CrossRef]

2000

S. Pellegrini, G. S. Buller, J. M. Smith, A. M. Wallace, and S. Cova, “Laser-based distance measurement using picosecond resolution time-correlated single-photon counting,” Meas. Sci. Technol. 11(6), 712–716 (2000).
[CrossRef]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
[CrossRef] [PubMed]

R. Holzwarth, T. Udem, T. W. Hansch, J. C. Knight, W. J. Wadsworth, and P. S. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85(11), 2264–2267 (2000).
[CrossRef] [PubMed]

K. Minoshima and H. Matsumoto, “High-accuracy measurement of 240-m distance in an optical tunnel by use of a compact femtosecond laser,” Appl. Opt. 39(30), 5512–5517 (2000).
[CrossRef]

1999

1996

1985

J. B. Abshire and C. S. Gardner, “Atmospheric refractivity corrections in satellite laser ranging,” IEEE Trans. Geosci. Rem. Sens. GE-23(4), 398–413 (1985).
[CrossRef]

J. J. Degnan, “Satellite laser ranging: current status and future prospects,” IEEE Trans. Geosci. Rem. Sens. GE-23(4), 398–413 (1985).
[CrossRef]

Abshire, J. B.

J. B. Abshire and C. S. Gardner, “Atmospheric refractivity corrections in satellite laser ranging,” IEEE Trans. Geosci. Rem. Sens. GE-23(4), 398–413 (1985).
[CrossRef]

Bhattacharya, N.

M. Cui, R. N. Schouten, N. Bhattacharya, and S. A. van den Berg, “Experimental demonstration of distance measurement with a femtosecond frequency comb laser,” J. Eur. Opt. Soc. Rapid Publ. 3, 08003 (2008).
[CrossRef]

Buller, G. S.

S. Pellegrini, G. S. Buller, J. M. Smith, A. M. Wallace, and S. Cova, “Laser-based distance measurement using picosecond resolution time-correlated single-photon counting,” Meas. Sci. Technol. 11(6), 712–716 (2000).
[CrossRef]

Ciddor, P. E.

Coddington, I.

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
[CrossRef]

Cova, S.

S. Pellegrini, G. S. Buller, J. M. Smith, A. M. Wallace, and S. Cova, “Laser-based distance measurement using picosecond resolution time-correlated single-photon counting,” Meas. Sci. Technol. 11(6), 712–716 (2000).
[CrossRef]

Cui, M.

M. Cui, R. N. Schouten, N. Bhattacharya, and S. A. van den Berg, “Experimental demonstration of distance measurement with a femtosecond frequency comb laser,” J. Eur. Opt. Soc. Rapid Publ. 3, 08003 (2008).
[CrossRef]

Cundiff, S. T.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
[CrossRef] [PubMed]

Degnan, J. J.

J. J. Degnan, “Photon-counting multi-kilohertz microlaser altimeters for airborne and spaceborne topographic measurements,” J. Geodyn. 34(3-4), 503–549 (2002).
[CrossRef]

J. J. Degnan, “Photon-counting micro laser rangers, transponders, and altimeters,” Surv. Geophys. 22(5/6), 431–447 (2001).
[CrossRef]

J. J. Degnan, “Satellite laser ranging: current status and future prospects,” IEEE Trans. Geosci. Rem. Sens. GE-23(4), 398–413 (1985).
[CrossRef]

Diddams, S. A.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
[CrossRef] [PubMed]

Gardner, C. S.

J. B. Abshire and C. S. Gardner, “Atmospheric refractivity corrections in satellite laser ranging,” IEEE Trans. Geosci. Rem. Sens. GE-23(4), 398–413 (1985).
[CrossRef]

Hall, J. L.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
[CrossRef] [PubMed]

Hansch, T. W.

R. Holzwarth, T. Udem, T. W. Hansch, J. C. Knight, W. J. Wadsworth, and P. S. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85(11), 2264–2267 (2000).
[CrossRef] [PubMed]

Hill, R. J.

Holzwarth, R.

R. Holzwarth, T. Udem, T. W. Hansch, J. C. Knight, W. J. Wadsworth, and P. S. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85(11), 2264–2267 (2000).
[CrossRef] [PubMed]

Jones, D. J.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
[CrossRef] [PubMed]

Joo, K.-N.

Kasparian, J.

J. Kasparian, M. Rodriguez, and G. Méjea, “White-Light Filaments for Atmospheric Analysis,” Science 301(5629), 61–64 (2003).
[CrossRef] [PubMed]

Kim, S.-W.

Kim, Y.

Kim, Y.-J.

J. Lee, Y.-J. Kim, K. Lee, S. Lee, and S.-W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010).
[CrossRef]

Knight, J. C.

R. Holzwarth, T. Udem, T. W. Hansch, J. C. Knight, W. J. Wadsworth, and P. S. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85(11), 2264–2267 (2000).
[CrossRef] [PubMed]

Lee, J.

J. Lee, Y.-J. Kim, K. Lee, S. Lee, and S.-W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010).
[CrossRef]

Lee, K.

J. Lee, Y.-J. Kim, K. Lee, S. Lee, and S.-W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010).
[CrossRef]

Lee, S.

J. Lee, Y.-J. Kim, K. Lee, S. Lee, and S.-W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010).
[CrossRef]

Matsumoto, H.

Méjea, G.

J. Kasparian, M. Rodriguez, and G. Méjea, “White-Light Filaments for Atmospheric Analysis,” Science 301(5629), 61–64 (2003).
[CrossRef] [PubMed]

Minoshima, K.

Nenadovic, L.

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
[CrossRef]

Newbury, N. R.

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
[CrossRef]

Pellegrini, S.

S. Pellegrini, G. S. Buller, J. M. Smith, A. M. Wallace, and S. Cova, “Laser-based distance measurement using picosecond resolution time-correlated single-photon counting,” Meas. Sci. Technol. 11(6), 712–716 (2000).
[CrossRef]

Ranka, J. K.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
[CrossRef] [PubMed]

Rodriguez, M.

J. Kasparian, M. Rodriguez, and G. Méjea, “White-Light Filaments for Atmospheric Analysis,” Science 301(5629), 61–64 (2003).
[CrossRef] [PubMed]

Russell, P. S.

R. Holzwarth, T. Udem, T. W. Hansch, J. C. Knight, W. J. Wadsworth, and P. S. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85(11), 2264–2267 (2000).
[CrossRef] [PubMed]

Schouten, R. N.

M. Cui, R. N. Schouten, N. Bhattacharya, and S. A. van den Berg, “Experimental demonstration of distance measurement with a femtosecond frequency comb laser,” J. Eur. Opt. Soc. Rapid Publ. 3, 08003 (2008).
[CrossRef]

Smith, J. M.

S. Pellegrini, G. S. Buller, J. M. Smith, A. M. Wallace, and S. Cova, “Laser-based distance measurement using picosecond resolution time-correlated single-photon counting,” Meas. Sci. Technol. 11(6), 712–716 (2000).
[CrossRef]

Stentz, A.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
[CrossRef] [PubMed]

Swann, W. C.

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
[CrossRef]

Udem, T.

R. Holzwarth, T. Udem, T. W. Hansch, J. C. Knight, W. J. Wadsworth, and P. S. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85(11), 2264–2267 (2000).
[CrossRef] [PubMed]

van den Berg, S. A.

M. Cui, R. N. Schouten, N. Bhattacharya, and S. A. van den Berg, “Experimental demonstration of distance measurement with a femtosecond frequency comb laser,” J. Eur. Opt. Soc. Rapid Publ. 3, 08003 (2008).
[CrossRef]

Wadsworth, W. J.

R. Holzwarth, T. Udem, T. W. Hansch, J. C. Knight, W. J. Wadsworth, and P. S. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85(11), 2264–2267 (2000).
[CrossRef] [PubMed]

Wallace, A. M.

S. Pellegrini, G. S. Buller, J. M. Smith, A. M. Wallace, and S. Cova, “Laser-based distance measurement using picosecond resolution time-correlated single-photon counting,” Meas. Sci. Technol. 11(6), 712–716 (2000).
[CrossRef]

Windeler, R. S.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
[CrossRef] [PubMed]

Ye, J.

Appl. Opt.

IEEE Trans. Geosci. Rem. Sens.

J. B. Abshire and C. S. Gardner, “Atmospheric refractivity corrections in satellite laser ranging,” IEEE Trans. Geosci. Rem. Sens. GE-23(4), 398–413 (1985).
[CrossRef]

J. J. Degnan, “Satellite laser ranging: current status and future prospects,” IEEE Trans. Geosci. Rem. Sens. GE-23(4), 398–413 (1985).
[CrossRef]

J. Eur. Opt. Soc. Rapid Publ.

M. Cui, R. N. Schouten, N. Bhattacharya, and S. A. van den Berg, “Experimental demonstration of distance measurement with a femtosecond frequency comb laser,” J. Eur. Opt. Soc. Rapid Publ. 3, 08003 (2008).
[CrossRef]

J. Geodyn.

J. J. Degnan, “Photon-counting multi-kilohertz microlaser altimeters for airborne and spaceborne topographic measurements,” J. Geodyn. 34(3-4), 503–549 (2002).
[CrossRef]

Meas. Sci. Technol.

S. Pellegrini, G. S. Buller, J. M. Smith, A. M. Wallace, and S. Cova, “Laser-based distance measurement using picosecond resolution time-correlated single-photon counting,” Meas. Sci. Technol. 11(6), 712–716 (2000).
[CrossRef]

Nat. Photonics

S.-W. Kim, “Metrology: Combs rule,” Nat. Photonics 3(6), 313–314 (2009).
[CrossRef]

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
[CrossRef]

J. Lee, Y.-J. Kim, K. Lee, S. Lee, and S.-W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. Lett.

R. Holzwarth, T. Udem, T. W. Hansch, J. C. Knight, W. J. Wadsworth, and P. S. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85(11), 2264–2267 (2000).
[CrossRef] [PubMed]

Science

J. Kasparian, M. Rodriguez, and G. Méjea, “White-Light Filaments for Atmospheric Analysis,” Science 301(5629), 61–64 (2003).
[CrossRef] [PubMed]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
[CrossRef] [PubMed]

Surv. Geophys.

J. J. Degnan, “Photon-counting micro laser rangers, transponders, and altimeters,” Surv. Geophys. 22(5/6), 431–447 (2001).
[CrossRef]

Other

J. J. Degnan, “Millimeter accuracy satellite laser ranging: a review,” In: Smith, D.E., Turcotte, D.L. (Eds.), Contributions of Space Geodynamics: Technology. AGU Geodynamics Series25, 133–162 (1993).

J. W. Marini, and C. W. Murrey, “Correction of Laser Range Tracking Data for Atmospheric Refraction at Elevations above 10 Degrees,” Goddard Space Flight Center, Greenbelt, MD, NASA Tech. Rep. X-591–73–351(1973).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Computation of temporal broadening of femtosecond pulses while propagating in air. (a) Example of pulse broadening for three different pulses. The Marini-Murray model was used with the standard environmental conditions of 15 °C, 1 atm and relative humidity of 70%. (b) Temperature-dependency of group delay dispersion (GDD). (c) Pressure-dependency of GDD.

Fig. 2
Fig. 2

Overall system configuration to measure absolute distance with active compensation of large dispersion induced in femtosecond pulses travelling a long air path.

Fig. 3
Fig. 3

Composite control scheme for compensation of large dispersion caused by air. The material dispersion of single mode fibers is used for coarse control, while the wavelength-dependent delay in a prism pair is used for fine control.

Fig. 4
Fig. 4

Test result of active dispersion compensation obtained by controlling the separation gap of a prism pair.

Fig. 5
Fig. 5

Test result of the locking capability against a repeated abrupt dispersion variation introduced by inserting a glass block. (a) Step-like change of the pulse duration caused by inserting a glass block in the measurement path. (b) Controlled pulse duration to a target value of 400 fs.

Fig. 6
Fig. 6

Active compensation of a large amount of dispersion by combining coarse and fine adjustment. A dispersion corresponding to a 200 km propagation in air is simulated here. Firstly, a large amount of dispersion is coarsely compensated by using a single-mode fiber of ~100 m. The prism pair is then controlled to remove the rest of the dispersion in a fine manner with a target value of 250 fs.

Metrics