Abstract

We propose and demonstrate a new SERS substrate architecture that couples a dense three-dimensional (3-D) cavity nanoantenna array, through nano-gaps, with dense plasmonic nanodots; and a new nanofabrication that combines nanoimprint, guided self-assembly and self-alignment and has fabricated the architecture precisely, simply, inexpensively and over large area (4-inch wafer). We experimentally achieved not only high area-average SERS enhancement (1.2 × 109) but also excellent uniformity (22.4% variation) at the same time over the entire large-area sample by measuring 90 points with a regular mapping distance. The best uniformity achieved is 15% variation over 1.6 mm by 1.6 mm area at slightly lower enhancement factor and is independent of the excitation laser probe size, which had an area varying from ~1 to 10,000 μm2.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman-spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26(2), 163–166 (1974).
    [CrossRef]
  2. D. L. Jeanmaire and R. P. Van Duyne, “Surface Raman spectroelectrochemistry. 1.heterocyclic, aromatic, and aliphatic-amines adsorbed on anodized silver electrode,” J. Electroanal. Chem. 84(1), 1–20 (1977).
    [CrossRef]
  3. M. G. Albrecht and J. A. Creighton, “Anomalously intense Raman-spectra of pyridine at a silver electrode,” J. Am. Chem. Soc. 99(15), 5215–5217 (1977).
    [CrossRef]
  4. S. M. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
    [CrossRef] [PubMed]
  5. K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
    [CrossRef]
  6. N. P. W. Pieczonka and R. F. Aroca, “Single molecule analysis by surfaced-enhanced Raman scattering,” Chem. Soc. Rev. 37(5), 946–954 (2008).
    [CrossRef] [PubMed]
  7. D. K. Lim, K. S. Jeon, H. M. Kim, J. M. Nam, and Y. D. Suh, “Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection,” Nat. Mater. 9(1), 60–67 (2010).
    [CrossRef]
  8. H. Y. H. Chan, C. C. Takoudis, and M. J. Weaver, “High-pressure oxidation of ruthenium as probed by surface-enhanced Raman and X-ray photoelectron spectroscopies,” J. Catal. 172(2), 336–345 (1997).
    [CrossRef]
  9. S. C. S. Lai and M. T. M. Koper, “Ethanol electro-oxidation on platinum in alkaline media,” Phys. Chem. Chem. Phys. 11(44), 10446–10456 (2009).
    [CrossRef] [PubMed]
  10. Z. Q. Tian and B. Ren, “Adsorption and reaction at electrochemical interfaces as probed by surface-enhanced Raman spectroscopy,” Annu. Rev. Phys. Chem. 55(1), 197–229 (2004).
    [CrossRef] [PubMed]
  11. X. M. Zhao, B. H. Zhang, K. L. Ai, G. Zhang, L. Y. Cao, X. J. Liu, H. M. Sun, H. S. Wang, and L. H. Lu, “Monitoring catalytic degradation of dye molecules on silver-coated ZnO nanowire arrays by surface-enhanced Raman spectroscopy,” J. Mater. Chem. 19(31), 5547–5553 (2009).
    [CrossRef]
  12. J. D. Driskell, S. Shanmukh, Y. J. Liu, S. Hennigan, L. Jones, Y. P. Zhao, R. A. Dluhy, D. C. Krause, and R. A. Tripp, “Infectious agent detection with SERS-active silver nanorod arrays prepared by oblique angle deposition,” IEEE Sens. J. 8(6), 863–870 (2008).
    [CrossRef]
  13. I. S. Patel, W. R. Premasiri, D. T. Moir, and L. D. Ziegler, “Barcoding bacterial cells: A SERS based methodology for pathogen identification,” J Raman Spectrosc 39(11), 1660–1672 (2008).
    [CrossRef]
  14. R. A. Tripp, R. A. Dluhy, and Y. P. Zhao, “Novel nanostructures for SERS biosensing,” Nano Today 3(3-4), 31–37 (2008).
    [CrossRef]
  15. K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
    [CrossRef]
  16. M. J. Natan, “Surface enhanced Raman scattering,” Faraday Discuss. 132, 321–328 (2006).
    [CrossRef] [PubMed]
  17. T. Xiao, Q. Ye, and L. Sun, “Hunting for the active sites of surface-enhanced Raman scattering: A new strategy based on single silver particles,” J. Phys. Chem. B 101(4), 632–638 (1997).
    [CrossRef]
  18. Y. Fang, N. H. Seong, and D. D. Dlott, “Measurement of the distribution of site enhancements in surface-enhanced Raman scattering,” Science 321(5887), 388–392 (2008).
    [CrossRef] [PubMed]
  19. M. Kerker, D. S. Wang, and H. Chew, “Surface enhanced Raman scattering (SERS) by molecules adsorbed at spherical particles: errata,” Appl. Opt. 19(24), 4159–4174 (1980).
    [CrossRef] [PubMed]
  20. S. Panigrahi, S. Praharaj, S. Basu, S. K. Ghosh, S. Jana, S. Pande, T. Vo-Dinh, H. Jiang, and T. Pal, “Self-assembly of silver nanoparticles: synthesis, stabilization, optical properties, and application in surface-enhanced Raman scattering,” J. Phys. Chem. B 110(27), 13436–13444 (2006).
    [CrossRef] [PubMed]
  21. G. Braun, S. J. Lee, M. Dante, T. Q. Nguyen, M. Moskovits, and N. Reich, “Surface-enhanced Raman spectroscopy for DNA detection by nanoparticle assembly onto smooth metal films,” J. Am. Chem. Soc. 129(20), 6378–6379 (2007).
    [CrossRef] [PubMed]
  22. A. Tao, F. Kim, C. Hess, J. Goldberger, R. He, Y. Sun, Y. Xia, and P. Yang, “Langmuir-Blodgett silver nanowire monolayers for molecular sensing using surface-enhanced Raman spectroscopy,” Nano Lett. 3(9), 1229–1233 (2003).
    [CrossRef]
  23. A. Gopinath, S. V. Boriskina, B. M. Reinhard, and L. Dal Negro, “Deterministic aperiodic arrays of metal nanoparticles for surface-enhanced Raman scattering (SERS),” Opt. Express 17(5), 3741–3753 (2009).
    [CrossRef] [PubMed]
  24. J. Li, H. Iu, W. C. Luk, J. T. K. Wan, and H. C. Ong, “Studies of the plasmonic properties of two-dimensional metallic nanobottle arrays,” Appl. Phys. Lett. 92(21), 213106 (2008).
    [CrossRef]
  25. X. Y. Zhang, C. R. Yonzon, and R. P. Van Duyne, “Nanosphere lithography fabricated plasmonic materials and their applications,” J. Mater. Res. 21(5), 1083–1092 (2006).
    [CrossRef]
  26. P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94(1), 017402 (2005).
    [CrossRef] [PubMed]
  27. S. Wang, D. F. P. Pile, C. Sun, and X. Zhang, “Nanopin plasmonic resonator array and its optical properties,” Nano Lett. 7(4), 1076–1080 (2007).
    [CrossRef] [PubMed]
  28. areN. Perney, F. García de Abajo, J. Baumberg, A. Tang, M. Netti, M. Charlton, and M. Zoorob, “Tuning localized plasmon cavities for optimized surface-enhanced Raman scattering,” Phys. Rev. B 76(3), 035426 (2007).
    [CrossRef]
  29. W. D. Li, and S. Y. Chou, unpublished, 2008.
  30. S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Imprint of sub-25 nm vias and trenches in polymers,” Appl. Phys. Lett. 67(21), 3114–3116 (1995).
    [CrossRef]
  31. W. Wu, B. Cui, X. Y. Sun, W. Zhang, L. Zhuang, L. S. Kong, and S. Y. Chou, “Large area high density quantized magnetic disks fabricated using nanoimprint lithography,” J. Vac. Sci. Technol. B 16(6), 3825–3829 (1998).
    [CrossRef]
  32. M. D. Austin, H. X. Ge, W. Wu, M. T. Li, Z. N. Yu, D. Wasserman, S. A. Lyon, and S. Y. Chou, “Fabrication of 5 nm linewidth and 14 nm pitch features by nanoimprint lithography,” Appl. Phys. Lett. 84(26), 5299–5301 (2004).
    [CrossRef]
  33. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
    [CrossRef]
  34. A. Christ, G. Lévêque, O. J. F. Martin, T. Zentgraf, J. Kuhl, C. Bauer, H. Giessen, and S. G. Tikhodeev, “Near-field-induced tunability of surface plasmon polaritons in composite metallic nanostructures,” J. Microsc. 229(2), 344–353 (2008).
    [CrossRef] [PubMed]

2010 (1)

D. K. Lim, K. S. Jeon, H. M. Kim, J. M. Nam, and Y. D. Suh, “Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection,” Nat. Mater. 9(1), 60–67 (2010).
[CrossRef]

2009 (3)

X. M. Zhao, B. H. Zhang, K. L. Ai, G. Zhang, L. Y. Cao, X. J. Liu, H. M. Sun, H. S. Wang, and L. H. Lu, “Monitoring catalytic degradation of dye molecules on silver-coated ZnO nanowire arrays by surface-enhanced Raman spectroscopy,” J. Mater. Chem. 19(31), 5547–5553 (2009).
[CrossRef]

S. C. S. Lai and M. T. M. Koper, “Ethanol electro-oxidation on platinum in alkaline media,” Phys. Chem. Chem. Phys. 11(44), 10446–10456 (2009).
[CrossRef] [PubMed]

A. Gopinath, S. V. Boriskina, B. M. Reinhard, and L. Dal Negro, “Deterministic aperiodic arrays of metal nanoparticles for surface-enhanced Raman scattering (SERS),” Opt. Express 17(5), 3741–3753 (2009).
[CrossRef] [PubMed]

2008 (7)

A. Christ, G. Lévêque, O. J. F. Martin, T. Zentgraf, J. Kuhl, C. Bauer, H. Giessen, and S. G. Tikhodeev, “Near-field-induced tunability of surface plasmon polaritons in composite metallic nanostructures,” J. Microsc. 229(2), 344–353 (2008).
[CrossRef] [PubMed]

J. D. Driskell, S. Shanmukh, Y. J. Liu, S. Hennigan, L. Jones, Y. P. Zhao, R. A. Dluhy, D. C. Krause, and R. A. Tripp, “Infectious agent detection with SERS-active silver nanorod arrays prepared by oblique angle deposition,” IEEE Sens. J. 8(6), 863–870 (2008).
[CrossRef]

I. S. Patel, W. R. Premasiri, D. T. Moir, and L. D. Ziegler, “Barcoding bacterial cells: A SERS based methodology for pathogen identification,” J Raman Spectrosc 39(11), 1660–1672 (2008).
[CrossRef]

R. A. Tripp, R. A. Dluhy, and Y. P. Zhao, “Novel nanostructures for SERS biosensing,” Nano Today 3(3-4), 31–37 (2008).
[CrossRef]

Y. Fang, N. H. Seong, and D. D. Dlott, “Measurement of the distribution of site enhancements in surface-enhanced Raman scattering,” Science 321(5887), 388–392 (2008).
[CrossRef] [PubMed]

J. Li, H. Iu, W. C. Luk, J. T. K. Wan, and H. C. Ong, “Studies of the plasmonic properties of two-dimensional metallic nanobottle arrays,” Appl. Phys. Lett. 92(21), 213106 (2008).
[CrossRef]

N. P. W. Pieczonka and R. F. Aroca, “Single molecule analysis by surfaced-enhanced Raman scattering,” Chem. Soc. Rev. 37(5), 946–954 (2008).
[CrossRef] [PubMed]

2007 (4)

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
[CrossRef]

S. Wang, D. F. P. Pile, C. Sun, and X. Zhang, “Nanopin plasmonic resonator array and its optical properties,” Nano Lett. 7(4), 1076–1080 (2007).
[CrossRef] [PubMed]

areN. Perney, F. García de Abajo, J. Baumberg, A. Tang, M. Netti, M. Charlton, and M. Zoorob, “Tuning localized plasmon cavities for optimized surface-enhanced Raman scattering,” Phys. Rev. B 76(3), 035426 (2007).
[CrossRef]

G. Braun, S. J. Lee, M. Dante, T. Q. Nguyen, M. Moskovits, and N. Reich, “Surface-enhanced Raman spectroscopy for DNA detection by nanoparticle assembly onto smooth metal films,” J. Am. Chem. Soc. 129(20), 6378–6379 (2007).
[CrossRef] [PubMed]

2006 (3)

S. Panigrahi, S. Praharaj, S. Basu, S. K. Ghosh, S. Jana, S. Pande, T. Vo-Dinh, H. Jiang, and T. Pal, “Self-assembly of silver nanoparticles: synthesis, stabilization, optical properties, and application in surface-enhanced Raman scattering,” J. Phys. Chem. B 110(27), 13436–13444 (2006).
[CrossRef] [PubMed]

M. J. Natan, “Surface enhanced Raman scattering,” Faraday Discuss. 132, 321–328 (2006).
[CrossRef] [PubMed]

X. Y. Zhang, C. R. Yonzon, and R. P. Van Duyne, “Nanosphere lithography fabricated plasmonic materials and their applications,” J. Mater. Res. 21(5), 1083–1092 (2006).
[CrossRef]

2005 (1)

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94(1), 017402 (2005).
[CrossRef] [PubMed]

2004 (2)

M. D. Austin, H. X. Ge, W. Wu, M. T. Li, Z. N. Yu, D. Wasserman, S. A. Lyon, and S. Y. Chou, “Fabrication of 5 nm linewidth and 14 nm pitch features by nanoimprint lithography,” Appl. Phys. Lett. 84(26), 5299–5301 (2004).
[CrossRef]

Z. Q. Tian and B. Ren, “Adsorption and reaction at electrochemical interfaces as probed by surface-enhanced Raman spectroscopy,” Annu. Rev. Phys. Chem. 55(1), 197–229 (2004).
[CrossRef] [PubMed]

2003 (2)

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[CrossRef]

A. Tao, F. Kim, C. Hess, J. Goldberger, R. He, Y. Sun, Y. Xia, and P. Yang, “Langmuir-Blodgett silver nanowire monolayers for molecular sensing using surface-enhanced Raman spectroscopy,” Nano Lett. 3(9), 1229–1233 (2003).
[CrossRef]

1998 (1)

W. Wu, B. Cui, X. Y. Sun, W. Zhang, L. Zhuang, L. S. Kong, and S. Y. Chou, “Large area high density quantized magnetic disks fabricated using nanoimprint lithography,” J. Vac. Sci. Technol. B 16(6), 3825–3829 (1998).
[CrossRef]

1997 (4)

T. Xiao, Q. Ye, and L. Sun, “Hunting for the active sites of surface-enhanced Raman scattering: A new strategy based on single silver particles,” J. Phys. Chem. B 101(4), 632–638 (1997).
[CrossRef]

H. Y. H. Chan, C. C. Takoudis, and M. J. Weaver, “High-pressure oxidation of ruthenium as probed by surface-enhanced Raman and X-ray photoelectron spectroscopies,” J. Catal. 172(2), 336–345 (1997).
[CrossRef]

S. M. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
[CrossRef] [PubMed]

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[CrossRef]

1995 (1)

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Imprint of sub-25 nm vias and trenches in polymers,” Appl. Phys. Lett. 67(21), 3114–3116 (1995).
[CrossRef]

1980 (1)

1977 (2)

D. L. Jeanmaire and R. P. Van Duyne, “Surface Raman spectroelectrochemistry. 1.heterocyclic, aromatic, and aliphatic-amines adsorbed on anodized silver electrode,” J. Electroanal. Chem. 84(1), 1–20 (1977).
[CrossRef]

M. G. Albrecht and J. A. Creighton, “Anomalously intense Raman-spectra of pyridine at a silver electrode,” J. Am. Chem. Soc. 99(15), 5215–5217 (1977).
[CrossRef]

1974 (1)

M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman-spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26(2), 163–166 (1974).
[CrossRef]

Ai, K. L.

X. M. Zhao, B. H. Zhang, K. L. Ai, G. Zhang, L. Y. Cao, X. J. Liu, H. M. Sun, H. S. Wang, and L. H. Lu, “Monitoring catalytic degradation of dye molecules on silver-coated ZnO nanowire arrays by surface-enhanced Raman spectroscopy,” J. Mater. Chem. 19(31), 5547–5553 (2009).
[CrossRef]

Albrecht, M. G.

M. G. Albrecht and J. A. Creighton, “Anomalously intense Raman-spectra of pyridine at a silver electrode,” J. Am. Chem. Soc. 99(15), 5215–5217 (1977).
[CrossRef]

Aroca, R. F.

N. P. W. Pieczonka and R. F. Aroca, “Single molecule analysis by surfaced-enhanced Raman scattering,” Chem. Soc. Rev. 37(5), 946–954 (2008).
[CrossRef] [PubMed]

Austin, M. D.

M. D. Austin, H. X. Ge, W. Wu, M. T. Li, Z. N. Yu, D. Wasserman, S. A. Lyon, and S. Y. Chou, “Fabrication of 5 nm linewidth and 14 nm pitch features by nanoimprint lithography,” Appl. Phys. Lett. 84(26), 5299–5301 (2004).
[CrossRef]

Basu, S.

S. Panigrahi, S. Praharaj, S. Basu, S. K. Ghosh, S. Jana, S. Pande, T. Vo-Dinh, H. Jiang, and T. Pal, “Self-assembly of silver nanoparticles: synthesis, stabilization, optical properties, and application in surface-enhanced Raman scattering,” J. Phys. Chem. B 110(27), 13436–13444 (2006).
[CrossRef] [PubMed]

Bauer, C.

A. Christ, G. Lévêque, O. J. F. Martin, T. Zentgraf, J. Kuhl, C. Bauer, H. Giessen, and S. G. Tikhodeev, “Near-field-induced tunability of surface plasmon polaritons in composite metallic nanostructures,” J. Microsc. 229(2), 344–353 (2008).
[CrossRef] [PubMed]

Baumberg, J.

areN. Perney, F. García de Abajo, J. Baumberg, A. Tang, M. Netti, M. Charlton, and M. Zoorob, “Tuning localized plasmon cavities for optimized surface-enhanced Raman scattering,” Phys. Rev. B 76(3), 035426 (2007).
[CrossRef]

Boriskina, S. V.

Braun, G.

G. Braun, S. J. Lee, M. Dante, T. Q. Nguyen, M. Moskovits, and N. Reich, “Surface-enhanced Raman spectroscopy for DNA detection by nanoparticle assembly onto smooth metal films,” J. Am. Chem. Soc. 129(20), 6378–6379 (2007).
[CrossRef] [PubMed]

Cao, L. Y.

X. M. Zhao, B. H. Zhang, K. L. Ai, G. Zhang, L. Y. Cao, X. J. Liu, H. M. Sun, H. S. Wang, and L. H. Lu, “Monitoring catalytic degradation of dye molecules on silver-coated ZnO nanowire arrays by surface-enhanced Raman spectroscopy,” J. Mater. Chem. 19(31), 5547–5553 (2009).
[CrossRef]

Chan, H. Y. H.

H. Y. H. Chan, C. C. Takoudis, and M. J. Weaver, “High-pressure oxidation of ruthenium as probed by surface-enhanced Raman and X-ray photoelectron spectroscopies,” J. Catal. 172(2), 336–345 (1997).
[CrossRef]

Charlton, M.

areN. Perney, F. García de Abajo, J. Baumberg, A. Tang, M. Netti, M. Charlton, and M. Zoorob, “Tuning localized plasmon cavities for optimized surface-enhanced Raman scattering,” Phys. Rev. B 76(3), 035426 (2007).
[CrossRef]

Chew, H.

Chou, S. Y.

M. D. Austin, H. X. Ge, W. Wu, M. T. Li, Z. N. Yu, D. Wasserman, S. A. Lyon, and S. Y. Chou, “Fabrication of 5 nm linewidth and 14 nm pitch features by nanoimprint lithography,” Appl. Phys. Lett. 84(26), 5299–5301 (2004).
[CrossRef]

W. Wu, B. Cui, X. Y. Sun, W. Zhang, L. Zhuang, L. S. Kong, and S. Y. Chou, “Large area high density quantized magnetic disks fabricated using nanoimprint lithography,” J. Vac. Sci. Technol. B 16(6), 3825–3829 (1998).
[CrossRef]

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Imprint of sub-25 nm vias and trenches in polymers,” Appl. Phys. Lett. 67(21), 3114–3116 (1995).
[CrossRef]

Christ, A.

A. Christ, G. Lévêque, O. J. F. Martin, T. Zentgraf, J. Kuhl, C. Bauer, H. Giessen, and S. G. Tikhodeev, “Near-field-induced tunability of surface plasmon polaritons in composite metallic nanostructures,” J. Microsc. 229(2), 344–353 (2008).
[CrossRef] [PubMed]

Coronado, E.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[CrossRef]

Creighton, J. A.

M. G. Albrecht and J. A. Creighton, “Anomalously intense Raman-spectra of pyridine at a silver electrode,” J. Am. Chem. Soc. 99(15), 5215–5217 (1977).
[CrossRef]

Cui, B.

W. Wu, B. Cui, X. Y. Sun, W. Zhang, L. Zhuang, L. S. Kong, and S. Y. Chou, “Large area high density quantized magnetic disks fabricated using nanoimprint lithography,” J. Vac. Sci. Technol. B 16(6), 3825–3829 (1998).
[CrossRef]

Dal Negro, L.

Dante, M.

G. Braun, S. J. Lee, M. Dante, T. Q. Nguyen, M. Moskovits, and N. Reich, “Surface-enhanced Raman spectroscopy for DNA detection by nanoparticle assembly onto smooth metal films,” J. Am. Chem. Soc. 129(20), 6378–6379 (2007).
[CrossRef] [PubMed]

Dasari, R.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[CrossRef]

Dlott, D. D.

Y. Fang, N. H. Seong, and D. D. Dlott, “Measurement of the distribution of site enhancements in surface-enhanced Raman scattering,” Science 321(5887), 388–392 (2008).
[CrossRef] [PubMed]

Dluhy, R. A.

R. A. Tripp, R. A. Dluhy, and Y. P. Zhao, “Novel nanostructures for SERS biosensing,” Nano Today 3(3-4), 31–37 (2008).
[CrossRef]

J. D. Driskell, S. Shanmukh, Y. J. Liu, S. Hennigan, L. Jones, Y. P. Zhao, R. A. Dluhy, D. C. Krause, and R. A. Tripp, “Infectious agent detection with SERS-active silver nanorod arrays prepared by oblique angle deposition,” IEEE Sens. J. 8(6), 863–870 (2008).
[CrossRef]

Driskell, J. D.

J. D. Driskell, S. Shanmukh, Y. J. Liu, S. Hennigan, L. Jones, Y. P. Zhao, R. A. Dluhy, D. C. Krause, and R. A. Tripp, “Infectious agent detection with SERS-active silver nanorod arrays prepared by oblique angle deposition,” IEEE Sens. J. 8(6), 863–870 (2008).
[CrossRef]

Emory, S. R.

S. M. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
[CrossRef] [PubMed]

Fang, Y.

Y. Fang, N. H. Seong, and D. D. Dlott, “Measurement of the distribution of site enhancements in surface-enhanced Raman scattering,” Science 321(5887), 388–392 (2008).
[CrossRef] [PubMed]

Feld, M. S.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[CrossRef]

Fleischmann, M.

M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman-spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26(2), 163–166 (1974).
[CrossRef]

Fromm, D. P.

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94(1), 017402 (2005).
[CrossRef] [PubMed]

García de Abajo, F.

areN. Perney, F. García de Abajo, J. Baumberg, A. Tang, M. Netti, M. Charlton, and M. Zoorob, “Tuning localized plasmon cavities for optimized surface-enhanced Raman scattering,” Phys. Rev. B 76(3), 035426 (2007).
[CrossRef]

Ge, H. X.

M. D. Austin, H. X. Ge, W. Wu, M. T. Li, Z. N. Yu, D. Wasserman, S. A. Lyon, and S. Y. Chou, “Fabrication of 5 nm linewidth and 14 nm pitch features by nanoimprint lithography,” Appl. Phys. Lett. 84(26), 5299–5301 (2004).
[CrossRef]

Ghosh, S. K.

S. Panigrahi, S. Praharaj, S. Basu, S. K. Ghosh, S. Jana, S. Pande, T. Vo-Dinh, H. Jiang, and T. Pal, “Self-assembly of silver nanoparticles: synthesis, stabilization, optical properties, and application in surface-enhanced Raman scattering,” J. Phys. Chem. B 110(27), 13436–13444 (2006).
[CrossRef] [PubMed]

Giessen, H.

A. Christ, G. Lévêque, O. J. F. Martin, T. Zentgraf, J. Kuhl, C. Bauer, H. Giessen, and S. G. Tikhodeev, “Near-field-induced tunability of surface plasmon polaritons in composite metallic nanostructures,” J. Microsc. 229(2), 344–353 (2008).
[CrossRef] [PubMed]

Goldberger, J.

A. Tao, F. Kim, C. Hess, J. Goldberger, R. He, Y. Sun, Y. Xia, and P. Yang, “Langmuir-Blodgett silver nanowire monolayers for molecular sensing using surface-enhanced Raman spectroscopy,” Nano Lett. 3(9), 1229–1233 (2003).
[CrossRef]

Gopinath, A.

He, R.

A. Tao, F. Kim, C. Hess, J. Goldberger, R. He, Y. Sun, Y. Xia, and P. Yang, “Langmuir-Blodgett silver nanowire monolayers for molecular sensing using surface-enhanced Raman spectroscopy,” Nano Lett. 3(9), 1229–1233 (2003).
[CrossRef]

Hendra, P. J.

M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman-spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26(2), 163–166 (1974).
[CrossRef]

Hennigan, S.

J. D. Driskell, S. Shanmukh, Y. J. Liu, S. Hennigan, L. Jones, Y. P. Zhao, R. A. Dluhy, D. C. Krause, and R. A. Tripp, “Infectious agent detection with SERS-active silver nanorod arrays prepared by oblique angle deposition,” IEEE Sens. J. 8(6), 863–870 (2008).
[CrossRef]

Hess, C.

A. Tao, F. Kim, C. Hess, J. Goldberger, R. He, Y. Sun, Y. Xia, and P. Yang, “Langmuir-Blodgett silver nanowire monolayers for molecular sensing using surface-enhanced Raman spectroscopy,” Nano Lett. 3(9), 1229–1233 (2003).
[CrossRef]

Itzkan, I.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[CrossRef]

Iu, H.

J. Li, H. Iu, W. C. Luk, J. T. K. Wan, and H. C. Ong, “Studies of the plasmonic properties of two-dimensional metallic nanobottle arrays,” Appl. Phys. Lett. 92(21), 213106 (2008).
[CrossRef]

Jana, S.

S. Panigrahi, S. Praharaj, S. Basu, S. K. Ghosh, S. Jana, S. Pande, T. Vo-Dinh, H. Jiang, and T. Pal, “Self-assembly of silver nanoparticles: synthesis, stabilization, optical properties, and application in surface-enhanced Raman scattering,” J. Phys. Chem. B 110(27), 13436–13444 (2006).
[CrossRef] [PubMed]

Jeanmaire, D. L.

D. L. Jeanmaire and R. P. Van Duyne, “Surface Raman spectroelectrochemistry. 1.heterocyclic, aromatic, and aliphatic-amines adsorbed on anodized silver electrode,” J. Electroanal. Chem. 84(1), 1–20 (1977).
[CrossRef]

Jeon, K. S.

D. K. Lim, K. S. Jeon, H. M. Kim, J. M. Nam, and Y. D. Suh, “Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection,” Nat. Mater. 9(1), 60–67 (2010).
[CrossRef]

Jiang, H.

S. Panigrahi, S. Praharaj, S. Basu, S. K. Ghosh, S. Jana, S. Pande, T. Vo-Dinh, H. Jiang, and T. Pal, “Self-assembly of silver nanoparticles: synthesis, stabilization, optical properties, and application in surface-enhanced Raman scattering,” J. Phys. Chem. B 110(27), 13436–13444 (2006).
[CrossRef] [PubMed]

Jones, L.

J. D. Driskell, S. Shanmukh, Y. J. Liu, S. Hennigan, L. Jones, Y. P. Zhao, R. A. Dluhy, D. C. Krause, and R. A. Tripp, “Infectious agent detection with SERS-active silver nanorod arrays prepared by oblique angle deposition,” IEEE Sens. J. 8(6), 863–870 (2008).
[CrossRef]

Kelly, K. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[CrossRef]

Kerker, M.

Kim, F.

A. Tao, F. Kim, C. Hess, J. Goldberger, R. He, Y. Sun, Y. Xia, and P. Yang, “Langmuir-Blodgett silver nanowire monolayers for molecular sensing using surface-enhanced Raman spectroscopy,” Nano Lett. 3(9), 1229–1233 (2003).
[CrossRef]

Kim, H. M.

D. K. Lim, K. S. Jeon, H. M. Kim, J. M. Nam, and Y. D. Suh, “Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection,” Nat. Mater. 9(1), 60–67 (2010).
[CrossRef]

Kino, G. S.

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94(1), 017402 (2005).
[CrossRef] [PubMed]

Kneipp, H.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[CrossRef]

Kneipp, K.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[CrossRef]

Kong, L. S.

W. Wu, B. Cui, X. Y. Sun, W. Zhang, L. Zhuang, L. S. Kong, and S. Y. Chou, “Large area high density quantized magnetic disks fabricated using nanoimprint lithography,” J. Vac. Sci. Technol. B 16(6), 3825–3829 (1998).
[CrossRef]

Koper, M. T. M.

S. C. S. Lai and M. T. M. Koper, “Ethanol electro-oxidation on platinum in alkaline media,” Phys. Chem. Chem. Phys. 11(44), 10446–10456 (2009).
[CrossRef] [PubMed]

Krause, D. C.

J. D. Driskell, S. Shanmukh, Y. J. Liu, S. Hennigan, L. Jones, Y. P. Zhao, R. A. Dluhy, D. C. Krause, and R. A. Tripp, “Infectious agent detection with SERS-active silver nanorod arrays prepared by oblique angle deposition,” IEEE Sens. J. 8(6), 863–870 (2008).
[CrossRef]

Krauss, P. R.

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Imprint of sub-25 nm vias and trenches in polymers,” Appl. Phys. Lett. 67(21), 3114–3116 (1995).
[CrossRef]

Kuhl, J.

A. Christ, G. Lévêque, O. J. F. Martin, T. Zentgraf, J. Kuhl, C. Bauer, H. Giessen, and S. G. Tikhodeev, “Near-field-induced tunability of surface plasmon polaritons in composite metallic nanostructures,” J. Microsc. 229(2), 344–353 (2008).
[CrossRef] [PubMed]

Lai, S. C. S.

S. C. S. Lai and M. T. M. Koper, “Ethanol electro-oxidation on platinum in alkaline media,” Phys. Chem. Chem. Phys. 11(44), 10446–10456 (2009).
[CrossRef] [PubMed]

Lee, S. J.

G. Braun, S. J. Lee, M. Dante, T. Q. Nguyen, M. Moskovits, and N. Reich, “Surface-enhanced Raman spectroscopy for DNA detection by nanoparticle assembly onto smooth metal films,” J. Am. Chem. Soc. 129(20), 6378–6379 (2007).
[CrossRef] [PubMed]

Lévêque, G.

A. Christ, G. Lévêque, O. J. F. Martin, T. Zentgraf, J. Kuhl, C. Bauer, H. Giessen, and S. G. Tikhodeev, “Near-field-induced tunability of surface plasmon polaritons in composite metallic nanostructures,” J. Microsc. 229(2), 344–353 (2008).
[CrossRef] [PubMed]

Li, J.

J. Li, H. Iu, W. C. Luk, J. T. K. Wan, and H. C. Ong, “Studies of the plasmonic properties of two-dimensional metallic nanobottle arrays,” Appl. Phys. Lett. 92(21), 213106 (2008).
[CrossRef]

Li, M. T.

M. D. Austin, H. X. Ge, W. Wu, M. T. Li, Z. N. Yu, D. Wasserman, S. A. Lyon, and S. Y. Chou, “Fabrication of 5 nm linewidth and 14 nm pitch features by nanoimprint lithography,” Appl. Phys. Lett. 84(26), 5299–5301 (2004).
[CrossRef]

Lim, D. K.

D. K. Lim, K. S. Jeon, H. M. Kim, J. M. Nam, and Y. D. Suh, “Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection,” Nat. Mater. 9(1), 60–67 (2010).
[CrossRef]

Liu, X. J.

X. M. Zhao, B. H. Zhang, K. L. Ai, G. Zhang, L. Y. Cao, X. J. Liu, H. M. Sun, H. S. Wang, and L. H. Lu, “Monitoring catalytic degradation of dye molecules on silver-coated ZnO nanowire arrays by surface-enhanced Raman spectroscopy,” J. Mater. Chem. 19(31), 5547–5553 (2009).
[CrossRef]

Liu, Y. J.

J. D. Driskell, S. Shanmukh, Y. J. Liu, S. Hennigan, L. Jones, Y. P. Zhao, R. A. Dluhy, D. C. Krause, and R. A. Tripp, “Infectious agent detection with SERS-active silver nanorod arrays prepared by oblique angle deposition,” IEEE Sens. J. 8(6), 863–870 (2008).
[CrossRef]

Lu, L. H.

X. M. Zhao, B. H. Zhang, K. L. Ai, G. Zhang, L. Y. Cao, X. J. Liu, H. M. Sun, H. S. Wang, and L. H. Lu, “Monitoring catalytic degradation of dye molecules on silver-coated ZnO nanowire arrays by surface-enhanced Raman spectroscopy,” J. Mater. Chem. 19(31), 5547–5553 (2009).
[CrossRef]

Luk, W. C.

J. Li, H. Iu, W. C. Luk, J. T. K. Wan, and H. C. Ong, “Studies of the plasmonic properties of two-dimensional metallic nanobottle arrays,” Appl. Phys. Lett. 92(21), 213106 (2008).
[CrossRef]

Lyon, S. A.

M. D. Austin, H. X. Ge, W. Wu, M. T. Li, Z. N. Yu, D. Wasserman, S. A. Lyon, and S. Y. Chou, “Fabrication of 5 nm linewidth and 14 nm pitch features by nanoimprint lithography,” Appl. Phys. Lett. 84(26), 5299–5301 (2004).
[CrossRef]

Martin, O. J. F.

A. Christ, G. Lévêque, O. J. F. Martin, T. Zentgraf, J. Kuhl, C. Bauer, H. Giessen, and S. G. Tikhodeev, “Near-field-induced tunability of surface plasmon polaritons in composite metallic nanostructures,” J. Microsc. 229(2), 344–353 (2008).
[CrossRef] [PubMed]

McQuillan, A. J.

M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman-spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26(2), 163–166 (1974).
[CrossRef]

Moerner, W. E.

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94(1), 017402 (2005).
[CrossRef] [PubMed]

Moir, D. T.

I. S. Patel, W. R. Premasiri, D. T. Moir, and L. D. Ziegler, “Barcoding bacterial cells: A SERS based methodology for pathogen identification,” J Raman Spectrosc 39(11), 1660–1672 (2008).
[CrossRef]

Moskovits, M.

G. Braun, S. J. Lee, M. Dante, T. Q. Nguyen, M. Moskovits, and N. Reich, “Surface-enhanced Raman spectroscopy for DNA detection by nanoparticle assembly onto smooth metal films,” J. Am. Chem. Soc. 129(20), 6378–6379 (2007).
[CrossRef] [PubMed]

Nam, J. M.

D. K. Lim, K. S. Jeon, H. M. Kim, J. M. Nam, and Y. D. Suh, “Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection,” Nat. Mater. 9(1), 60–67 (2010).
[CrossRef]

Natan, M. J.

M. J. Natan, “Surface enhanced Raman scattering,” Faraday Discuss. 132, 321–328 (2006).
[CrossRef] [PubMed]

Netti, M.

areN. Perney, F. García de Abajo, J. Baumberg, A. Tang, M. Netti, M. Charlton, and M. Zoorob, “Tuning localized plasmon cavities for optimized surface-enhanced Raman scattering,” Phys. Rev. B 76(3), 035426 (2007).
[CrossRef]

Nguyen, T. Q.

G. Braun, S. J. Lee, M. Dante, T. Q. Nguyen, M. Moskovits, and N. Reich, “Surface-enhanced Raman spectroscopy for DNA detection by nanoparticle assembly onto smooth metal films,” J. Am. Chem. Soc. 129(20), 6378–6379 (2007).
[CrossRef] [PubMed]

Nie, S. M.

S. M. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
[CrossRef] [PubMed]

Ong, H. C.

J. Li, H. Iu, W. C. Luk, J. T. K. Wan, and H. C. Ong, “Studies of the plasmonic properties of two-dimensional metallic nanobottle arrays,” Appl. Phys. Lett. 92(21), 213106 (2008).
[CrossRef]

Pal, T.

S. Panigrahi, S. Praharaj, S. Basu, S. K. Ghosh, S. Jana, S. Pande, T. Vo-Dinh, H. Jiang, and T. Pal, “Self-assembly of silver nanoparticles: synthesis, stabilization, optical properties, and application in surface-enhanced Raman scattering,” J. Phys. Chem. B 110(27), 13436–13444 (2006).
[CrossRef] [PubMed]

Pande, S.

S. Panigrahi, S. Praharaj, S. Basu, S. K. Ghosh, S. Jana, S. Pande, T. Vo-Dinh, H. Jiang, and T. Pal, “Self-assembly of silver nanoparticles: synthesis, stabilization, optical properties, and application in surface-enhanced Raman scattering,” J. Phys. Chem. B 110(27), 13436–13444 (2006).
[CrossRef] [PubMed]

Panigrahi, S.

S. Panigrahi, S. Praharaj, S. Basu, S. K. Ghosh, S. Jana, S. Pande, T. Vo-Dinh, H. Jiang, and T. Pal, “Self-assembly of silver nanoparticles: synthesis, stabilization, optical properties, and application in surface-enhanced Raman scattering,” J. Phys. Chem. B 110(27), 13436–13444 (2006).
[CrossRef] [PubMed]

Patel, I. S.

I. S. Patel, W. R. Premasiri, D. T. Moir, and L. D. Ziegler, “Barcoding bacterial cells: A SERS based methodology for pathogen identification,” J Raman Spectrosc 39(11), 1660–1672 (2008).
[CrossRef]

Perelman, L. T.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[CrossRef]

Perney, N.

areN. Perney, F. García de Abajo, J. Baumberg, A. Tang, M. Netti, M. Charlton, and M. Zoorob, “Tuning localized plasmon cavities for optimized surface-enhanced Raman scattering,” Phys. Rev. B 76(3), 035426 (2007).
[CrossRef]

Pieczonka, N. P. W.

N. P. W. Pieczonka and R. F. Aroca, “Single molecule analysis by surfaced-enhanced Raman scattering,” Chem. Soc. Rev. 37(5), 946–954 (2008).
[CrossRef] [PubMed]

Pile, D. F. P.

S. Wang, D. F. P. Pile, C. Sun, and X. Zhang, “Nanopin plasmonic resonator array and its optical properties,” Nano Lett. 7(4), 1076–1080 (2007).
[CrossRef] [PubMed]

Praharaj, S.

S. Panigrahi, S. Praharaj, S. Basu, S. K. Ghosh, S. Jana, S. Pande, T. Vo-Dinh, H. Jiang, and T. Pal, “Self-assembly of silver nanoparticles: synthesis, stabilization, optical properties, and application in surface-enhanced Raman scattering,” J. Phys. Chem. B 110(27), 13436–13444 (2006).
[CrossRef] [PubMed]

Premasiri, W. R.

I. S. Patel, W. R. Premasiri, D. T. Moir, and L. D. Ziegler, “Barcoding bacterial cells: A SERS based methodology for pathogen identification,” J Raman Spectrosc 39(11), 1660–1672 (2008).
[CrossRef]

Reich, N.

G. Braun, S. J. Lee, M. Dante, T. Q. Nguyen, M. Moskovits, and N. Reich, “Surface-enhanced Raman spectroscopy for DNA detection by nanoparticle assembly onto smooth metal films,” J. Am. Chem. Soc. 129(20), 6378–6379 (2007).
[CrossRef] [PubMed]

Reinhard, B. M.

Ren, B.

Z. Q. Tian and B. Ren, “Adsorption and reaction at electrochemical interfaces as probed by surface-enhanced Raman spectroscopy,” Annu. Rev. Phys. Chem. 55(1), 197–229 (2004).
[CrossRef] [PubMed]

Renstrom, P. J.

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Imprint of sub-25 nm vias and trenches in polymers,” Appl. Phys. Lett. 67(21), 3114–3116 (1995).
[CrossRef]

Schatz, G. C.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[CrossRef]

Schuck, P. J.

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94(1), 017402 (2005).
[CrossRef] [PubMed]

Seong, N. H.

Y. Fang, N. H. Seong, and D. D. Dlott, “Measurement of the distribution of site enhancements in surface-enhanced Raman scattering,” Science 321(5887), 388–392 (2008).
[CrossRef] [PubMed]

Shanmukh, S.

J. D. Driskell, S. Shanmukh, Y. J. Liu, S. Hennigan, L. Jones, Y. P. Zhao, R. A. Dluhy, D. C. Krause, and R. A. Tripp, “Infectious agent detection with SERS-active silver nanorod arrays prepared by oblique angle deposition,” IEEE Sens. J. 8(6), 863–870 (2008).
[CrossRef]

Suh, Y. D.

D. K. Lim, K. S. Jeon, H. M. Kim, J. M. Nam, and Y. D. Suh, “Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection,” Nat. Mater. 9(1), 60–67 (2010).
[CrossRef]

Sun, C.

S. Wang, D. F. P. Pile, C. Sun, and X. Zhang, “Nanopin plasmonic resonator array and its optical properties,” Nano Lett. 7(4), 1076–1080 (2007).
[CrossRef] [PubMed]

Sun, H. M.

X. M. Zhao, B. H. Zhang, K. L. Ai, G. Zhang, L. Y. Cao, X. J. Liu, H. M. Sun, H. S. Wang, and L. H. Lu, “Monitoring catalytic degradation of dye molecules on silver-coated ZnO nanowire arrays by surface-enhanced Raman spectroscopy,” J. Mater. Chem. 19(31), 5547–5553 (2009).
[CrossRef]

Sun, L.

T. Xiao, Q. Ye, and L. Sun, “Hunting for the active sites of surface-enhanced Raman scattering: A new strategy based on single silver particles,” J. Phys. Chem. B 101(4), 632–638 (1997).
[CrossRef]

Sun, X. Y.

W. Wu, B. Cui, X. Y. Sun, W. Zhang, L. Zhuang, L. S. Kong, and S. Y. Chou, “Large area high density quantized magnetic disks fabricated using nanoimprint lithography,” J. Vac. Sci. Technol. B 16(6), 3825–3829 (1998).
[CrossRef]

Sun, Y.

A. Tao, F. Kim, C. Hess, J. Goldberger, R. He, Y. Sun, Y. Xia, and P. Yang, “Langmuir-Blodgett silver nanowire monolayers for molecular sensing using surface-enhanced Raman spectroscopy,” Nano Lett. 3(9), 1229–1233 (2003).
[CrossRef]

Sundaramurthy, A.

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94(1), 017402 (2005).
[CrossRef] [PubMed]

Takoudis, C. C.

H. Y. H. Chan, C. C. Takoudis, and M. J. Weaver, “High-pressure oxidation of ruthenium as probed by surface-enhanced Raman and X-ray photoelectron spectroscopies,” J. Catal. 172(2), 336–345 (1997).
[CrossRef]

Tang, A.

areN. Perney, F. García de Abajo, J. Baumberg, A. Tang, M. Netti, M. Charlton, and M. Zoorob, “Tuning localized plasmon cavities for optimized surface-enhanced Raman scattering,” Phys. Rev. B 76(3), 035426 (2007).
[CrossRef]

Tao, A.

A. Tao, F. Kim, C. Hess, J. Goldberger, R. He, Y. Sun, Y. Xia, and P. Yang, “Langmuir-Blodgett silver nanowire monolayers for molecular sensing using surface-enhanced Raman spectroscopy,” Nano Lett. 3(9), 1229–1233 (2003).
[CrossRef]

Tian, Z. Q.

Z. Q. Tian and B. Ren, “Adsorption and reaction at electrochemical interfaces as probed by surface-enhanced Raman spectroscopy,” Annu. Rev. Phys. Chem. 55(1), 197–229 (2004).
[CrossRef] [PubMed]

Tikhodeev, S. G.

A. Christ, G. Lévêque, O. J. F. Martin, T. Zentgraf, J. Kuhl, C. Bauer, H. Giessen, and S. G. Tikhodeev, “Near-field-induced tunability of surface plasmon polaritons in composite metallic nanostructures,” J. Microsc. 229(2), 344–353 (2008).
[CrossRef] [PubMed]

Tripp, R. A.

J. D. Driskell, S. Shanmukh, Y. J. Liu, S. Hennigan, L. Jones, Y. P. Zhao, R. A. Dluhy, D. C. Krause, and R. A. Tripp, “Infectious agent detection with SERS-active silver nanorod arrays prepared by oblique angle deposition,” IEEE Sens. J. 8(6), 863–870 (2008).
[CrossRef]

R. A. Tripp, R. A. Dluhy, and Y. P. Zhao, “Novel nanostructures for SERS biosensing,” Nano Today 3(3-4), 31–37 (2008).
[CrossRef]

Van Duyne, R. P.

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
[CrossRef]

X. Y. Zhang, C. R. Yonzon, and R. P. Van Duyne, “Nanosphere lithography fabricated plasmonic materials and their applications,” J. Mater. Res. 21(5), 1083–1092 (2006).
[CrossRef]

D. L. Jeanmaire and R. P. Van Duyne, “Surface Raman spectroelectrochemistry. 1.heterocyclic, aromatic, and aliphatic-amines adsorbed on anodized silver electrode,” J. Electroanal. Chem. 84(1), 1–20 (1977).
[CrossRef]

Vo-Dinh, T.

S. Panigrahi, S. Praharaj, S. Basu, S. K. Ghosh, S. Jana, S. Pande, T. Vo-Dinh, H. Jiang, and T. Pal, “Self-assembly of silver nanoparticles: synthesis, stabilization, optical properties, and application in surface-enhanced Raman scattering,” J. Phys. Chem. B 110(27), 13436–13444 (2006).
[CrossRef] [PubMed]

Wan, J. T. K.

J. Li, H. Iu, W. C. Luk, J. T. K. Wan, and H. C. Ong, “Studies of the plasmonic properties of two-dimensional metallic nanobottle arrays,” Appl. Phys. Lett. 92(21), 213106 (2008).
[CrossRef]

Wang, D. S.

Wang, H. S.

X. M. Zhao, B. H. Zhang, K. L. Ai, G. Zhang, L. Y. Cao, X. J. Liu, H. M. Sun, H. S. Wang, and L. H. Lu, “Monitoring catalytic degradation of dye molecules on silver-coated ZnO nanowire arrays by surface-enhanced Raman spectroscopy,” J. Mater. Chem. 19(31), 5547–5553 (2009).
[CrossRef]

Wang, S.

S. Wang, D. F. P. Pile, C. Sun, and X. Zhang, “Nanopin plasmonic resonator array and its optical properties,” Nano Lett. 7(4), 1076–1080 (2007).
[CrossRef] [PubMed]

Wang, Y.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[CrossRef]

Wasserman, D.

M. D. Austin, H. X. Ge, W. Wu, M. T. Li, Z. N. Yu, D. Wasserman, S. A. Lyon, and S. Y. Chou, “Fabrication of 5 nm linewidth and 14 nm pitch features by nanoimprint lithography,” Appl. Phys. Lett. 84(26), 5299–5301 (2004).
[CrossRef]

Weaver, M. J.

H. Y. H. Chan, C. C. Takoudis, and M. J. Weaver, “High-pressure oxidation of ruthenium as probed by surface-enhanced Raman and X-ray photoelectron spectroscopies,” J. Catal. 172(2), 336–345 (1997).
[CrossRef]

Willets, K. A.

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
[CrossRef]

Wu, W.

M. D. Austin, H. X. Ge, W. Wu, M. T. Li, Z. N. Yu, D. Wasserman, S. A. Lyon, and S. Y. Chou, “Fabrication of 5 nm linewidth and 14 nm pitch features by nanoimprint lithography,” Appl. Phys. Lett. 84(26), 5299–5301 (2004).
[CrossRef]

W. Wu, B. Cui, X. Y. Sun, W. Zhang, L. Zhuang, L. S. Kong, and S. Y. Chou, “Large area high density quantized magnetic disks fabricated using nanoimprint lithography,” J. Vac. Sci. Technol. B 16(6), 3825–3829 (1998).
[CrossRef]

Xia, Y.

A. Tao, F. Kim, C. Hess, J. Goldberger, R. He, Y. Sun, Y. Xia, and P. Yang, “Langmuir-Blodgett silver nanowire monolayers for molecular sensing using surface-enhanced Raman spectroscopy,” Nano Lett. 3(9), 1229–1233 (2003).
[CrossRef]

Xiao, T.

T. Xiao, Q. Ye, and L. Sun, “Hunting for the active sites of surface-enhanced Raman scattering: A new strategy based on single silver particles,” J. Phys. Chem. B 101(4), 632–638 (1997).
[CrossRef]

Yang, P.

A. Tao, F. Kim, C. Hess, J. Goldberger, R. He, Y. Sun, Y. Xia, and P. Yang, “Langmuir-Blodgett silver nanowire monolayers for molecular sensing using surface-enhanced Raman spectroscopy,” Nano Lett. 3(9), 1229–1233 (2003).
[CrossRef]

Ye, Q.

T. Xiao, Q. Ye, and L. Sun, “Hunting for the active sites of surface-enhanced Raman scattering: A new strategy based on single silver particles,” J. Phys. Chem. B 101(4), 632–638 (1997).
[CrossRef]

Yonzon, C. R.

X. Y. Zhang, C. R. Yonzon, and R. P. Van Duyne, “Nanosphere lithography fabricated plasmonic materials and their applications,” J. Mater. Res. 21(5), 1083–1092 (2006).
[CrossRef]

Yu, Z. N.

M. D. Austin, H. X. Ge, W. Wu, M. T. Li, Z. N. Yu, D. Wasserman, S. A. Lyon, and S. Y. Chou, “Fabrication of 5 nm linewidth and 14 nm pitch features by nanoimprint lithography,” Appl. Phys. Lett. 84(26), 5299–5301 (2004).
[CrossRef]

Zentgraf, T.

A. Christ, G. Lévêque, O. J. F. Martin, T. Zentgraf, J. Kuhl, C. Bauer, H. Giessen, and S. G. Tikhodeev, “Near-field-induced tunability of surface plasmon polaritons in composite metallic nanostructures,” J. Microsc. 229(2), 344–353 (2008).
[CrossRef] [PubMed]

Zhang, B. H.

X. M. Zhao, B. H. Zhang, K. L. Ai, G. Zhang, L. Y. Cao, X. J. Liu, H. M. Sun, H. S. Wang, and L. H. Lu, “Monitoring catalytic degradation of dye molecules on silver-coated ZnO nanowire arrays by surface-enhanced Raman spectroscopy,” J. Mater. Chem. 19(31), 5547–5553 (2009).
[CrossRef]

Zhang, G.

X. M. Zhao, B. H. Zhang, K. L. Ai, G. Zhang, L. Y. Cao, X. J. Liu, H. M. Sun, H. S. Wang, and L. H. Lu, “Monitoring catalytic degradation of dye molecules on silver-coated ZnO nanowire arrays by surface-enhanced Raman spectroscopy,” J. Mater. Chem. 19(31), 5547–5553 (2009).
[CrossRef]

Zhang, W.

W. Wu, B. Cui, X. Y. Sun, W. Zhang, L. Zhuang, L. S. Kong, and S. Y. Chou, “Large area high density quantized magnetic disks fabricated using nanoimprint lithography,” J. Vac. Sci. Technol. B 16(6), 3825–3829 (1998).
[CrossRef]

Zhang, X.

S. Wang, D. F. P. Pile, C. Sun, and X. Zhang, “Nanopin plasmonic resonator array and its optical properties,” Nano Lett. 7(4), 1076–1080 (2007).
[CrossRef] [PubMed]

Zhang, X. Y.

X. Y. Zhang, C. R. Yonzon, and R. P. Van Duyne, “Nanosphere lithography fabricated plasmonic materials and their applications,” J. Mater. Res. 21(5), 1083–1092 (2006).
[CrossRef]

Zhao, L. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[CrossRef]

Zhao, X. M.

X. M. Zhao, B. H. Zhang, K. L. Ai, G. Zhang, L. Y. Cao, X. J. Liu, H. M. Sun, H. S. Wang, and L. H. Lu, “Monitoring catalytic degradation of dye molecules on silver-coated ZnO nanowire arrays by surface-enhanced Raman spectroscopy,” J. Mater. Chem. 19(31), 5547–5553 (2009).
[CrossRef]

Zhao, Y. P.

J. D. Driskell, S. Shanmukh, Y. J. Liu, S. Hennigan, L. Jones, Y. P. Zhao, R. A. Dluhy, D. C. Krause, and R. A. Tripp, “Infectious agent detection with SERS-active silver nanorod arrays prepared by oblique angle deposition,” IEEE Sens. J. 8(6), 863–870 (2008).
[CrossRef]

R. A. Tripp, R. A. Dluhy, and Y. P. Zhao, “Novel nanostructures for SERS biosensing,” Nano Today 3(3-4), 31–37 (2008).
[CrossRef]

Zhuang, L.

W. Wu, B. Cui, X. Y. Sun, W. Zhang, L. Zhuang, L. S. Kong, and S. Y. Chou, “Large area high density quantized magnetic disks fabricated using nanoimprint lithography,” J. Vac. Sci. Technol. B 16(6), 3825–3829 (1998).
[CrossRef]

Ziegler, L. D.

I. S. Patel, W. R. Premasiri, D. T. Moir, and L. D. Ziegler, “Barcoding bacterial cells: A SERS based methodology for pathogen identification,” J Raman Spectrosc 39(11), 1660–1672 (2008).
[CrossRef]

Zoorob, M.

areN. Perney, F. García de Abajo, J. Baumberg, A. Tang, M. Netti, M. Charlton, and M. Zoorob, “Tuning localized plasmon cavities for optimized surface-enhanced Raman scattering,” Phys. Rev. B 76(3), 035426 (2007).
[CrossRef]

Annu. Rev. Phys. Chem. (2)

Z. Q. Tian and B. Ren, “Adsorption and reaction at electrochemical interfaces as probed by surface-enhanced Raman spectroscopy,” Annu. Rev. Phys. Chem. 55(1), 197–229 (2004).
[CrossRef] [PubMed]

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

J. Li, H. Iu, W. C. Luk, J. T. K. Wan, and H. C. Ong, “Studies of the plasmonic properties of two-dimensional metallic nanobottle arrays,” Appl. Phys. Lett. 92(21), 213106 (2008).
[CrossRef]

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Imprint of sub-25 nm vias and trenches in polymers,” Appl. Phys. Lett. 67(21), 3114–3116 (1995).
[CrossRef]

M. D. Austin, H. X. Ge, W. Wu, M. T. Li, Z. N. Yu, D. Wasserman, S. A. Lyon, and S. Y. Chou, “Fabrication of 5 nm linewidth and 14 nm pitch features by nanoimprint lithography,” Appl. Phys. Lett. 84(26), 5299–5301 (2004).
[CrossRef]

Chem. Phys. Lett. (1)

M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman-spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26(2), 163–166 (1974).
[CrossRef]

Chem. Soc. Rev. (1)

N. P. W. Pieczonka and R. F. Aroca, “Single molecule analysis by surfaced-enhanced Raman scattering,” Chem. Soc. Rev. 37(5), 946–954 (2008).
[CrossRef] [PubMed]

Faraday Discuss. (1)

M. J. Natan, “Surface enhanced Raman scattering,” Faraday Discuss. 132, 321–328 (2006).
[CrossRef] [PubMed]

IEEE Sens. J. (1)

J. D. Driskell, S. Shanmukh, Y. J. Liu, S. Hennigan, L. Jones, Y. P. Zhao, R. A. Dluhy, D. C. Krause, and R. A. Tripp, “Infectious agent detection with SERS-active silver nanorod arrays prepared by oblique angle deposition,” IEEE Sens. J. 8(6), 863–870 (2008).
[CrossRef]

J Raman Spectrosc (1)

I. S. Patel, W. R. Premasiri, D. T. Moir, and L. D. Ziegler, “Barcoding bacterial cells: A SERS based methodology for pathogen identification,” J Raman Spectrosc 39(11), 1660–1672 (2008).
[CrossRef]

J. Am. Chem. Soc. (2)

M. G. Albrecht and J. A. Creighton, “Anomalously intense Raman-spectra of pyridine at a silver electrode,” J. Am. Chem. Soc. 99(15), 5215–5217 (1977).
[CrossRef]

G. Braun, S. J. Lee, M. Dante, T. Q. Nguyen, M. Moskovits, and N. Reich, “Surface-enhanced Raman spectroscopy for DNA detection by nanoparticle assembly onto smooth metal films,” J. Am. Chem. Soc. 129(20), 6378–6379 (2007).
[CrossRef] [PubMed]

J. Catal. (1)

H. Y. H. Chan, C. C. Takoudis, and M. J. Weaver, “High-pressure oxidation of ruthenium as probed by surface-enhanced Raman and X-ray photoelectron spectroscopies,” J. Catal. 172(2), 336–345 (1997).
[CrossRef]

J. Electroanal. Chem. (1)

D. L. Jeanmaire and R. P. Van Duyne, “Surface Raman spectroelectrochemistry. 1.heterocyclic, aromatic, and aliphatic-amines adsorbed on anodized silver electrode,” J. Electroanal. Chem. 84(1), 1–20 (1977).
[CrossRef]

J. Mater. Chem. (1)

X. M. Zhao, B. H. Zhang, K. L. Ai, G. Zhang, L. Y. Cao, X. J. Liu, H. M. Sun, H. S. Wang, and L. H. Lu, “Monitoring catalytic degradation of dye molecules on silver-coated ZnO nanowire arrays by surface-enhanced Raman spectroscopy,” J. Mater. Chem. 19(31), 5547–5553 (2009).
[CrossRef]

J. Mater. Res. (1)

X. Y. Zhang, C. R. Yonzon, and R. P. Van Duyne, “Nanosphere lithography fabricated plasmonic materials and their applications,” J. Mater. Res. 21(5), 1083–1092 (2006).
[CrossRef]

J. Microsc. (1)

A. Christ, G. Lévêque, O. J. F. Martin, T. Zentgraf, J. Kuhl, C. Bauer, H. Giessen, and S. G. Tikhodeev, “Near-field-induced tunability of surface plasmon polaritons in composite metallic nanostructures,” J. Microsc. 229(2), 344–353 (2008).
[CrossRef] [PubMed]

J. Phys. Chem. B (3)

S. Panigrahi, S. Praharaj, S. Basu, S. K. Ghosh, S. Jana, S. Pande, T. Vo-Dinh, H. Jiang, and T. Pal, “Self-assembly of silver nanoparticles: synthesis, stabilization, optical properties, and application in surface-enhanced Raman scattering,” J. Phys. Chem. B 110(27), 13436–13444 (2006).
[CrossRef] [PubMed]

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[CrossRef]

T. Xiao, Q. Ye, and L. Sun, “Hunting for the active sites of surface-enhanced Raman scattering: A new strategy based on single silver particles,” J. Phys. Chem. B 101(4), 632–638 (1997).
[CrossRef]

J. Vac. Sci. Technol. B (1)

W. Wu, B. Cui, X. Y. Sun, W. Zhang, L. Zhuang, L. S. Kong, and S. Y. Chou, “Large area high density quantized magnetic disks fabricated using nanoimprint lithography,” J. Vac. Sci. Technol. B 16(6), 3825–3829 (1998).
[CrossRef]

Nano Lett. (2)

S. Wang, D. F. P. Pile, C. Sun, and X. Zhang, “Nanopin plasmonic resonator array and its optical properties,” Nano Lett. 7(4), 1076–1080 (2007).
[CrossRef] [PubMed]

A. Tao, F. Kim, C. Hess, J. Goldberger, R. He, Y. Sun, Y. Xia, and P. Yang, “Langmuir-Blodgett silver nanowire monolayers for molecular sensing using surface-enhanced Raman spectroscopy,” Nano Lett. 3(9), 1229–1233 (2003).
[CrossRef]

Nano Today (1)

R. A. Tripp, R. A. Dluhy, and Y. P. Zhao, “Novel nanostructures for SERS biosensing,” Nano Today 3(3-4), 31–37 (2008).
[CrossRef]

Nat. Mater. (1)

D. K. Lim, K. S. Jeon, H. M. Kim, J. M. Nam, and Y. D. Suh, “Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection,” Nat. Mater. 9(1), 60–67 (2010).
[CrossRef]

Opt. Express (1)

Phys. Chem. Chem. Phys. (1)

S. C. S. Lai and M. T. M. Koper, “Ethanol electro-oxidation on platinum in alkaline media,” Phys. Chem. Chem. Phys. 11(44), 10446–10456 (2009).
[CrossRef] [PubMed]

Phys. Rev. B (1)

areN. Perney, F. García de Abajo, J. Baumberg, A. Tang, M. Netti, M. Charlton, and M. Zoorob, “Tuning localized plasmon cavities for optimized surface-enhanced Raman scattering,” Phys. Rev. B 76(3), 035426 (2007).
[CrossRef]

Phys. Rev. Lett. (2)

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94(1), 017402 (2005).
[CrossRef] [PubMed]

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[CrossRef]

Science (2)

S. M. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
[CrossRef] [PubMed]

Y. Fang, N. H. Seong, and D. D. Dlott, “Measurement of the distribution of site enhancements in surface-enhanced Raman scattering,” Science 321(5887), 388–392 (2008).
[CrossRef] [PubMed]

Other (1)

W. D. Li, and S. Y. Chou, unpublished, 2008.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Disk-coupled dots-on-pillar antenna (D2PA) structure for surface enhanced Raman scattering. (a) Schematic; (b) top-view scanning electron micrograph (SEM); and (c) cross-sectional SEM of a D2PA structure, which consists of dense 3-D cavity nanoantennas (a metal disk array and a metal backplane on the top and the foot of the SiO2 pillars respectively) coupled to, through nanogaps, dense plasmonic nanodots on the SiO2 pillars’ sidewall inside the cavity.

Fig. 2
Fig. 2

Experimental high area-average SERS enhancement factor for BPE. (a) Typical experimental Raman spectra on a D2PA substrate with round pillars (red) and with elliptical pillars (blue), and on a reference flat substrate (black and its signal scaled up by 108). Comparison of the areas under the BPE’s 1200 cm−1 peaks gives an enhancement factors of 3.1x108 and 1.2x109 for D2PA substrates with the round and elliptical pillars respectively; (b) and (c), top-view SEMs of the two different D2PA substrates.

Fig. 3
Fig. 3

Experimental uniformity of high SERS enhancement over large area. The mapping (a) and the histogram (plus the Gaussian fitting) (b) of the SERS enhancements of an optimized D2PA substrate (130 nm diameter round pillars) of 1.6 mm by 1.0 mm area using a laser spot size of 20 μm by 20 μm and a step of 100 μm (hence 160 sampling points), showing an average SERS enhancement of 3.1 × 108 and a variation of 25%; (c) and (d), the mapping and histogram of SERS enhancements on a special D2PA substrate (elliptical pillars) of multiple 4.5 μm by 4.5 μm pattern areas using a laser spot size of 1.5 μm diameter and a step size of 1.5 μm (hence 9 sampling points for a given area in (c)), but the histogram and enhancement variation calculation are based on the measurements of the 10 identical pattern areas (total 90 points) on the same sample (d.)), showing an average SERS enhancement of 1.2 × 109 and a variation of 22.4%; (e) the variation of SERS enhancement versus excitation laser spot size on a D2PA substrate with the round pillars and an area-average of SERS of 1.6 × 107 over an area of 1.6 mm by 1.6 mm.

Fig. 4
Fig. 4

Comparison of Raman signals from D2PA samples with dots and nearly no dots. (a) Experimental Raman spectrum of BPE molecules adsorbed on the D2PA samples with nanodots shows approximately 7 times stronger signal than that from the D2PA samples with nearly no dots. (b) FDTD simulation shows that the electrical field around the disk is significantly stronger in the D2PA with nanodot than that without nanodots. (c) The 4th power of the ratio of local electrical field (midway between the disk and the nanodot) to the incident field as a function of incident light wavelength. The simulation also shows the resonant wavelength of the D2PA does not change much with the existence of nanodots.

Fig. 5
Fig. 5

Experimental Raman signal intensity of BPE’s 1200 cm−1 peak versus the nanodisk diameter on D2PA substrates. (a) Top-view SEMs of D2PA structures with different disk diameters. (b) The BPE’s 1200 cm−1 peak intensity versus the nanodisk diameter at 632 nm and 785 nm laser excitation wavelengths respectively.

Fig. 6
Fig. 6

Experimental Raman signal intensity of BPE’s 1200 cm−1 peak versus the pillar height of D2PA substrate. The max intensity is observed at 55 nm pillar height and is approximately two times stronger than at 85 nm pillar height.

Fig. 7
Fig. 7

FDTD simulation of backplane effect. The 4th power of the ratio of local electrical field (midway between the disk and the nanodot) to the incident field as a function of incident light wavelength, showing the D2PA substrates with the gold backplane can be over an order of magnitude higher for that without the backplane.

Metrics