Abstract

The coupling characteristics of conical micro/nano fibers (CMNFs) are investigated using numerical simulations and experiments. Distinct from uniform micro/nano fibers (UMNFs), the coupling efficiency not only depends on the overlapping length between two CMNFs but also the tapering angle of the CMNFs. With the increase of overlapping length, the coupling efficiency gradually converges to a stable value, with its convergence speed determined by the angle of the CMNFs. Experimental result shows the convergent coupling efficiency can be >90%. The spectral response of the coupler shows a “box-shape” profile with a 3-dB bandwidth of 2 nm, resembling a flat-top bandpass filter. And experimental results also show the coupling characteristics of CMNFs are overlapping length and taper angle dependent, which verify the simulation conclusions.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Tong, R. R. Gattass, J. B. Ashcom1, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
    [CrossRef] [PubMed]
  2. L.-J. Chen, H.-W. Chen, T.-F. Kao, J. Y. Lu, and C. K. Sun, “Low-loss subwavelength plastic fiber for terahertz waveguiding,” Opt. Lett. 31(3), 308–310 (2006).
    [CrossRef] [PubMed]
  3. C.-Y. Chao and L. Jay Guo, “Design and Optimization of Microring Resonators in Biochemical Sensing Applications,” J. Lightwave Technol. 24(3), 1395–1402 (2006).
    [CrossRef]
  4. F. Warken, E. Vetsch, D. Meschede, M. Sokolowski, and A. Rauschenbeutel, “Ultra-sensitive surface absorption spectroscopy using sub-wavelength diameter optical fibers,” Opt. Express 15(19), 11952–11958 (2007).
    [CrossRef] [PubMed]
  5. F. Xu, V. Pruneri, V. Finazzi, and G. Brambilla, “An embedded optical nanowire loop resonator refractometric sensor,” Opt. Express 16(2), 1062–1067 (2008).
    [CrossRef] [PubMed]
  6. D.-I. Yeom, E. C. Mägi, M. R. E. Lamont, M. A. Roelens, L. Fu, and B. J. Eggleton, “Low-threshold supercontinuum generation in highly nonlinear chalcogenide nanowires,” Opt. Lett. 33(7), 660–662 (2008).
    [CrossRef] [PubMed]
  7. D. Türke, S. Pricking, A. Husakou, J. Teipel, J. Herrmann, and H. Giessen, “Coherence of subsequent supercontinuum pulses generated in tapered fibers in the femtosecond regime,” Opt. Express 15(5), 2732–2741 (2007).
    [CrossRef] [PubMed]
  8. V. Grubsky and A. Savchenko, “Glass micro-fibers for efficient third harmonic generation,” Opt. Express 13(18), 6798–6806 (2005).
    [CrossRef] [PubMed]
  9. Z. Zhang, X. Lu, Y. Zhang, M. Zhou, T. Xi, Z. Wang, and J. Zhang, “Enhancement of third-harmonic emission from femtosecond laser filament screened partially by a thin fiber,” Opt. Lett. 35(7), 974–976 (2010).
    [CrossRef] [PubMed]
  10. G. Brambilla and F. Xu, “Adiabatic submicrometric tapers for optical tweezers,” Electron. Lett. 43(4), 204–206 (2007).
    [CrossRef]
  11. P. Pal and W. H. Knox, “Fabrication and Characterization of Fused Microfiber Resonators,” IEEE Photon. Technol. Lett. 21(12), 766–768 (2009).
    [CrossRef]
  12. W. Yu, Z. Xu, H. Changlun, B. Jian, and Y. Guoguang, “A tunable all-fiber filter based on microfiber loop resonator,” Appl. Phys. Lett. 86(19), 191112 (2008).
    [CrossRef]
  13. M. Sumetsky, “Optical fiber microcoil resonators,” Opt. Express 12(10), 2303–2316 (2004).
    [CrossRef] [PubMed]
  14. M. Sumetsky, Y. Dulashko, J. M. Fini, and A. Hale, “Optical microfiber loop resonator,” Appl. Phys. Lett. 86(16), 161108 (2005).
    [CrossRef]
  15. D. Dai and S. He, “Design of an ultrashort Si-nanowaveguide-based multimode interference coupler of arbitrary shape,” Appl. Opt. 47(1), 38–44 (2008).
    [CrossRef]
  16. X. Jiang, L. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88(22), 223501 (2006).
    [CrossRef]
  17. M. Sumetsky, Y. Dulashko, J. M. Fini, A. Hale, and D. J. DiGiovanni, “The Microfiber Loop Resonator: Theory,Experiment, and Application,” J. Lightwave Technol. 24(1), 242–250 (2006).
    [CrossRef]
  18. Y. Li and L. Tong, “Mach-Zehnder interferometers assembled with optical microfibers or nanofibers,” Opt. Lett. 33(4), 303–305 (2008).
    [CrossRef] [PubMed]
  19. K. Huang, S. Yang, and L. Tong, “Modeling of evanescent coupling between two parallel optical nanowires,” Appl. Opt. 46(9), 1429–1434 (2007).
    [CrossRef] [PubMed]
  20. G. H. Wang, P. Shum, G. B. Ren, X. Yu, J. J. Hu, and C. Lin, “Theoretical investigation of nanowaveguide-based optical coupler using mode expansion transfer matrix,” Microw. Opt. Technol. Lett. 52(5), 1123–1129 (2010).
    [CrossRef]
  21. L. Tong, J. Lou, and E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Opt. Express 12(6), 1025–1035 (2004).
    [CrossRef] [PubMed]
  22. M. Sumetsky, “How thin can a microfiber be and still guide light?” Opt. Lett. 31(7), 870–872 (2006).
    [CrossRef] [PubMed]
  23. Y. Jung, G. Brambilla, and D. J. Richardson, “Broadband single-mode operation of standard optical fibers by using a sub-wavelength optical wire filter,” Opt. Express 16(19), 14661–14667 (2008).
    [CrossRef] [PubMed]

2010 (2)

G. H. Wang, P. Shum, G. B. Ren, X. Yu, J. J. Hu, and C. Lin, “Theoretical investigation of nanowaveguide-based optical coupler using mode expansion transfer matrix,” Microw. Opt. Technol. Lett. 52(5), 1123–1129 (2010).
[CrossRef]

Z. Zhang, X. Lu, Y. Zhang, M. Zhou, T. Xi, Z. Wang, and J. Zhang, “Enhancement of third-harmonic emission from femtosecond laser filament screened partially by a thin fiber,” Opt. Lett. 35(7), 974–976 (2010).
[CrossRef] [PubMed]

2009 (1)

P. Pal and W. H. Knox, “Fabrication and Characterization of Fused Microfiber Resonators,” IEEE Photon. Technol. Lett. 21(12), 766–768 (2009).
[CrossRef]

2008 (6)

2007 (4)

2006 (5)

2005 (2)

V. Grubsky and A. Savchenko, “Glass micro-fibers for efficient third harmonic generation,” Opt. Express 13(18), 6798–6806 (2005).
[CrossRef] [PubMed]

M. Sumetsky, Y. Dulashko, J. M. Fini, and A. Hale, “Optical microfiber loop resonator,” Appl. Phys. Lett. 86(16), 161108 (2005).
[CrossRef]

2004 (2)

2003 (1)

L. Tong, R. R. Gattass, J. B. Ashcom1, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Ashcom1, J. B.

L. Tong, R. R. Gattass, J. B. Ashcom1, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Brambilla, G.

Changlun, H.

W. Yu, Z. Xu, H. Changlun, B. Jian, and Y. Guoguang, “A tunable all-fiber filter based on microfiber loop resonator,” Appl. Phys. Lett. 86(19), 191112 (2008).
[CrossRef]

Chao, C.-Y.

Chen, H.-W.

Chen, L.-J.

Dai, D.

DiGiovanni, D. J.

Dulashko, Y.

Eggleton, B. J.

Finazzi, V.

Fini, J. M.

Fu, L.

Gattass, R. R.

L. Tong, R. R. Gattass, J. B. Ashcom1, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Giessen, H.

Grubsky, V.

Guo, X.

X. Jiang, L. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88(22), 223501 (2006).
[CrossRef]

Guoguang, Y.

W. Yu, Z. Xu, H. Changlun, B. Jian, and Y. Guoguang, “A tunable all-fiber filter based on microfiber loop resonator,” Appl. Phys. Lett. 86(19), 191112 (2008).
[CrossRef]

Hale, A.

He, S.

D. Dai and S. He, “Design of an ultrashort Si-nanowaveguide-based multimode interference coupler of arbitrary shape,” Appl. Opt. 47(1), 38–44 (2008).
[CrossRef]

L. Tong, R. R. Gattass, J. B. Ashcom1, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Herrmann, J.

Hu, J. J.

G. H. Wang, P. Shum, G. B. Ren, X. Yu, J. J. Hu, and C. Lin, “Theoretical investigation of nanowaveguide-based optical coupler using mode expansion transfer matrix,” Microw. Opt. Technol. Lett. 52(5), 1123–1129 (2010).
[CrossRef]

Huang, K.

Husakou, A.

Jay Guo, L.

Jian, B.

W. Yu, Z. Xu, H. Changlun, B. Jian, and Y. Guoguang, “A tunable all-fiber filter based on microfiber loop resonator,” Appl. Phys. Lett. 86(19), 191112 (2008).
[CrossRef]

Jiang, X.

X. Jiang, L. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88(22), 223501 (2006).
[CrossRef]

Jung, Y.

Kao, T.-F.

Knox, W. H.

P. Pal and W. H. Knox, “Fabrication and Characterization of Fused Microfiber Resonators,” IEEE Photon. Technol. Lett. 21(12), 766–768 (2009).
[CrossRef]

Lamont, M. R. E.

Li, Y.

Lin, C.

G. H. Wang, P. Shum, G. B. Ren, X. Yu, J. J. Hu, and C. Lin, “Theoretical investigation of nanowaveguide-based optical coupler using mode expansion transfer matrix,” Microw. Opt. Technol. Lett. 52(5), 1123–1129 (2010).
[CrossRef]

Lou, J.

L. Tong, J. Lou, and E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Opt. Express 12(6), 1025–1035 (2004).
[CrossRef] [PubMed]

L. Tong, R. R. Gattass, J. B. Ashcom1, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Lu, J. Y.

Lu, X.

Mägi, E. C.

Maxwell, I.

L. Tong, R. R. Gattass, J. B. Ashcom1, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Mazur, E.

L. Tong, J. Lou, and E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Opt. Express 12(6), 1025–1035 (2004).
[CrossRef] [PubMed]

L. Tong, R. R. Gattass, J. B. Ashcom1, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Meschede, D.

Pal, P.

P. Pal and W. H. Knox, “Fabrication and Characterization of Fused Microfiber Resonators,” IEEE Photon. Technol. Lett. 21(12), 766–768 (2009).
[CrossRef]

Pricking, S.

Pruneri, V.

Rauschenbeutel, A.

Ren, G. B.

G. H. Wang, P. Shum, G. B. Ren, X. Yu, J. J. Hu, and C. Lin, “Theoretical investigation of nanowaveguide-based optical coupler using mode expansion transfer matrix,” Microw. Opt. Technol. Lett. 52(5), 1123–1129 (2010).
[CrossRef]

Richardson, D. J.

Roelens, M. A.

Savchenko, A.

Shen, M.

L. Tong, R. R. Gattass, J. B. Ashcom1, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Shum, P.

G. H. Wang, P. Shum, G. B. Ren, X. Yu, J. J. Hu, and C. Lin, “Theoretical investigation of nanowaveguide-based optical coupler using mode expansion transfer matrix,” Microw. Opt. Technol. Lett. 52(5), 1123–1129 (2010).
[CrossRef]

Sokolowski, M.

Sumetsky, M.

Sun, C. K.

Teipel, J.

Tong, L.

Y. Li and L. Tong, “Mach-Zehnder interferometers assembled with optical microfibers or nanofibers,” Opt. Lett. 33(4), 303–305 (2008).
[CrossRef] [PubMed]

K. Huang, S. Yang, and L. Tong, “Modeling of evanescent coupling between two parallel optical nanowires,” Appl. Opt. 46(9), 1429–1434 (2007).
[CrossRef] [PubMed]

X. Jiang, L. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88(22), 223501 (2006).
[CrossRef]

L. Tong, J. Lou, and E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Opt. Express 12(6), 1025–1035 (2004).
[CrossRef] [PubMed]

L. Tong, R. R. Gattass, J. B. Ashcom1, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Tsao, A.

X. Jiang, L. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88(22), 223501 (2006).
[CrossRef]

Türke, D.

Vetsch, E.

Vienne, G.

X. Jiang, L. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88(22), 223501 (2006).
[CrossRef]

Wang, G. H.

G. H. Wang, P. Shum, G. B. Ren, X. Yu, J. J. Hu, and C. Lin, “Theoretical investigation of nanowaveguide-based optical coupler using mode expansion transfer matrix,” Microw. Opt. Technol. Lett. 52(5), 1123–1129 (2010).
[CrossRef]

Wang, Z.

Warken, F.

Xi, T.

Xu, F.

Xu, Z.

W. Yu, Z. Xu, H. Changlun, B. Jian, and Y. Guoguang, “A tunable all-fiber filter based on microfiber loop resonator,” Appl. Phys. Lett. 86(19), 191112 (2008).
[CrossRef]

Yang, D.

X. Jiang, L. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88(22), 223501 (2006).
[CrossRef]

Yang, Q.

X. Jiang, L. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88(22), 223501 (2006).
[CrossRef]

Yang, S.

Yeom, D.-I.

Yu, W.

W. Yu, Z. Xu, H. Changlun, B. Jian, and Y. Guoguang, “A tunable all-fiber filter based on microfiber loop resonator,” Appl. Phys. Lett. 86(19), 191112 (2008).
[CrossRef]

Yu, X.

G. H. Wang, P. Shum, G. B. Ren, X. Yu, J. J. Hu, and C. Lin, “Theoretical investigation of nanowaveguide-based optical coupler using mode expansion transfer matrix,” Microw. Opt. Technol. Lett. 52(5), 1123–1129 (2010).
[CrossRef]

Zhang, J.

Zhang, Y.

Zhang, Z.

Zhou, M.

Appl. Opt. (2)

Appl. Phys. Lett. (3)

W. Yu, Z. Xu, H. Changlun, B. Jian, and Y. Guoguang, “A tunable all-fiber filter based on microfiber loop resonator,” Appl. Phys. Lett. 86(19), 191112 (2008).
[CrossRef]

M. Sumetsky, Y. Dulashko, J. M. Fini, and A. Hale, “Optical microfiber loop resonator,” Appl. Phys. Lett. 86(16), 161108 (2005).
[CrossRef]

X. Jiang, L. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88(22), 223501 (2006).
[CrossRef]

Electron. Lett. (1)

G. Brambilla and F. Xu, “Adiabatic submicrometric tapers for optical tweezers,” Electron. Lett. 43(4), 204–206 (2007).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

P. Pal and W. H. Knox, “Fabrication and Characterization of Fused Microfiber Resonators,” IEEE Photon. Technol. Lett. 21(12), 766–768 (2009).
[CrossRef]

J. Lightwave Technol. (2)

Microw. Opt. Technol. Lett. (1)

G. H. Wang, P. Shum, G. B. Ren, X. Yu, J. J. Hu, and C. Lin, “Theoretical investigation of nanowaveguide-based optical coupler using mode expansion transfer matrix,” Microw. Opt. Technol. Lett. 52(5), 1123–1129 (2010).
[CrossRef]

Nature (1)

L. Tong, R. R. Gattass, J. B. Ashcom1, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Opt. Express (7)

Opt. Lett. (5)

Supplementary Material (1)

» Media 1: MOV (639 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Coupling structure between two CMNFs. Inset I shows the definition of the fiber cone half-angle α; Inset II shows the perspective view of coupler.

Fig. 2
Fig. 2

Optical power distribution along z direction in cone2 (assume optical is input from cone1). The output power is normalized by input power. (a) is the uniform MNFs coupling case; (b)-(d) are the CMNFs coupling with overlapping length 40, 80, and 140 μm.

Fig. 3
Fig. 3

Optical power flow pattern (Media 1) between (a) two sub-wavelength fibers with uniform diameters and (b)-(c) two CMNFs with overlapping lengths of (b) 80μm (c) 140μm. For clarity, only the right end parts of the couplers are shown.

Fig. 4
Fig. 4

Coupling efficiency versus overlapping length for three CMNF tapering angles.

Fig. 5
Fig. 5

(a) Schematic diagram of the conical MNF-based coupler. (b)-(c) SEM images of the attached MNFs and MNFs with two different waist diameters of 1.69μm and 2.14μm, respectively. SMF: single mode fiber.

Fig. 6
Fig. 6

Measured spectral response of a CMNFs-based coupler with different overlapping length. Inset shows the close-up view of one transmission peak.

Fig. 7
Fig. 7

Measured coupling efficiency versus overlapping length for the CMNF-based couplers. The diameters of CMNFs for (a) and (b) are 2.14 μm and 1.69 μm, respectively. Both (a) and (b) experience a damped oscillation when overlapping length increases, and yet damping length for (a) is longer than (b).

Metrics