Abstract

A method to reduce coherent noise in digital holographic phase contrast microscopy is proposed. By slightly shifting the specimen, a series of digital holograms with different coherent noise patterns is recorded. Each hologram is reconstructed individually, while the different phase tilts of the reconstructed complex amplitudes due to the specimen shifts are corrected in the hologram plane by using numerical parametric lens method. Afterward, the lateral displacements of the phase maps from different holograms are compensated in the image plane by using digital image registration method. Thus, all phase images have same distribution, but uncorrelated coherent noise patterns. By a proper averaging procedure, the coherent noise of phase contrast image is reduced significantly. The experimental results are given to confirm the proposed method.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. U. Schnars and W. Jüptner, “Direct recording of holograms by a CCD target and numerical reconstruction,” Appl. Opt. 33(2), 179–181 (1994).
    [CrossRef] [PubMed]
  2. F. Charrière, J. Kühn, T. Colomb, F. Montfort, E. Cuche, Y. Emery, K. Weible, P. Marquet, and C. Depeursinge, “Characterization of microlenses by digital holographic microscopy,” Appl. Opt. 45(5), 829–835 (2006).
    [CrossRef] [PubMed]
  3. L. Miccio, A. Finizio, S. Grilli, V. Vespini, M. Paturzo, S. De Nicola, and P. Ferraro, “Tunable liquid microlens arrays in electrode-less configuration and their accurate characterization by interference microscopy,” Opt. Express 17(4), 2487–2499 (2009), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-17-4-2487 .
    [CrossRef] [PubMed]
  4. B. Rappaz, P. Marquet, E. Cuche, Y. Emery, C. Depeursinge, and P. Magistretti, “Measurement of the integral refractive index and dynamic cell morphometry of living cells with digital holographic microscopy,” Opt. Express 13(23), 9361–9373 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-23-9361 .
    [CrossRef] [PubMed]
  5. B. Kemper, D. Carl, J. Schnekenburger, I. Bredebusch, M. Schäfer, W. Domschke, and G. von Bally, “Investigation of living pancreas tumor cells by digital holographic microscopy,” J. Biomed. Opt. 11(3), 34005 (2006).
    [CrossRef] [PubMed]
  6. J. G. Garcia-Sucerquia, J. A. H. Ramirez, and D. V. Prieto, “Reduction of speckle noise in digital holography by using digital image processing,” Optik (Stuttg.) 116(1), 44–48 (2005).
    [CrossRef]
  7. X. O. Cai, “Reduction of speckle noise in the reconstructed image of digital holography,” Optik (Stuttg.) 121(4), 394–399 (2010).
    [CrossRef]
  8. J. Maycock, B. M. Hennelly, J. B. McDonald, Y. Frauel, A. Castro, B. Javidi, and T. J. Naughton, “Reduction of speckle in digital holography by discrete Fourier filtering,” J. Opt. Soc. Am. A 24(6), 1617–1622 (2007).
    [CrossRef]
  9. A. Sharma, G. Sheoran, Z. A. Jaffery, and Moinuddin, “Improvement of signal-to-noise ratio in digital holography using wavelet transform,” Opt. Lasers Eng. 46(1), 42–47 (2008).
    [CrossRef]
  10. T. Nomura, M. Okamura, E. Nitanai, and T. Numata, “Image quality improvement of digital holography by superposition of reconstructed images obtained by multiple wavelengths,” Appl. Opt. 47(19), D38–D43 (2008).
    [CrossRef] [PubMed]
  11. C. G. Quan, X. Kang, and C. J. Tay, “Speckle noise reduction in digital holography by multiple holograms,” Opt. Eng. 46(11), 115801 (2007).
    [CrossRef]
  12. X. Kang, “An effective method for reducing speckle noise in digital holography,” Chin. Opt. Lett. 6(2), 100–103 (2008).
    [CrossRef]
  13. L. Rong, W. Xiao, F. Pan, S. Liu, and R. Li, “Speckle noise reduction in digital holography by use of multiple polarization holograms,” Chin. Opt. Lett. 8(7), 653–655 (2010).
    [CrossRef]
  14. P. Feng, X. Wen, and R. Lu, “Long-working-distance synthetic aperture Fresnel off-axis digital holography,” Opt. Express 17(7), 5473–5480 (2009), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-17-7-5473 .
    [CrossRef] [PubMed]
  15. Y. K. Park, W. Choi, Z. Yaqoob, R. Dasari, and K. Badizadegan,andM. S. Feld, , “Speckle-field digital holographic microscopy,” Opt. Express 17(15), 12285–12292 (2009), http://www.opticsexpress.org /abstract.cfm?URI=OPEX-17-15-12285 .
    [CrossRef] [PubMed]
  16. G. Pedrini and H. J. Tiziani, “Short-coherence digital microscopy by use of a lensless holographic imaging system,” Appl. Opt. 41(22), 4489–4496 (2002).
    [CrossRef] [PubMed]
  17. U. Gopinathan, G. Pedrini, and W. Osten, “Coherence effects in digital in-line holographic microscopy,” J. Opt. Soc. Am. A 25(10), 2459–2466 (2008).
    [CrossRef]
  18. F. Dubois, N. Callens, C. Yourassowsky, M. Hoyos, P. Kurowski, and O. Monnom, “Digital holographic microscopy with reduced spatial coherence for three-dimensional particle flow analysis,” Appl. Opt. 45(5), 864–871 (2006).
    [CrossRef] [PubMed]
  19. F. Dubois, M. L. Requena, C. Minetti, O. Monnom, and E. Istasse, “Partial spatial coherence effects in digital holographic microscopy with a laser source,” Appl. Opt. 43(5), 1131–1139 (2004).
    [CrossRef] [PubMed]
  20. P. Langehanenberg, G. Bally, and B. Kemper, “Application of partially coherent light in live cell imaging with digital holographic microscopy,” J. Mod. Opt. 57(9), 709–717 (2010).
    [CrossRef]
  21. C. Remmersmann, S. Stürwald, B. Kemper, P. Langehanenberg, and G. von Bally, “Phase noise optimization in temporal phase-shifting digital holography with partial coherence light sources and its application in quantitative cell imaging,” Appl. Opt. 48(8), 1463–1472 (2009).
    [CrossRef] [PubMed]
  22. T. Kozacki and R. Jo’z’wicki, “Digital reconstruction of a hologram recorded using partially coherent illumination,” Opt. Commun. 252(1-3), 188–201 (2005).
    [CrossRef]
  23. T. Kreis, “Digital Recording and Numerical Reconstruction of Wave Fields,” in Handbook of Holographic Interferometry, T. Kreis, ed. (Wiley-VCH Verlag, 2005), pp. 115–120.
  24. T. Colomb, E. Cuche, F. Charrière, J. Kühn, N. Aspert, F. Montfort, P. Marquet, and C. Depeursinge, “Automatic procedure for aberration compensation in digital holographic microscopy and applications to specimen shape compensation,” Appl. Opt. 45(5), 851–863 (2006).
    [CrossRef] [PubMed]
  25. M. Guizar-Sicairos, S. T. Thurman, and J. R. Fienup, “Efficient subpixel image registration algorithms,” Opt. Lett. 33(2), 156–158 (2008).
    [CrossRef] [PubMed]

2010 (3)

X. O. Cai, “Reduction of speckle noise in the reconstructed image of digital holography,” Optik (Stuttg.) 121(4), 394–399 (2010).
[CrossRef]

P. Langehanenberg, G. Bally, and B. Kemper, “Application of partially coherent light in live cell imaging with digital holographic microscopy,” J. Mod. Opt. 57(9), 709–717 (2010).
[CrossRef]

L. Rong, W. Xiao, F. Pan, S. Liu, and R. Li, “Speckle noise reduction in digital holography by use of multiple polarization holograms,” Chin. Opt. Lett. 8(7), 653–655 (2010).
[CrossRef]

2009 (4)

2008 (5)

2007 (2)

2006 (4)

2005 (3)

B. Rappaz, P. Marquet, E. Cuche, Y. Emery, C. Depeursinge, and P. Magistretti, “Measurement of the integral refractive index and dynamic cell morphometry of living cells with digital holographic microscopy,” Opt. Express 13(23), 9361–9373 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-23-9361 .
[CrossRef] [PubMed]

J. G. Garcia-Sucerquia, J. A. H. Ramirez, and D. V. Prieto, “Reduction of speckle noise in digital holography by using digital image processing,” Optik (Stuttg.) 116(1), 44–48 (2005).
[CrossRef]

T. Kozacki and R. Jo’z’wicki, “Digital reconstruction of a hologram recorded using partially coherent illumination,” Opt. Commun. 252(1-3), 188–201 (2005).
[CrossRef]

2004 (1)

2002 (1)

1994 (1)

Aspert, N.

Badizadegan, K.

Bally, G.

P. Langehanenberg, G. Bally, and B. Kemper, “Application of partially coherent light in live cell imaging with digital holographic microscopy,” J. Mod. Opt. 57(9), 709–717 (2010).
[CrossRef]

Bredebusch, I.

B. Kemper, D. Carl, J. Schnekenburger, I. Bredebusch, M. Schäfer, W. Domschke, and G. von Bally, “Investigation of living pancreas tumor cells by digital holographic microscopy,” J. Biomed. Opt. 11(3), 34005 (2006).
[CrossRef] [PubMed]

Cai, X. O.

X. O. Cai, “Reduction of speckle noise in the reconstructed image of digital holography,” Optik (Stuttg.) 121(4), 394–399 (2010).
[CrossRef]

Callens, N.

Carl, D.

B. Kemper, D. Carl, J. Schnekenburger, I. Bredebusch, M. Schäfer, W. Domschke, and G. von Bally, “Investigation of living pancreas tumor cells by digital holographic microscopy,” J. Biomed. Opt. 11(3), 34005 (2006).
[CrossRef] [PubMed]

Castro, A.

Charrière, F.

Choi, W.

Colomb, T.

Cuche, E.

Dasari, R.

De Nicola, S.

Depeursinge, C.

Domschke, W.

B. Kemper, D. Carl, J. Schnekenburger, I. Bredebusch, M. Schäfer, W. Domschke, and G. von Bally, “Investigation of living pancreas tumor cells by digital holographic microscopy,” J. Biomed. Opt. 11(3), 34005 (2006).
[CrossRef] [PubMed]

Dubois, F.

Emery, Y.

Feld, M. S.

Feng, P.

Ferraro, P.

Fienup, J. R.

Finizio, A.

Frauel, Y.

Garcia-Sucerquia, J. G.

J. G. Garcia-Sucerquia, J. A. H. Ramirez, and D. V. Prieto, “Reduction of speckle noise in digital holography by using digital image processing,” Optik (Stuttg.) 116(1), 44–48 (2005).
[CrossRef]

Gopinathan, U.

Grilli, S.

Guizar-Sicairos, M.

Hennelly, B. M.

Hoyos, M.

Istasse, E.

Jaffery, Z. A.

A. Sharma, G. Sheoran, Z. A. Jaffery, and Moinuddin, “Improvement of signal-to-noise ratio in digital holography using wavelet transform,” Opt. Lasers Eng. 46(1), 42–47 (2008).
[CrossRef]

Javidi, B.

Jo’z’wicki, R.

T. Kozacki and R. Jo’z’wicki, “Digital reconstruction of a hologram recorded using partially coherent illumination,” Opt. Commun. 252(1-3), 188–201 (2005).
[CrossRef]

Jüptner, W.

Kang, X.

X. Kang, “An effective method for reducing speckle noise in digital holography,” Chin. Opt. Lett. 6(2), 100–103 (2008).
[CrossRef]

C. G. Quan, X. Kang, and C. J. Tay, “Speckle noise reduction in digital holography by multiple holograms,” Opt. Eng. 46(11), 115801 (2007).
[CrossRef]

Kemper, B.

P. Langehanenberg, G. Bally, and B. Kemper, “Application of partially coherent light in live cell imaging with digital holographic microscopy,” J. Mod. Opt. 57(9), 709–717 (2010).
[CrossRef]

C. Remmersmann, S. Stürwald, B. Kemper, P. Langehanenberg, and G. von Bally, “Phase noise optimization in temporal phase-shifting digital holography with partial coherence light sources and its application in quantitative cell imaging,” Appl. Opt. 48(8), 1463–1472 (2009).
[CrossRef] [PubMed]

B. Kemper, D. Carl, J. Schnekenburger, I. Bredebusch, M. Schäfer, W. Domschke, and G. von Bally, “Investigation of living pancreas tumor cells by digital holographic microscopy,” J. Biomed. Opt. 11(3), 34005 (2006).
[CrossRef] [PubMed]

Kozacki, T.

T. Kozacki and R. Jo’z’wicki, “Digital reconstruction of a hologram recorded using partially coherent illumination,” Opt. Commun. 252(1-3), 188–201 (2005).
[CrossRef]

Kühn, J.

Kurowski, P.

Langehanenberg, P.

Li, R.

Liu, S.

Lu, R.

Magistretti, P.

Marquet, P.

Maycock, J.

McDonald, J. B.

Miccio, L.

Minetti, C.

Moinuddin,

A. Sharma, G. Sheoran, Z. A. Jaffery, and Moinuddin, “Improvement of signal-to-noise ratio in digital holography using wavelet transform,” Opt. Lasers Eng. 46(1), 42–47 (2008).
[CrossRef]

Monnom, O.

Montfort, F.

Naughton, T. J.

Nitanai, E.

Nomura, T.

Numata, T.

Okamura, M.

Osten, W.

Pan, F.

Park, Y. K.

Paturzo, M.

Pedrini, G.

Prieto, D. V.

J. G. Garcia-Sucerquia, J. A. H. Ramirez, and D. V. Prieto, “Reduction of speckle noise in digital holography by using digital image processing,” Optik (Stuttg.) 116(1), 44–48 (2005).
[CrossRef]

Quan, C. G.

C. G. Quan, X. Kang, and C. J. Tay, “Speckle noise reduction in digital holography by multiple holograms,” Opt. Eng. 46(11), 115801 (2007).
[CrossRef]

Ramirez, J. A. H.

J. G. Garcia-Sucerquia, J. A. H. Ramirez, and D. V. Prieto, “Reduction of speckle noise in digital holography by using digital image processing,” Optik (Stuttg.) 116(1), 44–48 (2005).
[CrossRef]

Rappaz, B.

Remmersmann, C.

Requena, M. L.

Rong, L.

Schäfer, M.

B. Kemper, D. Carl, J. Schnekenburger, I. Bredebusch, M. Schäfer, W. Domschke, and G. von Bally, “Investigation of living pancreas tumor cells by digital holographic microscopy,” J. Biomed. Opt. 11(3), 34005 (2006).
[CrossRef] [PubMed]

Schnars, U.

Schnekenburger, J.

B. Kemper, D. Carl, J. Schnekenburger, I. Bredebusch, M. Schäfer, W. Domschke, and G. von Bally, “Investigation of living pancreas tumor cells by digital holographic microscopy,” J. Biomed. Opt. 11(3), 34005 (2006).
[CrossRef] [PubMed]

Sharma, A.

A. Sharma, G. Sheoran, Z. A. Jaffery, and Moinuddin, “Improvement of signal-to-noise ratio in digital holography using wavelet transform,” Opt. Lasers Eng. 46(1), 42–47 (2008).
[CrossRef]

Sheoran, G.

A. Sharma, G. Sheoran, Z. A. Jaffery, and Moinuddin, “Improvement of signal-to-noise ratio in digital holography using wavelet transform,” Opt. Lasers Eng. 46(1), 42–47 (2008).
[CrossRef]

Stürwald, S.

Tay, C. J.

C. G. Quan, X. Kang, and C. J. Tay, “Speckle noise reduction in digital holography by multiple holograms,” Opt. Eng. 46(11), 115801 (2007).
[CrossRef]

Thurman, S. T.

Tiziani, H. J.

Vespini, V.

von Bally, G.

C. Remmersmann, S. Stürwald, B. Kemper, P. Langehanenberg, and G. von Bally, “Phase noise optimization in temporal phase-shifting digital holography with partial coherence light sources and its application in quantitative cell imaging,” Appl. Opt. 48(8), 1463–1472 (2009).
[CrossRef] [PubMed]

B. Kemper, D. Carl, J. Schnekenburger, I. Bredebusch, M. Schäfer, W. Domschke, and G. von Bally, “Investigation of living pancreas tumor cells by digital holographic microscopy,” J. Biomed. Opt. 11(3), 34005 (2006).
[CrossRef] [PubMed]

Weible, K.

Wen, X.

Xiao, W.

Yaqoob, Z.

Yourassowsky, C.

Appl. Opt. (8)

U. Schnars and W. Jüptner, “Direct recording of holograms by a CCD target and numerical reconstruction,” Appl. Opt. 33(2), 179–181 (1994).
[CrossRef] [PubMed]

G. Pedrini and H. J. Tiziani, “Short-coherence digital microscopy by use of a lensless holographic imaging system,” Appl. Opt. 41(22), 4489–4496 (2002).
[CrossRef] [PubMed]

F. Dubois, M. L. Requena, C. Minetti, O. Monnom, and E. Istasse, “Partial spatial coherence effects in digital holographic microscopy with a laser source,” Appl. Opt. 43(5), 1131–1139 (2004).
[CrossRef] [PubMed]

F. Charrière, J. Kühn, T. Colomb, F. Montfort, E. Cuche, Y. Emery, K. Weible, P. Marquet, and C. Depeursinge, “Characterization of microlenses by digital holographic microscopy,” Appl. Opt. 45(5), 829–835 (2006).
[CrossRef] [PubMed]

T. Colomb, E. Cuche, F. Charrière, J. Kühn, N. Aspert, F. Montfort, P. Marquet, and C. Depeursinge, “Automatic procedure for aberration compensation in digital holographic microscopy and applications to specimen shape compensation,” Appl. Opt. 45(5), 851–863 (2006).
[CrossRef] [PubMed]

F. Dubois, N. Callens, C. Yourassowsky, M. Hoyos, P. Kurowski, and O. Monnom, “Digital holographic microscopy with reduced spatial coherence for three-dimensional particle flow analysis,” Appl. Opt. 45(5), 864–871 (2006).
[CrossRef] [PubMed]

T. Nomura, M. Okamura, E. Nitanai, and T. Numata, “Image quality improvement of digital holography by superposition of reconstructed images obtained by multiple wavelengths,” Appl. Opt. 47(19), D38–D43 (2008).
[CrossRef] [PubMed]

C. Remmersmann, S. Stürwald, B. Kemper, P. Langehanenberg, and G. von Bally, “Phase noise optimization in temporal phase-shifting digital holography with partial coherence light sources and its application in quantitative cell imaging,” Appl. Opt. 48(8), 1463–1472 (2009).
[CrossRef] [PubMed]

Chin. Opt. Lett. (2)

J. Biomed. Opt. (1)

B. Kemper, D. Carl, J. Schnekenburger, I. Bredebusch, M. Schäfer, W. Domschke, and G. von Bally, “Investigation of living pancreas tumor cells by digital holographic microscopy,” J. Biomed. Opt. 11(3), 34005 (2006).
[CrossRef] [PubMed]

J. Mod. Opt. (1)

P. Langehanenberg, G. Bally, and B. Kemper, “Application of partially coherent light in live cell imaging with digital holographic microscopy,” J. Mod. Opt. 57(9), 709–717 (2010).
[CrossRef]

J. Opt. Soc. Am. A (2)

Opt. Commun. (1)

T. Kozacki and R. Jo’z’wicki, “Digital reconstruction of a hologram recorded using partially coherent illumination,” Opt. Commun. 252(1-3), 188–201 (2005).
[CrossRef]

Opt. Eng. (1)

C. G. Quan, X. Kang, and C. J. Tay, “Speckle noise reduction in digital holography by multiple holograms,” Opt. Eng. 46(11), 115801 (2007).
[CrossRef]

Opt. Express (4)

Opt. Lasers Eng. (1)

A. Sharma, G. Sheoran, Z. A. Jaffery, and Moinuddin, “Improvement of signal-to-noise ratio in digital holography using wavelet transform,” Opt. Lasers Eng. 46(1), 42–47 (2008).
[CrossRef]

Opt. Lett. (1)

Optik (Stuttg.) (2)

J. G. Garcia-Sucerquia, J. A. H. Ramirez, and D. V. Prieto, “Reduction of speckle noise in digital holography by using digital image processing,” Optik (Stuttg.) 116(1), 44–48 (2005).
[CrossRef]

X. O. Cai, “Reduction of speckle noise in the reconstructed image of digital holography,” Optik (Stuttg.) 121(4), 394–399 (2010).
[CrossRef]

Other (1)

T. Kreis, “Digital Recording and Numerical Reconstruction of Wave Fields,” in Handbook of Holographic Interferometry, T. Kreis, ed. (Wiley-VCH Verlag, 2005), pp. 115–120.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of the digital holographic microscopy for transmission imaging. PBS, polarizing beam splitter; BE, beam expander with spatial filter; λ/2, half-wave plate; M, mirror; O , object wave; R , reference wave; Obj, specimen; MO, microscope objective; TL, tube lens; BS, beam splitter; Inset: detail showing the positioning stage for laterally shifting specimen and the off-axis geometry at the incidence on the CMOS.

Fig. 2
Fig. 2

Reconstructed phase images from the digital holograms with the different object plane.

Fig. 3
Fig. 3

Cross correlation coefficient of phase distributions of a uniform region ( indicated by white rectangle in Fig. 2(a)) over the specimen shift.

Fig. 4
Fig. 4

Reconstructed phase images by the proposed method, (a): result of a single hologram, (b): result after averaging 15 phase images.

Fig. 5
Fig. 5

Phase distributions along a line (indicated by white line in Fig. 4 (a)) of a single hologram and after averaging with 6 and 15 phase images.

Fig. 6
Fig. 6

Standard deviation of the phase distribution of a uniform region (indicated by white rectangle in Fig. 4(a)) over the number of images used in the averaging process.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

U b ( x , y ) = b ( x , y ) s ( x , y ) ,
U h ( ξ , η ) = exp ( i 2 π λ ξ 2 + η 2 2 d ) F [ U b ( x + Δ x , y + Δ y ) exp ( i 2 π λ x 2 + y 2 2 d ) ] ,
U i ( x , y ) = C F { [ U h ( ξ , η ) rect ( ξ a , η b ) ] exp ( i 2 π λ ξ 2 + η 2 2 d ) } = C { b ( x + Δ x , y + Δ y ) s ( x + Δ x , y + Δ y ) exp ( i 2 π λ x 2 + y 2 2 d ) } sinc ( a x λ d , b y λ d ) ,
ϕ ( x , y ) = arctan { Im [ U i ( x , y ) ] Re [ U i ( x , y ) ] } .
γ = x , y [ ϕ 0 ( x , y ) ϕ ¯ 0 ] [ ϕ Δ δ ( x , y ) ϕ ¯ Δ δ ] x , y [ ϕ 0 ( x , y ) ϕ ¯ 0 ] 2 x , y [ ϕ Δ δ ( x , y ) ϕ ¯ Δ δ ] 2 ,
σ = x , y [ ϕ ( x , y ) ϕ ¯ ( x , y ) ] 2 / ( n × m 1 ) ,

Metrics