Abstract

An all-dielectric THz waveguide has been designed, fabricated and characterized. The design is based on a hollow-core electromagnetic crystal waveguide, and the fabrication is implemented via polymer-jetting rapid prototyping. Measurements of the waveguide power loss factor show good agreement with simulation. As an initial example, a waveguide with propagation loss of 0.03 dB/mm at 105 GHz is demonstrated.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. H. Siegel, “Terahertz Technology,” IEEE Trans. Microw. Theory Tech. 50(3), 910–928 (2002).
    [CrossRef]
  2. S. Atakaramians, S. V Afshar, B. M. Fischer, D. Abbott, and T. M. Monro, “Porous fibers: a novel approach to low loss THz waveguides,” Opt. Express 16(12), 8845–8854 (2008).
    [CrossRef] [PubMed]
  3. C. D. Nordquist, M. C. Wanke, A. M. Rowen, C. L. Arrington, M. Lee, and A. D. Grine, “Design, fabrication, and characterization of metal micromachined rectangular waveguides at 3 THz,” in IEEE AP-S Int. Symp. (San Diego, CA, 2008), pp. 1–4.
  4. T. Ito, Y. Matsuura, M. Miyagi, H. Minamide, and H. Ito, “Flexible Terahertz fiber optics with low bend-induced losses,” J. Opt. Soc. Am. B 24(5), 1230–1235 (2007).
    [CrossRef]
  5. R. Mendis and D. Grischkowsky, “Undistorted guided-wave propagation of subpicosecond terahertz pulses,” Opt. Lett. 26(11), 846–848 (2001).
    [CrossRef]
  6. K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432(7015), 376–379 (2004).
    [CrossRef] [PubMed]
  7. T.-I. Jeon, J. Zhang, and K. W. Goossen, “THz Sommerfeld wave propagation on a single metal wire,” Appl. Phys. Lett. 86(16), 161904 1–3 (2005).
    [CrossRef]
  8. T.-I. Jeon and D. Grischkowsky, “Direct optoelectronic generation and detection of sub-ps-electrical pulses on sub-mm-coaxial transmission lines,” Appl. Phys. Lett. 85(25), 6092–6094 (2004).
    [CrossRef]
  9. L.-J. Chen, H.-W. Chen, T.-F. Kao, J.-Y. Lu, and C.-K. Sun, “Low-loss subwavelength plastic fiber for Terahertz waveguiding,” Opt. Lett. 31(3), 308–310 (2006).
    [CrossRef] [PubMed]
  10. A. Dupuis, J.-F. Allard, D. Morris, K. Stoeffler, C. Dubois, and M. Skorobogatiy, “Fabrication and THz loss measurements of porous subwavelength fibers using a directional coupler method,” Opt. Express 17(10), 8012–8028 (2009).
    [CrossRef] [PubMed]
  11. S. Atakaramians, S. V. Afshar, H. Ebendorff-Heidepriem, M. Nagel, B. M. Fischer, D. Abbott, and T. M. Monro, “THz porous fibers: design, fabrication and experimental characterization,” Opt. Express 17(16), 14053–15062 (2009).
    [CrossRef] [PubMed]
  12. M. Goto, A. Quema, H. Takahashi, S. Ono, and N. Sarukura, “Teflon photonic crystal fiber as Terahertz waveguide,” Jpn. J. Appl. Phys. 43(2B2B), L317-L319 (2004).
    [CrossRef]
  13. K. Nielsen, H. K. Rasmussen, A. J. L. Adam, P. C. M. Planken, O. Bang, and P. U. Jepsen, “Bendable, low-loss Topas fibers for the terahertz frequency range,” Opt. Express 17(10), 8592–8601 (2009).
    [CrossRef] [PubMed]
  14. J.-Y. Lu, C.-P. Yu, H.-C. Chang, H.-W. Chen, Y.-T. Li, C.-L. Pan, and C.-K. Sun, “Terahertz air-core microstructure fiber,” Appl. Phys. Lett. 92(6), 064105 1–3 (2008).
  15. M. Skorobogaity and A. Dupuis, “Ferroelectric all-polymer hollow Bragg fibers for terahertz guidance,” Appl. Phys. Lett. 90(11), 1135141–1135143 (2007).
  16. W. R. McGrath, C. W. Walker, M. Yap, and Y.-C. Tai, “Silicon micromachined waveguides for millimeter-wave and submillimeter-wave frequencies,” IEEE Microwave Guided Wave Lett. 3(3), 61–63 (1993).
  17. J. W. Digby, C. E. McIntosh, G. M. Parkhurst, and S. R. Davies, “Fabrication and characterization of micromachined rectagular components for use at millimeter and tetrahertz frequencies,” IEEE Trans. Microw. Theory Tech. 48(8), 1293–1302 (2000).
    [CrossRef]
  18. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic crystals: Molding the flow of Light, 2nd ed. (Princeton University Press, Princeton, NJ, 2008).
  19. Z. Wu, J. Kinast, M. E. Gehm, and H. Xin, “Rapid and inexpensive fabrication of terahertz electromagnetic bandgap structures,” Opt. Express 16(21), 16442–16451 (2008).
    [CrossRef] [PubMed]
  20. C. E. Honingh, M. M. Dierichs, H. H. Schaeffer, T. M. Klapwijk, and Th. de Graauw, “A 345 GHz waveguide mixer using an array of four Nb-Al-Al2O3-Nb SIS junctions,” Supercond. Sci. Technol. 4(11), 683–685 (1991).
    [CrossRef]
  21. K. Yamamoto, M. Yamaguchi, F. Miyamaru, M. Tani, M. Hangyo, T. Ikeda, A. Matsushita, K. Koide, M. Tatsuno, and Y. Minami, “Noninvasive inspection of C-4 explosive in mails by terahertz time-domain spectroscopy,” Jpn. J. Appl. Phys. 43(3B3B), L414–L417 (2004).
    [CrossRef]
  22. Z. Wu, W.-R. Ng, M. Gehm, and H. Xin, “Hollow-core electromagnetic band gap (EBG) waveguide fabricated by rapid prototyping for low-loss Terahertz guiding,” in IEEE MTT-S Int. Microwave Symp. (Anaheim, CA, 2010).
  23. Z. Wu, W.-R. Ng, M. Gehm, and H. Xin, “Terahertz electromagnetic crystal (EMXT) based waveguide and horn antenna,” in 35th Int. Conf. on Infrared, Millimeter and Terahertz Waves, (Rome, Italy, 2010).
  24. B. Martinez, I. Ederra, R. Gonzalo, B. Alderman, L. Azcona, P. G. Huggard, B. D. Hon, A. Hussain, S. R. Andrews, and L. Marchand, “Manufacturing tolerance analysis, fabrication, and characterization of 3-D submillimeter-wave electromagnetic-band gap crystals,” IEEE Trans. Microw. Theory Tech. 55(4), 672–681 (2007).
    [CrossRef]
  25. V. M. Lubecke, K. Mizuno, and G. M. Rebeiz, “Micromaching for Terahertz applications,” IEEE Trans. Microw. Theory Tech. 46(11), 1821–1831 (1998).
    [CrossRef]
  26. R. Gonzalo, B. Martinez, C. M. Mann, H. Pellemans, P. H. Bolivar, and P. de Maagt, “A low-cost fabrication technique for symmetrical and asymmetrical layer-by-layer photonic crystals at submillimeter-wave frequencies,” IEEE Trans. Microw. Theory Tech. 50(10), 2384–2392 (2002).
    [CrossRef]
  27. E. Öbay, E. Michel, G. Tuttle, R. Biswas, K. M. Ho, J. Bostak, and D. M. Bloom, “Terahertz spectroscopy of three-dimensional photonic bandgap crystals,” Opt. Lett. 10(15), 1155–1157 (1994).
  28. F. Laermer and A. Urban, “Challenges, developments and applications of silicon deep reactive ion etching,” Microelectron. Eng. 67–68(1), 349–355 (2003).
    [CrossRef]
  29. G. Kiriakidis and N. Katsarakis, “Fabrication of 2-D and 3-D photonic band-gap crystals in the GHz and THz regions,” Mater. Phys. Mech. 1, 20–26 (2000).
  30. S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8(3), 173–190 (2001).
    [CrossRef] [PubMed]
  31. Lumerical MODE Solutions package, v2.3.
  32. P. F. Goldsmith, Quasioptical systems: Gaussian beam quasioptical propagation and applications (IEEE Press,Piscataway, NJ, 1997).
  33. W.-H. Yu, Y.-J. Liu, T. Su, H. Neng-Tien, and M. Raj, “A robust parallel conformal finite difference time domain processing package using MPI library,” IEEE Ant. Propag. Mag. 47(3), 39–59 (2005).
    [CrossRef]
  34. G. Gruner, ed., Millimeter and Submillimeter Wave Spectroscopy of Solids (Springer, Berlin, German, 1998).
  35. J. C. Daly, Fiber Optics (CRC Press, Boca Raton, Florida, 2000).

2009

2008

2007

T. Ito, Y. Matsuura, M. Miyagi, H. Minamide, and H. Ito, “Flexible Terahertz fiber optics with low bend-induced losses,” J. Opt. Soc. Am. B 24(5), 1230–1235 (2007).
[CrossRef]

M. Skorobogaity and A. Dupuis, “Ferroelectric all-polymer hollow Bragg fibers for terahertz guidance,” Appl. Phys. Lett. 90(11), 1135141–1135143 (2007).

B. Martinez, I. Ederra, R. Gonzalo, B. Alderman, L. Azcona, P. G. Huggard, B. D. Hon, A. Hussain, S. R. Andrews, and L. Marchand, “Manufacturing tolerance analysis, fabrication, and characterization of 3-D submillimeter-wave electromagnetic-band gap crystals,” IEEE Trans. Microw. Theory Tech. 55(4), 672–681 (2007).
[CrossRef]

2006

2005

T.-I. Jeon, J. Zhang, and K. W. Goossen, “THz Sommerfeld wave propagation on a single metal wire,” Appl. Phys. Lett. 86(16), 161904 1–3 (2005).
[CrossRef]

W.-H. Yu, Y.-J. Liu, T. Su, H. Neng-Tien, and M. Raj, “A robust parallel conformal finite difference time domain processing package using MPI library,” IEEE Ant. Propag. Mag. 47(3), 39–59 (2005).
[CrossRef]

2004

K. Yamamoto, M. Yamaguchi, F. Miyamaru, M. Tani, M. Hangyo, T. Ikeda, A. Matsushita, K. Koide, M. Tatsuno, and Y. Minami, “Noninvasive inspection of C-4 explosive in mails by terahertz time-domain spectroscopy,” Jpn. J. Appl. Phys. 43(3B3B), L414–L417 (2004).
[CrossRef]

T.-I. Jeon and D. Grischkowsky, “Direct optoelectronic generation and detection of sub-ps-electrical pulses on sub-mm-coaxial transmission lines,” Appl. Phys. Lett. 85(25), 6092–6094 (2004).
[CrossRef]

M. Goto, A. Quema, H. Takahashi, S. Ono, and N. Sarukura, “Teflon photonic crystal fiber as Terahertz waveguide,” Jpn. J. Appl. Phys. 43(2B2B), L317-L319 (2004).
[CrossRef]

K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432(7015), 376–379 (2004).
[CrossRef] [PubMed]

2003

F. Laermer and A. Urban, “Challenges, developments and applications of silicon deep reactive ion etching,” Microelectron. Eng. 67–68(1), 349–355 (2003).
[CrossRef]

2002

R. Gonzalo, B. Martinez, C. M. Mann, H. Pellemans, P. H. Bolivar, and P. de Maagt, “A low-cost fabrication technique for symmetrical and asymmetrical layer-by-layer photonic crystals at submillimeter-wave frequencies,” IEEE Trans. Microw. Theory Tech. 50(10), 2384–2392 (2002).
[CrossRef]

P. H. Siegel, “Terahertz Technology,” IEEE Trans. Microw. Theory Tech. 50(3), 910–928 (2002).
[CrossRef]

2001

2000

G. Kiriakidis and N. Katsarakis, “Fabrication of 2-D and 3-D photonic band-gap crystals in the GHz and THz regions,” Mater. Phys. Mech. 1, 20–26 (2000).

J. W. Digby, C. E. McIntosh, G. M. Parkhurst, and S. R. Davies, “Fabrication and characterization of micromachined rectagular components for use at millimeter and tetrahertz frequencies,” IEEE Trans. Microw. Theory Tech. 48(8), 1293–1302 (2000).
[CrossRef]

1998

V. M. Lubecke, K. Mizuno, and G. M. Rebeiz, “Micromaching for Terahertz applications,” IEEE Trans. Microw. Theory Tech. 46(11), 1821–1831 (1998).
[CrossRef]

1994

E. Öbay, E. Michel, G. Tuttle, R. Biswas, K. M. Ho, J. Bostak, and D. M. Bloom, “Terahertz spectroscopy of three-dimensional photonic bandgap crystals,” Opt. Lett. 10(15), 1155–1157 (1994).

1993

W. R. McGrath, C. W. Walker, M. Yap, and Y.-C. Tai, “Silicon micromachined waveguides for millimeter-wave and submillimeter-wave frequencies,” IEEE Microwave Guided Wave Lett. 3(3), 61–63 (1993).

1991

C. E. Honingh, M. M. Dierichs, H. H. Schaeffer, T. M. Klapwijk, and Th. de Graauw, “A 345 GHz waveguide mixer using an array of four Nb-Al-Al2O3-Nb SIS junctions,” Supercond. Sci. Technol. 4(11), 683–685 (1991).
[CrossRef]

Abbott, D.

Adam, A. J. L.

Afshar, S. V

Afshar, S. V.

Alderman, B.

B. Martinez, I. Ederra, R. Gonzalo, B. Alderman, L. Azcona, P. G. Huggard, B. D. Hon, A. Hussain, S. R. Andrews, and L. Marchand, “Manufacturing tolerance analysis, fabrication, and characterization of 3-D submillimeter-wave electromagnetic-band gap crystals,” IEEE Trans. Microw. Theory Tech. 55(4), 672–681 (2007).
[CrossRef]

Allard, J.-F.

Andrews, S. R.

B. Martinez, I. Ederra, R. Gonzalo, B. Alderman, L. Azcona, P. G. Huggard, B. D. Hon, A. Hussain, S. R. Andrews, and L. Marchand, “Manufacturing tolerance analysis, fabrication, and characterization of 3-D submillimeter-wave electromagnetic-band gap crystals,” IEEE Trans. Microw. Theory Tech. 55(4), 672–681 (2007).
[CrossRef]

Atakaramians, S.

Azcona, L.

B. Martinez, I. Ederra, R. Gonzalo, B. Alderman, L. Azcona, P. G. Huggard, B. D. Hon, A. Hussain, S. R. Andrews, and L. Marchand, “Manufacturing tolerance analysis, fabrication, and characterization of 3-D submillimeter-wave electromagnetic-band gap crystals,” IEEE Trans. Microw. Theory Tech. 55(4), 672–681 (2007).
[CrossRef]

Bang, O.

Biswas, R.

E. Öbay, E. Michel, G. Tuttle, R. Biswas, K. M. Ho, J. Bostak, and D. M. Bloom, “Terahertz spectroscopy of three-dimensional photonic bandgap crystals,” Opt. Lett. 10(15), 1155–1157 (1994).

Bloom, D. M.

E. Öbay, E. Michel, G. Tuttle, R. Biswas, K. M. Ho, J. Bostak, and D. M. Bloom, “Terahertz spectroscopy of three-dimensional photonic bandgap crystals,” Opt. Lett. 10(15), 1155–1157 (1994).

Bolivar, P. H.

R. Gonzalo, B. Martinez, C. M. Mann, H. Pellemans, P. H. Bolivar, and P. de Maagt, “A low-cost fabrication technique for symmetrical and asymmetrical layer-by-layer photonic crystals at submillimeter-wave frequencies,” IEEE Trans. Microw. Theory Tech. 50(10), 2384–2392 (2002).
[CrossRef]

Bostak, J.

E. Öbay, E. Michel, G. Tuttle, R. Biswas, K. M. Ho, J. Bostak, and D. M. Bloom, “Terahertz spectroscopy of three-dimensional photonic bandgap crystals,” Opt. Lett. 10(15), 1155–1157 (1994).

Chang, H.-C.

J.-Y. Lu, C.-P. Yu, H.-C. Chang, H.-W. Chen, Y.-T. Li, C.-L. Pan, and C.-K. Sun, “Terahertz air-core microstructure fiber,” Appl. Phys. Lett. 92(6), 064105 1–3 (2008).

Chen, H.-W.

J.-Y. Lu, C.-P. Yu, H.-C. Chang, H.-W. Chen, Y.-T. Li, C.-L. Pan, and C.-K. Sun, “Terahertz air-core microstructure fiber,” Appl. Phys. Lett. 92(6), 064105 1–3 (2008).

L.-J. Chen, H.-W. Chen, T.-F. Kao, J.-Y. Lu, and C.-K. Sun, “Low-loss subwavelength plastic fiber for Terahertz waveguiding,” Opt. Lett. 31(3), 308–310 (2006).
[CrossRef] [PubMed]

Chen, L.-J.

Davies, S. R.

J. W. Digby, C. E. McIntosh, G. M. Parkhurst, and S. R. Davies, “Fabrication and characterization of micromachined rectagular components for use at millimeter and tetrahertz frequencies,” IEEE Trans. Microw. Theory Tech. 48(8), 1293–1302 (2000).
[CrossRef]

de Graauw, Th.

C. E. Honingh, M. M. Dierichs, H. H. Schaeffer, T. M. Klapwijk, and Th. de Graauw, “A 345 GHz waveguide mixer using an array of four Nb-Al-Al2O3-Nb SIS junctions,” Supercond. Sci. Technol. 4(11), 683–685 (1991).
[CrossRef]

de Maagt, P.

R. Gonzalo, B. Martinez, C. M. Mann, H. Pellemans, P. H. Bolivar, and P. de Maagt, “A low-cost fabrication technique for symmetrical and asymmetrical layer-by-layer photonic crystals at submillimeter-wave frequencies,” IEEE Trans. Microw. Theory Tech. 50(10), 2384–2392 (2002).
[CrossRef]

Dierichs, M. M.

C. E. Honingh, M. M. Dierichs, H. H. Schaeffer, T. M. Klapwijk, and Th. de Graauw, “A 345 GHz waveguide mixer using an array of four Nb-Al-Al2O3-Nb SIS junctions,” Supercond. Sci. Technol. 4(11), 683–685 (1991).
[CrossRef]

Digby, J. W.

J. W. Digby, C. E. McIntosh, G. M. Parkhurst, and S. R. Davies, “Fabrication and characterization of micromachined rectagular components for use at millimeter and tetrahertz frequencies,” IEEE Trans. Microw. Theory Tech. 48(8), 1293–1302 (2000).
[CrossRef]

Dubois, C.

Dupuis, A.

Ebendorff-Heidepriem, H.

Ederra, I.

B. Martinez, I. Ederra, R. Gonzalo, B. Alderman, L. Azcona, P. G. Huggard, B. D. Hon, A. Hussain, S. R. Andrews, and L. Marchand, “Manufacturing tolerance analysis, fabrication, and characterization of 3-D submillimeter-wave electromagnetic-band gap crystals,” IEEE Trans. Microw. Theory Tech. 55(4), 672–681 (2007).
[CrossRef]

Fischer, B. M.

Gehm, M. E.

Gonzalo, R.

B. Martinez, I. Ederra, R. Gonzalo, B. Alderman, L. Azcona, P. G. Huggard, B. D. Hon, A. Hussain, S. R. Andrews, and L. Marchand, “Manufacturing tolerance analysis, fabrication, and characterization of 3-D submillimeter-wave electromagnetic-band gap crystals,” IEEE Trans. Microw. Theory Tech. 55(4), 672–681 (2007).
[CrossRef]

R. Gonzalo, B. Martinez, C. M. Mann, H. Pellemans, P. H. Bolivar, and P. de Maagt, “A low-cost fabrication technique for symmetrical and asymmetrical layer-by-layer photonic crystals at submillimeter-wave frequencies,” IEEE Trans. Microw. Theory Tech. 50(10), 2384–2392 (2002).
[CrossRef]

Goossen, K. W.

T.-I. Jeon, J. Zhang, and K. W. Goossen, “THz Sommerfeld wave propagation on a single metal wire,” Appl. Phys. Lett. 86(16), 161904 1–3 (2005).
[CrossRef]

Goto, M.

M. Goto, A. Quema, H. Takahashi, S. Ono, and N. Sarukura, “Teflon photonic crystal fiber as Terahertz waveguide,” Jpn. J. Appl. Phys. 43(2B2B), L317-L319 (2004).
[CrossRef]

Grischkowsky, D.

T.-I. Jeon and D. Grischkowsky, “Direct optoelectronic generation and detection of sub-ps-electrical pulses on sub-mm-coaxial transmission lines,” Appl. Phys. Lett. 85(25), 6092–6094 (2004).
[CrossRef]

R. Mendis and D. Grischkowsky, “Undistorted guided-wave propagation of subpicosecond terahertz pulses,” Opt. Lett. 26(11), 846–848 (2001).
[CrossRef]

Hangyo, M.

K. Yamamoto, M. Yamaguchi, F. Miyamaru, M. Tani, M. Hangyo, T. Ikeda, A. Matsushita, K. Koide, M. Tatsuno, and Y. Minami, “Noninvasive inspection of C-4 explosive in mails by terahertz time-domain spectroscopy,” Jpn. J. Appl. Phys. 43(3B3B), L414–L417 (2004).
[CrossRef]

Ho, K. M.

E. Öbay, E. Michel, G. Tuttle, R. Biswas, K. M. Ho, J. Bostak, and D. M. Bloom, “Terahertz spectroscopy of three-dimensional photonic bandgap crystals,” Opt. Lett. 10(15), 1155–1157 (1994).

Hon, B. D.

B. Martinez, I. Ederra, R. Gonzalo, B. Alderman, L. Azcona, P. G. Huggard, B. D. Hon, A. Hussain, S. R. Andrews, and L. Marchand, “Manufacturing tolerance analysis, fabrication, and characterization of 3-D submillimeter-wave electromagnetic-band gap crystals,” IEEE Trans. Microw. Theory Tech. 55(4), 672–681 (2007).
[CrossRef]

Honingh, C. E.

C. E. Honingh, M. M. Dierichs, H. H. Schaeffer, T. M. Klapwijk, and Th. de Graauw, “A 345 GHz waveguide mixer using an array of four Nb-Al-Al2O3-Nb SIS junctions,” Supercond. Sci. Technol. 4(11), 683–685 (1991).
[CrossRef]

Huggard, P. G.

B. Martinez, I. Ederra, R. Gonzalo, B. Alderman, L. Azcona, P. G. Huggard, B. D. Hon, A. Hussain, S. R. Andrews, and L. Marchand, “Manufacturing tolerance analysis, fabrication, and characterization of 3-D submillimeter-wave electromagnetic-band gap crystals,” IEEE Trans. Microw. Theory Tech. 55(4), 672–681 (2007).
[CrossRef]

Hussain, A.

B. Martinez, I. Ederra, R. Gonzalo, B. Alderman, L. Azcona, P. G. Huggard, B. D. Hon, A. Hussain, S. R. Andrews, and L. Marchand, “Manufacturing tolerance analysis, fabrication, and characterization of 3-D submillimeter-wave electromagnetic-band gap crystals,” IEEE Trans. Microw. Theory Tech. 55(4), 672–681 (2007).
[CrossRef]

Ikeda, T.

K. Yamamoto, M. Yamaguchi, F. Miyamaru, M. Tani, M. Hangyo, T. Ikeda, A. Matsushita, K. Koide, M. Tatsuno, and Y. Minami, “Noninvasive inspection of C-4 explosive in mails by terahertz time-domain spectroscopy,” Jpn. J. Appl. Phys. 43(3B3B), L414–L417 (2004).
[CrossRef]

Ito, H.

Ito, T.

Jeon, T.-I.

T.-I. Jeon, J. Zhang, and K. W. Goossen, “THz Sommerfeld wave propagation on a single metal wire,” Appl. Phys. Lett. 86(16), 161904 1–3 (2005).
[CrossRef]

T.-I. Jeon and D. Grischkowsky, “Direct optoelectronic generation and detection of sub-ps-electrical pulses on sub-mm-coaxial transmission lines,” Appl. Phys. Lett. 85(25), 6092–6094 (2004).
[CrossRef]

Jepsen, P. U.

Joannopoulos, J. D.

Johnson, S. G.

Kao, T.-F.

Katsarakis, N.

G. Kiriakidis and N. Katsarakis, “Fabrication of 2-D and 3-D photonic band-gap crystals in the GHz and THz regions,” Mater. Phys. Mech. 1, 20–26 (2000).

Kinast, J.

Kiriakidis, G.

G. Kiriakidis and N. Katsarakis, “Fabrication of 2-D and 3-D photonic band-gap crystals in the GHz and THz regions,” Mater. Phys. Mech. 1, 20–26 (2000).

Klapwijk, T. M.

C. E. Honingh, M. M. Dierichs, H. H. Schaeffer, T. M. Klapwijk, and Th. de Graauw, “A 345 GHz waveguide mixer using an array of four Nb-Al-Al2O3-Nb SIS junctions,” Supercond. Sci. Technol. 4(11), 683–685 (1991).
[CrossRef]

Koide, K.

K. Yamamoto, M. Yamaguchi, F. Miyamaru, M. Tani, M. Hangyo, T. Ikeda, A. Matsushita, K. Koide, M. Tatsuno, and Y. Minami, “Noninvasive inspection of C-4 explosive in mails by terahertz time-domain spectroscopy,” Jpn. J. Appl. Phys. 43(3B3B), L414–L417 (2004).
[CrossRef]

Laermer, F.

F. Laermer and A. Urban, “Challenges, developments and applications of silicon deep reactive ion etching,” Microelectron. Eng. 67–68(1), 349–355 (2003).
[CrossRef]

Li, Y.-T.

J.-Y. Lu, C.-P. Yu, H.-C. Chang, H.-W. Chen, Y.-T. Li, C.-L. Pan, and C.-K. Sun, “Terahertz air-core microstructure fiber,” Appl. Phys. Lett. 92(6), 064105 1–3 (2008).

Liu, Y.-J.

W.-H. Yu, Y.-J. Liu, T. Su, H. Neng-Tien, and M. Raj, “A robust parallel conformal finite difference time domain processing package using MPI library,” IEEE Ant. Propag. Mag. 47(3), 39–59 (2005).
[CrossRef]

Lu, J.-Y.

J.-Y. Lu, C.-P. Yu, H.-C. Chang, H.-W. Chen, Y.-T. Li, C.-L. Pan, and C.-K. Sun, “Terahertz air-core microstructure fiber,” Appl. Phys. Lett. 92(6), 064105 1–3 (2008).

L.-J. Chen, H.-W. Chen, T.-F. Kao, J.-Y. Lu, and C.-K. Sun, “Low-loss subwavelength plastic fiber for Terahertz waveguiding,” Opt. Lett. 31(3), 308–310 (2006).
[CrossRef] [PubMed]

Lubecke, V. M.

V. M. Lubecke, K. Mizuno, and G. M. Rebeiz, “Micromaching for Terahertz applications,” IEEE Trans. Microw. Theory Tech. 46(11), 1821–1831 (1998).
[CrossRef]

Mann, C. M.

R. Gonzalo, B. Martinez, C. M. Mann, H. Pellemans, P. H. Bolivar, and P. de Maagt, “A low-cost fabrication technique for symmetrical and asymmetrical layer-by-layer photonic crystals at submillimeter-wave frequencies,” IEEE Trans. Microw. Theory Tech. 50(10), 2384–2392 (2002).
[CrossRef]

Marchand, L.

B. Martinez, I. Ederra, R. Gonzalo, B. Alderman, L. Azcona, P. G. Huggard, B. D. Hon, A. Hussain, S. R. Andrews, and L. Marchand, “Manufacturing tolerance analysis, fabrication, and characterization of 3-D submillimeter-wave electromagnetic-band gap crystals,” IEEE Trans. Microw. Theory Tech. 55(4), 672–681 (2007).
[CrossRef]

Martinez, B.

B. Martinez, I. Ederra, R. Gonzalo, B. Alderman, L. Azcona, P. G. Huggard, B. D. Hon, A. Hussain, S. R. Andrews, and L. Marchand, “Manufacturing tolerance analysis, fabrication, and characterization of 3-D submillimeter-wave electromagnetic-band gap crystals,” IEEE Trans. Microw. Theory Tech. 55(4), 672–681 (2007).
[CrossRef]

R. Gonzalo, B. Martinez, C. M. Mann, H. Pellemans, P. H. Bolivar, and P. de Maagt, “A low-cost fabrication technique for symmetrical and asymmetrical layer-by-layer photonic crystals at submillimeter-wave frequencies,” IEEE Trans. Microw. Theory Tech. 50(10), 2384–2392 (2002).
[CrossRef]

Matsushita, A.

K. Yamamoto, M. Yamaguchi, F. Miyamaru, M. Tani, M. Hangyo, T. Ikeda, A. Matsushita, K. Koide, M. Tatsuno, and Y. Minami, “Noninvasive inspection of C-4 explosive in mails by terahertz time-domain spectroscopy,” Jpn. J. Appl. Phys. 43(3B3B), L414–L417 (2004).
[CrossRef]

Matsuura, Y.

McGrath, W. R.

W. R. McGrath, C. W. Walker, M. Yap, and Y.-C. Tai, “Silicon micromachined waveguides for millimeter-wave and submillimeter-wave frequencies,” IEEE Microwave Guided Wave Lett. 3(3), 61–63 (1993).

McIntosh, C. E.

J. W. Digby, C. E. McIntosh, G. M. Parkhurst, and S. R. Davies, “Fabrication and characterization of micromachined rectagular components for use at millimeter and tetrahertz frequencies,” IEEE Trans. Microw. Theory Tech. 48(8), 1293–1302 (2000).
[CrossRef]

Mendis, R.

Michel, E.

E. Öbay, E. Michel, G. Tuttle, R. Biswas, K. M. Ho, J. Bostak, and D. M. Bloom, “Terahertz spectroscopy of three-dimensional photonic bandgap crystals,” Opt. Lett. 10(15), 1155–1157 (1994).

Minami, Y.

K. Yamamoto, M. Yamaguchi, F. Miyamaru, M. Tani, M. Hangyo, T. Ikeda, A. Matsushita, K. Koide, M. Tatsuno, and Y. Minami, “Noninvasive inspection of C-4 explosive in mails by terahertz time-domain spectroscopy,” Jpn. J. Appl. Phys. 43(3B3B), L414–L417 (2004).
[CrossRef]

Minamide, H.

Mittleman, D. M.

K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432(7015), 376–379 (2004).
[CrossRef] [PubMed]

Miyagi, M.

Miyamaru, F.

K. Yamamoto, M. Yamaguchi, F. Miyamaru, M. Tani, M. Hangyo, T. Ikeda, A. Matsushita, K. Koide, M. Tatsuno, and Y. Minami, “Noninvasive inspection of C-4 explosive in mails by terahertz time-domain spectroscopy,” Jpn. J. Appl. Phys. 43(3B3B), L414–L417 (2004).
[CrossRef]

Mizuno, K.

V. M. Lubecke, K. Mizuno, and G. M. Rebeiz, “Micromaching for Terahertz applications,” IEEE Trans. Microw. Theory Tech. 46(11), 1821–1831 (1998).
[CrossRef]

Monro, T. M.

Morris, D.

Nagel, M.

Neng-Tien, H.

W.-H. Yu, Y.-J. Liu, T. Su, H. Neng-Tien, and M. Raj, “A robust parallel conformal finite difference time domain processing package using MPI library,” IEEE Ant. Propag. Mag. 47(3), 39–59 (2005).
[CrossRef]

Nielsen, K.

Öbay, E.

E. Öbay, E. Michel, G. Tuttle, R. Biswas, K. M. Ho, J. Bostak, and D. M. Bloom, “Terahertz spectroscopy of three-dimensional photonic bandgap crystals,” Opt. Lett. 10(15), 1155–1157 (1994).

Ono, S.

M. Goto, A. Quema, H. Takahashi, S. Ono, and N. Sarukura, “Teflon photonic crystal fiber as Terahertz waveguide,” Jpn. J. Appl. Phys. 43(2B2B), L317-L319 (2004).
[CrossRef]

Pan, C.-L.

J.-Y. Lu, C.-P. Yu, H.-C. Chang, H.-W. Chen, Y.-T. Li, C.-L. Pan, and C.-K. Sun, “Terahertz air-core microstructure fiber,” Appl. Phys. Lett. 92(6), 064105 1–3 (2008).

Parkhurst, G. M.

J. W. Digby, C. E. McIntosh, G. M. Parkhurst, and S. R. Davies, “Fabrication and characterization of micromachined rectagular components for use at millimeter and tetrahertz frequencies,” IEEE Trans. Microw. Theory Tech. 48(8), 1293–1302 (2000).
[CrossRef]

Pellemans, H.

R. Gonzalo, B. Martinez, C. M. Mann, H. Pellemans, P. H. Bolivar, and P. de Maagt, “A low-cost fabrication technique for symmetrical and asymmetrical layer-by-layer photonic crystals at submillimeter-wave frequencies,” IEEE Trans. Microw. Theory Tech. 50(10), 2384–2392 (2002).
[CrossRef]

Planken, P. C. M.

Quema, A.

M. Goto, A. Quema, H. Takahashi, S. Ono, and N. Sarukura, “Teflon photonic crystal fiber as Terahertz waveguide,” Jpn. J. Appl. Phys. 43(2B2B), L317-L319 (2004).
[CrossRef]

Raj, M.

W.-H. Yu, Y.-J. Liu, T. Su, H. Neng-Tien, and M. Raj, “A robust parallel conformal finite difference time domain processing package using MPI library,” IEEE Ant. Propag. Mag. 47(3), 39–59 (2005).
[CrossRef]

Rasmussen, H. K.

Rebeiz, G. M.

V. M. Lubecke, K. Mizuno, and G. M. Rebeiz, “Micromaching for Terahertz applications,” IEEE Trans. Microw. Theory Tech. 46(11), 1821–1831 (1998).
[CrossRef]

Sarukura, N.

M. Goto, A. Quema, H. Takahashi, S. Ono, and N. Sarukura, “Teflon photonic crystal fiber as Terahertz waveguide,” Jpn. J. Appl. Phys. 43(2B2B), L317-L319 (2004).
[CrossRef]

Schaeffer, H. H.

C. E. Honingh, M. M. Dierichs, H. H. Schaeffer, T. M. Klapwijk, and Th. de Graauw, “A 345 GHz waveguide mixer using an array of four Nb-Al-Al2O3-Nb SIS junctions,” Supercond. Sci. Technol. 4(11), 683–685 (1991).
[CrossRef]

Siegel, P. H.

P. H. Siegel, “Terahertz Technology,” IEEE Trans. Microw. Theory Tech. 50(3), 910–928 (2002).
[CrossRef]

Skorobogaity, M.

M. Skorobogaity and A. Dupuis, “Ferroelectric all-polymer hollow Bragg fibers for terahertz guidance,” Appl. Phys. Lett. 90(11), 1135141–1135143 (2007).

Skorobogatiy, M.

Stoeffler, K.

Su, T.

W.-H. Yu, Y.-J. Liu, T. Su, H. Neng-Tien, and M. Raj, “A robust parallel conformal finite difference time domain processing package using MPI library,” IEEE Ant. Propag. Mag. 47(3), 39–59 (2005).
[CrossRef]

Sun, C.-K.

J.-Y. Lu, C.-P. Yu, H.-C. Chang, H.-W. Chen, Y.-T. Li, C.-L. Pan, and C.-K. Sun, “Terahertz air-core microstructure fiber,” Appl. Phys. Lett. 92(6), 064105 1–3 (2008).

L.-J. Chen, H.-W. Chen, T.-F. Kao, J.-Y. Lu, and C.-K. Sun, “Low-loss subwavelength plastic fiber for Terahertz waveguiding,” Opt. Lett. 31(3), 308–310 (2006).
[CrossRef] [PubMed]

Tai, Y.-C.

W. R. McGrath, C. W. Walker, M. Yap, and Y.-C. Tai, “Silicon micromachined waveguides for millimeter-wave and submillimeter-wave frequencies,” IEEE Microwave Guided Wave Lett. 3(3), 61–63 (1993).

Takahashi, H.

M. Goto, A. Quema, H. Takahashi, S. Ono, and N. Sarukura, “Teflon photonic crystal fiber as Terahertz waveguide,” Jpn. J. Appl. Phys. 43(2B2B), L317-L319 (2004).
[CrossRef]

Tani, M.

K. Yamamoto, M. Yamaguchi, F. Miyamaru, M. Tani, M. Hangyo, T. Ikeda, A. Matsushita, K. Koide, M. Tatsuno, and Y. Minami, “Noninvasive inspection of C-4 explosive in mails by terahertz time-domain spectroscopy,” Jpn. J. Appl. Phys. 43(3B3B), L414–L417 (2004).
[CrossRef]

Tatsuno, M.

K. Yamamoto, M. Yamaguchi, F. Miyamaru, M. Tani, M. Hangyo, T. Ikeda, A. Matsushita, K. Koide, M. Tatsuno, and Y. Minami, “Noninvasive inspection of C-4 explosive in mails by terahertz time-domain spectroscopy,” Jpn. J. Appl. Phys. 43(3B3B), L414–L417 (2004).
[CrossRef]

Tuttle, G.

E. Öbay, E. Michel, G. Tuttle, R. Biswas, K. M. Ho, J. Bostak, and D. M. Bloom, “Terahertz spectroscopy of three-dimensional photonic bandgap crystals,” Opt. Lett. 10(15), 1155–1157 (1994).

Urban, A.

F. Laermer and A. Urban, “Challenges, developments and applications of silicon deep reactive ion etching,” Microelectron. Eng. 67–68(1), 349–355 (2003).
[CrossRef]

Walker, C. W.

W. R. McGrath, C. W. Walker, M. Yap, and Y.-C. Tai, “Silicon micromachined waveguides for millimeter-wave and submillimeter-wave frequencies,” IEEE Microwave Guided Wave Lett. 3(3), 61–63 (1993).

Wang, K.

K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432(7015), 376–379 (2004).
[CrossRef] [PubMed]

Wu, Z.

Xin, H.

Yamaguchi, M.

K. Yamamoto, M. Yamaguchi, F. Miyamaru, M. Tani, M. Hangyo, T. Ikeda, A. Matsushita, K. Koide, M. Tatsuno, and Y. Minami, “Noninvasive inspection of C-4 explosive in mails by terahertz time-domain spectroscopy,” Jpn. J. Appl. Phys. 43(3B3B), L414–L417 (2004).
[CrossRef]

Yamamoto, K.

K. Yamamoto, M. Yamaguchi, F. Miyamaru, M. Tani, M. Hangyo, T. Ikeda, A. Matsushita, K. Koide, M. Tatsuno, and Y. Minami, “Noninvasive inspection of C-4 explosive in mails by terahertz time-domain spectroscopy,” Jpn. J. Appl. Phys. 43(3B3B), L414–L417 (2004).
[CrossRef]

Yap, M.

W. R. McGrath, C. W. Walker, M. Yap, and Y.-C. Tai, “Silicon micromachined waveguides for millimeter-wave and submillimeter-wave frequencies,” IEEE Microwave Guided Wave Lett. 3(3), 61–63 (1993).

Yu, C.-P.

J.-Y. Lu, C.-P. Yu, H.-C. Chang, H.-W. Chen, Y.-T. Li, C.-L. Pan, and C.-K. Sun, “Terahertz air-core microstructure fiber,” Appl. Phys. Lett. 92(6), 064105 1–3 (2008).

Yu, W.-H.

W.-H. Yu, Y.-J. Liu, T. Su, H. Neng-Tien, and M. Raj, “A robust parallel conformal finite difference time domain processing package using MPI library,” IEEE Ant. Propag. Mag. 47(3), 39–59 (2005).
[CrossRef]

Zhang, J.

T.-I. Jeon, J. Zhang, and K. W. Goossen, “THz Sommerfeld wave propagation on a single metal wire,” Appl. Phys. Lett. 86(16), 161904 1–3 (2005).
[CrossRef]

Appl. Phys. Lett.

T.-I. Jeon, J. Zhang, and K. W. Goossen, “THz Sommerfeld wave propagation on a single metal wire,” Appl. Phys. Lett. 86(16), 161904 1–3 (2005).
[CrossRef]

T.-I. Jeon and D. Grischkowsky, “Direct optoelectronic generation and detection of sub-ps-electrical pulses on sub-mm-coaxial transmission lines,” Appl. Phys. Lett. 85(25), 6092–6094 (2004).
[CrossRef]

J.-Y. Lu, C.-P. Yu, H.-C. Chang, H.-W. Chen, Y.-T. Li, C.-L. Pan, and C.-K. Sun, “Terahertz air-core microstructure fiber,” Appl. Phys. Lett. 92(6), 064105 1–3 (2008).

M. Skorobogaity and A. Dupuis, “Ferroelectric all-polymer hollow Bragg fibers for terahertz guidance,” Appl. Phys. Lett. 90(11), 1135141–1135143 (2007).

IEEE Ant. Propag. Mag.

W.-H. Yu, Y.-J. Liu, T. Su, H. Neng-Tien, and M. Raj, “A robust parallel conformal finite difference time domain processing package using MPI library,” IEEE Ant. Propag. Mag. 47(3), 39–59 (2005).
[CrossRef]

IEEE Microwave Guided Wave Lett.

W. R. McGrath, C. W. Walker, M. Yap, and Y.-C. Tai, “Silicon micromachined waveguides for millimeter-wave and submillimeter-wave frequencies,” IEEE Microwave Guided Wave Lett. 3(3), 61–63 (1993).

IEEE Trans. Microw. Theory Tech.

J. W. Digby, C. E. McIntosh, G. M. Parkhurst, and S. R. Davies, “Fabrication and characterization of micromachined rectagular components for use at millimeter and tetrahertz frequencies,” IEEE Trans. Microw. Theory Tech. 48(8), 1293–1302 (2000).
[CrossRef]

P. H. Siegel, “Terahertz Technology,” IEEE Trans. Microw. Theory Tech. 50(3), 910–928 (2002).
[CrossRef]

B. Martinez, I. Ederra, R. Gonzalo, B. Alderman, L. Azcona, P. G. Huggard, B. D. Hon, A. Hussain, S. R. Andrews, and L. Marchand, “Manufacturing tolerance analysis, fabrication, and characterization of 3-D submillimeter-wave electromagnetic-band gap crystals,” IEEE Trans. Microw. Theory Tech. 55(4), 672–681 (2007).
[CrossRef]

V. M. Lubecke, K. Mizuno, and G. M. Rebeiz, “Micromaching for Terahertz applications,” IEEE Trans. Microw. Theory Tech. 46(11), 1821–1831 (1998).
[CrossRef]

R. Gonzalo, B. Martinez, C. M. Mann, H. Pellemans, P. H. Bolivar, and P. de Maagt, “A low-cost fabrication technique for symmetrical and asymmetrical layer-by-layer photonic crystals at submillimeter-wave frequencies,” IEEE Trans. Microw. Theory Tech. 50(10), 2384–2392 (2002).
[CrossRef]

J. Opt. Soc. Am. B

Jpn. J. Appl. Phys.

M. Goto, A. Quema, H. Takahashi, S. Ono, and N. Sarukura, “Teflon photonic crystal fiber as Terahertz waveguide,” Jpn. J. Appl. Phys. 43(2B2B), L317-L319 (2004).
[CrossRef]

K. Yamamoto, M. Yamaguchi, F. Miyamaru, M. Tani, M. Hangyo, T. Ikeda, A. Matsushita, K. Koide, M. Tatsuno, and Y. Minami, “Noninvasive inspection of C-4 explosive in mails by terahertz time-domain spectroscopy,” Jpn. J. Appl. Phys. 43(3B3B), L414–L417 (2004).
[CrossRef]

Mater. Phys. Mech.

G. Kiriakidis and N. Katsarakis, “Fabrication of 2-D and 3-D photonic band-gap crystals in the GHz and THz regions,” Mater. Phys. Mech. 1, 20–26 (2000).

Microelectron. Eng.

F. Laermer and A. Urban, “Challenges, developments and applications of silicon deep reactive ion etching,” Microelectron. Eng. 67–68(1), 349–355 (2003).
[CrossRef]

Nature

K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432(7015), 376–379 (2004).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Supercond. Sci. Technol.

C. E. Honingh, M. M. Dierichs, H. H. Schaeffer, T. M. Klapwijk, and Th. de Graauw, “A 345 GHz waveguide mixer using an array of four Nb-Al-Al2O3-Nb SIS junctions,” Supercond. Sci. Technol. 4(11), 683–685 (1991).
[CrossRef]

Other

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic crystals: Molding the flow of Light, 2nd ed. (Princeton University Press, Princeton, NJ, 2008).

C. D. Nordquist, M. C. Wanke, A. M. Rowen, C. L. Arrington, M. Lee, and A. D. Grine, “Design, fabrication, and characterization of metal micromachined rectangular waveguides at 3 THz,” in IEEE AP-S Int. Symp. (San Diego, CA, 2008), pp. 1–4.

Z. Wu, W.-R. Ng, M. Gehm, and H. Xin, “Hollow-core electromagnetic band gap (EBG) waveguide fabricated by rapid prototyping for low-loss Terahertz guiding,” in IEEE MTT-S Int. Microwave Symp. (Anaheim, CA, 2010).

Z. Wu, W.-R. Ng, M. Gehm, and H. Xin, “Terahertz electromagnetic crystal (EMXT) based waveguide and horn antenna,” in 35th Int. Conf. on Infrared, Millimeter and Terahertz Waves, (Rome, Italy, 2010).

Lumerical MODE Solutions package, v2.3.

P. F. Goldsmith, Quasioptical systems: Gaussian beam quasioptical propagation and applications (IEEE Press,Piscataway, NJ, 1997).

G. Gruner, ed., Millimeter and Submillimeter Wave Spectroscopy of Solids (Springer, Berlin, German, 1998).

J. C. Daly, Fiber Optics (CRC Press, Boca Raton, Florida, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Band diagram of the complete electromagnetic crystal lattice and the hollow-core waveguide modes. For the electromagnetic crystal lattice, dark (blue online) regions denote the continuous modes region whereas in white regions no mode exists (band gaps). Inset (left) shows the schematic of the waveguide cross section when a center air core channel is introduced. Waveguide modes are marked by the dots (red) in the “Band Gap 1” region, among which the energy intensity profile of the fundamental HE 11 mode is shown in the inset (right).

Fig. 2
Fig. 2

Simulated S-parameters of an 84 mm-long electromagnetic crystal waveguide.

Fig. 3
Fig. 3

Power loss factors of the electromagnetic crystal waveguide extracted from the wave port (TE 11 circular perfect-electric-conductor waveguide feeds) and the Gaussian beam incidence simulations.

Fig. 4
Fig. 4

Cross-sectional and full views of a fabricated THz waveguide, with lattice constant of 3 mm, center core radius of 4.2 mm, and cladding air cylinder radius of 1.3 mm.

Fig. 5
Fig. 5

Setup of the characterization experiment: from left to right: THz transmitter, parabolic mirror 1, iris, polymer lens 1, waveguide under test, polymer lens 2, parabolic mirror 2, and THz receiver. THz time-domain spectrometer used here: T-Ray 2000 turnkey THz system manufactured by Picometrix, Inc.

Fig. 6
Fig. 6

(a) Transmitted waveforms of five waveguides with different lengths, and the reference scan transmitted through free space. (b) Normalized power transmission of the waveguides.

Fig. 7
Fig. 7

(a) Semi-log plot of the measured transmitted power in dB versus waveguide length at 107 GHz. Linearly fitted slope gives the power loss factor at this frequency. (b) Measured and simulated waveguide power loss factors under Gaussian beam excitation.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

α = ln ( | S 21 | 2 1 | S 11 | 2 ) / ( l ) ,

Metrics