Abstract

The static and dynamic characteristics of degenerate four-wave mixing in a quantum dot semiconductor optical amplifier are investigated. A high chip conversion efficiency of 1.5 dB at 0.3 nm detuning, a low (< 5 dB) asymmetry of up and down conversion and a spectral conversion range of 15 nm with an optical signal-to-noise ratio above 20 dB is observed. The comparison of pumping near the gain peak and at the edge of the gain spectrum reveals the optical signal-to-noise ratio as the crucial parameter for error-free wavelength conversion. Small-signal bandwidths well beyond 40 GHz and 40 Gb/s error-free 5 nm wavelength down conversion with penalties below 1 dB are presented. Due to the optical signal-to-noise ratio limitation, wavelength up conversion is error-free at a pump wavelength of 1311 nm with a penalty of 2.5 dB, whereas an error floor is observed for pumping at 1291 nm. A dual pump configuration is demonstrated, to extend the wavelength conversion range enabling 15.4 nm error-free wavelength up conversion with 3.5 dB penalty caused by the additional saturation of the second pump. This is the first time that 40 Gb/s error-free wavelength conversion via four-wave mixing in quantum-dot semiconductor optical amplifiers is presented.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. J. B. Yoo, “Wavelength conversion technologies for WDM network applications,” J. Lightwave Technol. 14(6), 955–966 (1996).
    [CrossRef]
  2. D. Bimberg, M. Kuntz, and M. Laemmlin, “Quantum dot photonic devices for lightwave communication,” Microelectron. J. 36(3-6), 175–179 (2005).
    [CrossRef]
  3. D. Bimberg, M. Grundmann, and N. N. Ledentsov, Quantum Dot Heterostructures (John Wiley & Sons Ltd, Chichester, 1999).
  4. D. Bimberg, M. Grundmann, N. N. Ledentsov, S. S. Ruvimov, P. Werner, U. Richter, J. Heydenreich, V. M. Ustinov, P. S. Kopev, and Z. I. Alferov, “Self-organization processes in MBE-grown quantum dot structures,” Thin Solid Films 267(1-2), 32–36 (1995).
    [CrossRef]
  5. A. V. Uskov, E. P. O'Reilly, M. Laemmlin, N. N. Ledentsov, and D. Bimberg, “On gain saturation in quantum dot semiconductor optical amplifiers,” Opt. Commun. 248(1-3), 211–219 (2005).
    [CrossRef]
  6. T. Vallaitis, C. Koos, R. Bonk, W. Freude, M. Laemmlin, C. Meuer, D. Bimberg, and J. Leuthold, “Slow and fast dynamics of gain and phase in a quantum dot semiconductor optical amplifier,” Opt. Express 16(1), 170–178 (2008).
    [CrossRef] [PubMed]
  7. I. O'Driscoll, T. Piwonski, C. F. Schleussner, J. Houlihan, G. Huyet, and R. J. Manning, “Electron and hole dynamics of InAs/GaAs quantum dot semiconductor optical amplifiers,” Appl. Phys. Lett. 91(26), 263506 (2007).
    [CrossRef]
  8. M. Sugawara, N. Hatori, M. Ishida, H. Ebe, Y. Arakawa, T. Akiyama, K. Otsubo, Y. Yamamoto, and Y. Nakata, “Recent progress in self-assembled quantum-dot optical devices for optical telecommunication: temperature-insensitive 10 Gb s−1 directly modulated lasers and 40 Gb s−1 signal-regenerative amplifiers,” J. Phys. D Appl. Phys. 38(13), 2126–2134 (2005).
    [CrossRef]
  9. G. Contestabile, A. Maruta, S. Sekiguchi, K. Morito, M. Sugawara, and K. Kitayama, “Regenerative Amplification by Using Self-Phase Modulation in a Quantum-Dot SOA,” IEEE Photon. Technol. Lett. 22(7), 492–494 (2010).
    [CrossRef]
  10. R. Bonk, C. Meuer, T. Vallaitis, S. Sygletos, P. Vorreau, S. Ben-Ezra, S. Tsadka, A. Kovsh, I. Krestnikov, M. Laemmlin, D. Bimberg, W. Freude, and J. Leuthold, “Single and Multiple Channel Operation Dynamics of Linear Quantum-Dot Semiconductor Optical Amplifier,” in European Conference on Optical Communications (ECOC 2008)(Brussels, Belgium, 2008), p. Th.1.C.2.
  11. C. Schmidt-Langhorst, C. Meuer, A. Galperin, H. Schmeckebier, R. Ludwig, D. Puris, D. Bimberg, K. Petermann, and C. Schubert, “80 Gb/s Multi-Wavelength Booster Amplification in an InGaAs/GaAs Quantum-Dot Semiconductor Optical Amplifier,” in European Conference on Optical Communication (ECOC 2010)(Torino, Italy, 2010), p. Mo.1.F.6.
  12. G. Contestabile, A. Maruta, S. Sekiguchi, K. Morito, M. Sugawara, and K. Kitayama, “Regenerative Amplification in a Quantum Dot SOA ” in Optical Fiber Communication Conference (OFC 2010)(San Diego, CA, USA, 2010), p. OMT2.
  13. T. Akiyama, N. Hatori, Y. Nakata, H. Ebe, and M. Sugawara, “Pattern-effect-free amplification and cross-gain modulation achieved by using ultrafast gain nonlinearity in quantum-dot semiconductor optical amplifiers,” Phys. Status Solidi, B Basic Res. 238(2), 301–304 (2003).
    [CrossRef]
  14. G. Contestabile, A. Maruta, S. Sekiguchi, K. Morito, and K. Kitayama, “80 Gb/s Multicast Wavelength Conversion by XGM in a QD-SOA,” in European Conference on Optical Communication (ECOC2010)(Torino, Italy, 2010), p. Mo.2.A.3.
  15. G. Contestabile, A. Maruta, S. Sekiguchi, K. Morito, M. Sugawara, and K. Kitayama, “160 Gb/s cross gain modulation in quantum dot SOA at 1550 nm,” in European Conference on Optical Communication (ECOC 2009)(Vienna, Austria, 2009), p. PDP 1.4.
  16. A. E. Kelly, A. D. Ellis, D. Nesset, R. Kashyap, and D. G. Moodie, “100Gbit/s wavelength conversion using FWM in an MQW semiconductor optical amplifier,” Electron. Lett. 34(20), 1955–1956 (1998).
    [CrossRef]
  17. U. Feiste, R. Ludwig, C. Schmidt, E. Dietrich, S. Diez, H. Ehrke, E. Patzak, H. G. Weber, and T. Merker, “80-Gb/s transmission over 106-km standard-fiber using optical phase conjugation in a Sagnac-interferometer,” IEEE Photon. Technol. Lett. 11(8), 1063–1065 (1999).
    [CrossRef]
  18. S. Diez, C. Schubert, H.-J. Ehrke, U. Feiste, R. Ludwig, E. Patzak, C. Schmidt, and H. G. Weber, “160 Gb/s all-optical demultiplexer using a hybrid gain-transparent SOA Mach-Zehnder-Interferometer,” Electron. Lett. 36(17), 1484 (2000).
    [CrossRef]
  19. S. L. Jansen, M. Heid, S. Spalter, E. Meissner, C. J. Weiske, A. Schopflin, D. Khoe, and H. de Waardt, “Demultiplexing 160 Gbit/s OTDM signal to 40 Gbit/s by FWM in SOA,” Electron. Lett. 38(17), 978–980 (2002).
    [CrossRef]
  20. T. Akiyama, H. Kuwatsuka, N. Hatori, Y. Nakata, H. Ebe, and M. Sugawara, “Symmetric Highly Efficient (~0 dB) Wavelength Conversion Based on Four-Wave Mixing in Quantum Dot Optical Amplifiers,” IEEE Photon. Technol. Lett. 14(8), 1139–1141 (2002).
    [CrossRef]
  21. A. Capua, S. O’Duill, V. Mikhelashvili, G. Eisenstein, J. P. Reithmaier, A. Somers, and A. Forchel, “Cross talk free multi channel processing of 10 Gbit/s data via four wave mixing in a 1550 nm InAs/InP quantum dash amplifier,” Opt. Express 16(23), 19072–19077 (2008).
    [CrossRef]
  22. D. Nielsen, S. L. Chuang, N. J. Kim, D. Lee, S. H. Pyun, and W. G. Jeong, “160 GHz wavelength conversion using four-wave mixing in quantum dots,” in Conference on Lasers and Electro-Optics (CLEO)(Baltimore, MD, USA, 2009).
  23. D. Bimberg, C. Meuer, M. Laemmlin, S. Liebich, J. Kim, A. R. Kovsh, I. Krestnikov, and G. Eisenstein, “Nonlinear properties of quantum dot semiconductor optical amplifiers at 1.3 µm,” Chin. Opt. Lett. 6, 724–726 (2008).
    [CrossRef]
  24. A. R. Kovsh, N. A. Maleev, A. E. Zhukov, S. S. Mikhrin, A. P. Vasil'ev, E. A. Semenova, Y. M. Shernyakov, M. V. Maximov, D. A. Livshits, V. M. Ustinov, N. N. Ledentsov, D. Bimberg, and Z. I. Alferov, “InAs/InGaAs/GaAs quantum dot lasers of 1.3 µm range with enhanced optical gain,” J. Cryst. Growth 251(1-4), 729–736 (2003).
    [CrossRef]
  25. C. Meuer, H. Schmeckebier, G. Fiol, D. Arsenijevic, J. Kim, G. Eisenstein, and D. Bimberg, “Cross-Gain Modulation and Four-Wave Mixing for Wavelength Conversion in undoped and p-doped 1.3 µm Quantum Dot Semiconductor Optical Amplifiers,” IEEE Photon. 2(2), 141–151 (2010).
    [CrossRef]
  26. A. Bilenca, R. Alizon, V. Mikhelashhvili, D. Dahan, G. Eisenstein, R. Schwertberger, D. Gold, J. P. Reithmaier, and A. Forchel, “Broad-band wavelength conversion based on cross-gain modulation and four-wave mixing in InAs-InP quantum-dash semiconductor optical amplifiers operating at 1550 nm,” IEEE Photon. Technol. Lett. 15(4), 563–565 (2003).
    [CrossRef]
  27. D. Nielsen, S. L. Chuang, N. J. Kim, D. Lee, S. H. Pyun, W. G. Jeong, C. Y. Chen, and T. S. Lay, “High-speed wavelength conversion in quantum dot and quantum well semiconductor optical amplifiers,” Appl. Phys. Lett. 92(21), 211101 (2008).
    [CrossRef]
  28. K. Kikuchi, M. Kakui, C. E. Zah, and T. P. Lee, “Observation of Highly Nondegenerate 4-Wave-Mixing in 1.5 µm Traveling-Wave Semiconductor Optical Amplifiers and Estimation of Nonlinear Gain Coefficient,” IEEE J. Quantum Electron. 28(1), 151–156 (1992).
    [CrossRef]
  29. A. E. Kelly, D. D. Marcenac, and D. Nesset, “40Gbit/s wavelength conversion over 24.6nm using FWM in a semiconductor optical amplifier with an optimised MQW active region,” Electron. Lett. 33(25), 2123–2124 (1997).
    [CrossRef]
  30. G. Grosskopf, R. Ludwig, and H. G. Weber, “140 Mbit/s DPSK Transmission Using an All-Optical Frequency-Converter with a 4000 GHz Conversion Range,” Electron. Lett. 24(17), 1106–1107 (1988).
    [CrossRef]
  31. N. Schunk, G. Groβkopt, R. Ludwig, R. Schnabel, and H. G. Weber, “Frequency-Conversion by Nearly-Degenerate 4-Wave-Mixing in Traveling-Wave Semiconductor-Laser Amplifiers,” IEE Proc. Optoelectron. 137, 209–214 (1990).
    [CrossRef]
  32. G. Contestabile, F. Martelli, A. Mecozzi, L. Graziani, A. D'Ottavi, P. Spano, G. Guekos, R. Dall'Ara, and J. Eckner, “Efficiency flattening and equalization of frequency up- and down-conversion using four-wave mixing in semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 10(10), 1398–1400 (1998).
    [CrossRef]
  33. T. J. Morgan, J. P. R. Lacey, and R. S. Tucker, “Widely tunable four-wave mixing in semiconductor optical amplifiers with constant conversion efficiency,” IEEE Photon. Technol. Lett. 10(10), 1401–1403 (1998).
    [CrossRef]
  34. I. Tomkos, I. Zacharopoulos, D. Syvridis, T. Sphicopoulos, and E. Roditi, “Improved performance of a wavelength converter based on dual pump four-wave mixing in a bulk semiconductor optical amplifier,” Appl. Phys. Lett. 72(20), 2499–2501 (1998).
    [CrossRef]
  35. S. Diez, C. Schmidt, R. Ludwig, H. G. Weber, K. Obermann, S. Kindt, I. Koltchanov, and K. Petermann, “Four-wave mixing in semiconductor optical amplifiers for frequency conversion and fast optical switching,” IEEE J. Sel. Top. Quantum Electron. 3(5), 1131–1145 (1997).
    [CrossRef]
  36. P. Borri, W. Langbein, J. M. Hvam, F. Heinrichsdorff, H.-M. Mao, and D. Bimberg, “Spectral Hole-Burning and Carrier-Heating Dynamics in InGaAs Quantum-Dot Amplifiers,” IEEE J. Sel. Top. Quantum Electron. 6(3), 544–551 (2000).
    [CrossRef]

2010 (2)

G. Contestabile, A. Maruta, S. Sekiguchi, K. Morito, M. Sugawara, and K. Kitayama, “Regenerative Amplification by Using Self-Phase Modulation in a Quantum-Dot SOA,” IEEE Photon. Technol. Lett. 22(7), 492–494 (2010).
[CrossRef]

C. Meuer, H. Schmeckebier, G. Fiol, D. Arsenijevic, J. Kim, G. Eisenstein, and D. Bimberg, “Cross-Gain Modulation and Four-Wave Mixing for Wavelength Conversion in undoped and p-doped 1.3 µm Quantum Dot Semiconductor Optical Amplifiers,” IEEE Photon. 2(2), 141–151 (2010).
[CrossRef]

2008 (4)

2007 (1)

I. O'Driscoll, T. Piwonski, C. F. Schleussner, J. Houlihan, G. Huyet, and R. J. Manning, “Electron and hole dynamics of InAs/GaAs quantum dot semiconductor optical amplifiers,” Appl. Phys. Lett. 91(26), 263506 (2007).
[CrossRef]

2005 (3)

M. Sugawara, N. Hatori, M. Ishida, H. Ebe, Y. Arakawa, T. Akiyama, K. Otsubo, Y. Yamamoto, and Y. Nakata, “Recent progress in self-assembled quantum-dot optical devices for optical telecommunication: temperature-insensitive 10 Gb s−1 directly modulated lasers and 40 Gb s−1 signal-regenerative amplifiers,” J. Phys. D Appl. Phys. 38(13), 2126–2134 (2005).
[CrossRef]

A. V. Uskov, E. P. O'Reilly, M. Laemmlin, N. N. Ledentsov, and D. Bimberg, “On gain saturation in quantum dot semiconductor optical amplifiers,” Opt. Commun. 248(1-3), 211–219 (2005).
[CrossRef]

D. Bimberg, M. Kuntz, and M. Laemmlin, “Quantum dot photonic devices for lightwave communication,” Microelectron. J. 36(3-6), 175–179 (2005).
[CrossRef]

2003 (3)

T. Akiyama, N. Hatori, Y. Nakata, H. Ebe, and M. Sugawara, “Pattern-effect-free amplification and cross-gain modulation achieved by using ultrafast gain nonlinearity in quantum-dot semiconductor optical amplifiers,” Phys. Status Solidi, B Basic Res. 238(2), 301–304 (2003).
[CrossRef]

A. Bilenca, R. Alizon, V. Mikhelashhvili, D. Dahan, G. Eisenstein, R. Schwertberger, D. Gold, J. P. Reithmaier, and A. Forchel, “Broad-band wavelength conversion based on cross-gain modulation and four-wave mixing in InAs-InP quantum-dash semiconductor optical amplifiers operating at 1550 nm,” IEEE Photon. Technol. Lett. 15(4), 563–565 (2003).
[CrossRef]

A. R. Kovsh, N. A. Maleev, A. E. Zhukov, S. S. Mikhrin, A. P. Vasil'ev, E. A. Semenova, Y. M. Shernyakov, M. V. Maximov, D. A. Livshits, V. M. Ustinov, N. N. Ledentsov, D. Bimberg, and Z. I. Alferov, “InAs/InGaAs/GaAs quantum dot lasers of 1.3 µm range with enhanced optical gain,” J. Cryst. Growth 251(1-4), 729–736 (2003).
[CrossRef]

2002 (2)

S. L. Jansen, M. Heid, S. Spalter, E. Meissner, C. J. Weiske, A. Schopflin, D. Khoe, and H. de Waardt, “Demultiplexing 160 Gbit/s OTDM signal to 40 Gbit/s by FWM in SOA,” Electron. Lett. 38(17), 978–980 (2002).
[CrossRef]

T. Akiyama, H. Kuwatsuka, N. Hatori, Y. Nakata, H. Ebe, and M. Sugawara, “Symmetric Highly Efficient (~0 dB) Wavelength Conversion Based on Four-Wave Mixing in Quantum Dot Optical Amplifiers,” IEEE Photon. Technol. Lett. 14(8), 1139–1141 (2002).
[CrossRef]

2000 (2)

S. Diez, C. Schubert, H.-J. Ehrke, U. Feiste, R. Ludwig, E. Patzak, C. Schmidt, and H. G. Weber, “160 Gb/s all-optical demultiplexer using a hybrid gain-transparent SOA Mach-Zehnder-Interferometer,” Electron. Lett. 36(17), 1484 (2000).
[CrossRef]

P. Borri, W. Langbein, J. M. Hvam, F. Heinrichsdorff, H.-M. Mao, and D. Bimberg, “Spectral Hole-Burning and Carrier-Heating Dynamics in InGaAs Quantum-Dot Amplifiers,” IEEE J. Sel. Top. Quantum Electron. 6(3), 544–551 (2000).
[CrossRef]

1999 (1)

U. Feiste, R. Ludwig, C. Schmidt, E. Dietrich, S. Diez, H. Ehrke, E. Patzak, H. G. Weber, and T. Merker, “80-Gb/s transmission over 106-km standard-fiber using optical phase conjugation in a Sagnac-interferometer,” IEEE Photon. Technol. Lett. 11(8), 1063–1065 (1999).
[CrossRef]

1998 (4)

A. E. Kelly, A. D. Ellis, D. Nesset, R. Kashyap, and D. G. Moodie, “100Gbit/s wavelength conversion using FWM in an MQW semiconductor optical amplifier,” Electron. Lett. 34(20), 1955–1956 (1998).
[CrossRef]

G. Contestabile, F. Martelli, A. Mecozzi, L. Graziani, A. D'Ottavi, P. Spano, G. Guekos, R. Dall'Ara, and J. Eckner, “Efficiency flattening and equalization of frequency up- and down-conversion using four-wave mixing in semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 10(10), 1398–1400 (1998).
[CrossRef]

T. J. Morgan, J. P. R. Lacey, and R. S. Tucker, “Widely tunable four-wave mixing in semiconductor optical amplifiers with constant conversion efficiency,” IEEE Photon. Technol. Lett. 10(10), 1401–1403 (1998).
[CrossRef]

I. Tomkos, I. Zacharopoulos, D. Syvridis, T. Sphicopoulos, and E. Roditi, “Improved performance of a wavelength converter based on dual pump four-wave mixing in a bulk semiconductor optical amplifier,” Appl. Phys. Lett. 72(20), 2499–2501 (1998).
[CrossRef]

1997 (2)

S. Diez, C. Schmidt, R. Ludwig, H. G. Weber, K. Obermann, S. Kindt, I. Koltchanov, and K. Petermann, “Four-wave mixing in semiconductor optical amplifiers for frequency conversion and fast optical switching,” IEEE J. Sel. Top. Quantum Electron. 3(5), 1131–1145 (1997).
[CrossRef]

A. E. Kelly, D. D. Marcenac, and D. Nesset, “40Gbit/s wavelength conversion over 24.6nm using FWM in a semiconductor optical amplifier with an optimised MQW active region,” Electron. Lett. 33(25), 2123–2124 (1997).
[CrossRef]

1996 (1)

S. J. B. Yoo, “Wavelength conversion technologies for WDM network applications,” J. Lightwave Technol. 14(6), 955–966 (1996).
[CrossRef]

1995 (1)

D. Bimberg, M. Grundmann, N. N. Ledentsov, S. S. Ruvimov, P. Werner, U. Richter, J. Heydenreich, V. M. Ustinov, P. S. Kopev, and Z. I. Alferov, “Self-organization processes in MBE-grown quantum dot structures,” Thin Solid Films 267(1-2), 32–36 (1995).
[CrossRef]

1992 (1)

K. Kikuchi, M. Kakui, C. E. Zah, and T. P. Lee, “Observation of Highly Nondegenerate 4-Wave-Mixing in 1.5 µm Traveling-Wave Semiconductor Optical Amplifiers and Estimation of Nonlinear Gain Coefficient,” IEEE J. Quantum Electron. 28(1), 151–156 (1992).
[CrossRef]

1990 (1)

N. Schunk, G. Groβkopt, R. Ludwig, R. Schnabel, and H. G. Weber, “Frequency-Conversion by Nearly-Degenerate 4-Wave-Mixing in Traveling-Wave Semiconductor-Laser Amplifiers,” IEE Proc. Optoelectron. 137, 209–214 (1990).
[CrossRef]

1988 (1)

G. Grosskopf, R. Ludwig, and H. G. Weber, “140 Mbit/s DPSK Transmission Using an All-Optical Frequency-Converter with a 4000 GHz Conversion Range,” Electron. Lett. 24(17), 1106–1107 (1988).
[CrossRef]

Akiyama, T.

M. Sugawara, N. Hatori, M. Ishida, H. Ebe, Y. Arakawa, T. Akiyama, K. Otsubo, Y. Yamamoto, and Y. Nakata, “Recent progress in self-assembled quantum-dot optical devices for optical telecommunication: temperature-insensitive 10 Gb s−1 directly modulated lasers and 40 Gb s−1 signal-regenerative amplifiers,” J. Phys. D Appl. Phys. 38(13), 2126–2134 (2005).
[CrossRef]

T. Akiyama, N. Hatori, Y. Nakata, H. Ebe, and M. Sugawara, “Pattern-effect-free amplification and cross-gain modulation achieved by using ultrafast gain nonlinearity in quantum-dot semiconductor optical amplifiers,” Phys. Status Solidi, B Basic Res. 238(2), 301–304 (2003).
[CrossRef]

T. Akiyama, H. Kuwatsuka, N. Hatori, Y. Nakata, H. Ebe, and M. Sugawara, “Symmetric Highly Efficient (~0 dB) Wavelength Conversion Based on Four-Wave Mixing in Quantum Dot Optical Amplifiers,” IEEE Photon. Technol. Lett. 14(8), 1139–1141 (2002).
[CrossRef]

Alferov, Z. I.

A. R. Kovsh, N. A. Maleev, A. E. Zhukov, S. S. Mikhrin, A. P. Vasil'ev, E. A. Semenova, Y. M. Shernyakov, M. V. Maximov, D. A. Livshits, V. M. Ustinov, N. N. Ledentsov, D. Bimberg, and Z. I. Alferov, “InAs/InGaAs/GaAs quantum dot lasers of 1.3 µm range with enhanced optical gain,” J. Cryst. Growth 251(1-4), 729–736 (2003).
[CrossRef]

D. Bimberg, M. Grundmann, N. N. Ledentsov, S. S. Ruvimov, P. Werner, U. Richter, J. Heydenreich, V. M. Ustinov, P. S. Kopev, and Z. I. Alferov, “Self-organization processes in MBE-grown quantum dot structures,” Thin Solid Films 267(1-2), 32–36 (1995).
[CrossRef]

Alizon, R.

A. Bilenca, R. Alizon, V. Mikhelashhvili, D. Dahan, G. Eisenstein, R. Schwertberger, D. Gold, J. P. Reithmaier, and A. Forchel, “Broad-band wavelength conversion based on cross-gain modulation and four-wave mixing in InAs-InP quantum-dash semiconductor optical amplifiers operating at 1550 nm,” IEEE Photon. Technol. Lett. 15(4), 563–565 (2003).
[CrossRef]

Arakawa, Y.

M. Sugawara, N. Hatori, M. Ishida, H. Ebe, Y. Arakawa, T. Akiyama, K. Otsubo, Y. Yamamoto, and Y. Nakata, “Recent progress in self-assembled quantum-dot optical devices for optical telecommunication: temperature-insensitive 10 Gb s−1 directly modulated lasers and 40 Gb s−1 signal-regenerative amplifiers,” J. Phys. D Appl. Phys. 38(13), 2126–2134 (2005).
[CrossRef]

Arsenijevic, D.

C. Meuer, H. Schmeckebier, G. Fiol, D. Arsenijevic, J. Kim, G. Eisenstein, and D. Bimberg, “Cross-Gain Modulation and Four-Wave Mixing for Wavelength Conversion in undoped and p-doped 1.3 µm Quantum Dot Semiconductor Optical Amplifiers,” IEEE Photon. 2(2), 141–151 (2010).
[CrossRef]

Bilenca, A.

A. Bilenca, R. Alizon, V. Mikhelashhvili, D. Dahan, G. Eisenstein, R. Schwertberger, D. Gold, J. P. Reithmaier, and A. Forchel, “Broad-band wavelength conversion based on cross-gain modulation and four-wave mixing in InAs-InP quantum-dash semiconductor optical amplifiers operating at 1550 nm,” IEEE Photon. Technol. Lett. 15(4), 563–565 (2003).
[CrossRef]

Bimberg, D.

C. Meuer, H. Schmeckebier, G. Fiol, D. Arsenijevic, J. Kim, G. Eisenstein, and D. Bimberg, “Cross-Gain Modulation and Four-Wave Mixing for Wavelength Conversion in undoped and p-doped 1.3 µm Quantum Dot Semiconductor Optical Amplifiers,” IEEE Photon. 2(2), 141–151 (2010).
[CrossRef]

T. Vallaitis, C. Koos, R. Bonk, W. Freude, M. Laemmlin, C. Meuer, D. Bimberg, and J. Leuthold, “Slow and fast dynamics of gain and phase in a quantum dot semiconductor optical amplifier,” Opt. Express 16(1), 170–178 (2008).
[CrossRef] [PubMed]

D. Bimberg, C. Meuer, M. Laemmlin, S. Liebich, J. Kim, A. R. Kovsh, I. Krestnikov, and G. Eisenstein, “Nonlinear properties of quantum dot semiconductor optical amplifiers at 1.3 µm,” Chin. Opt. Lett. 6, 724–726 (2008).
[CrossRef]

D. Bimberg, M. Kuntz, and M. Laemmlin, “Quantum dot photonic devices for lightwave communication,” Microelectron. J. 36(3-6), 175–179 (2005).
[CrossRef]

A. V. Uskov, E. P. O'Reilly, M. Laemmlin, N. N. Ledentsov, and D. Bimberg, “On gain saturation in quantum dot semiconductor optical amplifiers,” Opt. Commun. 248(1-3), 211–219 (2005).
[CrossRef]

A. R. Kovsh, N. A. Maleev, A. E. Zhukov, S. S. Mikhrin, A. P. Vasil'ev, E. A. Semenova, Y. M. Shernyakov, M. V. Maximov, D. A. Livshits, V. M. Ustinov, N. N. Ledentsov, D. Bimberg, and Z. I. Alferov, “InAs/InGaAs/GaAs quantum dot lasers of 1.3 µm range with enhanced optical gain,” J. Cryst. Growth 251(1-4), 729–736 (2003).
[CrossRef]

P. Borri, W. Langbein, J. M. Hvam, F. Heinrichsdorff, H.-M. Mao, and D. Bimberg, “Spectral Hole-Burning and Carrier-Heating Dynamics in InGaAs Quantum-Dot Amplifiers,” IEEE J. Sel. Top. Quantum Electron. 6(3), 544–551 (2000).
[CrossRef]

D. Bimberg, M. Grundmann, N. N. Ledentsov, S. S. Ruvimov, P. Werner, U. Richter, J. Heydenreich, V. M. Ustinov, P. S. Kopev, and Z. I. Alferov, “Self-organization processes in MBE-grown quantum dot structures,” Thin Solid Films 267(1-2), 32–36 (1995).
[CrossRef]

Bonk, R.

Borri, P.

P. Borri, W. Langbein, J. M. Hvam, F. Heinrichsdorff, H.-M. Mao, and D. Bimberg, “Spectral Hole-Burning and Carrier-Heating Dynamics in InGaAs Quantum-Dot Amplifiers,” IEEE J. Sel. Top. Quantum Electron. 6(3), 544–551 (2000).
[CrossRef]

Capua, A.

Chen, C. Y.

D. Nielsen, S. L. Chuang, N. J. Kim, D. Lee, S. H. Pyun, W. G. Jeong, C. Y. Chen, and T. S. Lay, “High-speed wavelength conversion in quantum dot and quantum well semiconductor optical amplifiers,” Appl. Phys. Lett. 92(21), 211101 (2008).
[CrossRef]

Chuang, S. L.

D. Nielsen, S. L. Chuang, N. J. Kim, D. Lee, S. H. Pyun, W. G. Jeong, C. Y. Chen, and T. S. Lay, “High-speed wavelength conversion in quantum dot and quantum well semiconductor optical amplifiers,” Appl. Phys. Lett. 92(21), 211101 (2008).
[CrossRef]

Contestabile, G.

G. Contestabile, A. Maruta, S. Sekiguchi, K. Morito, M. Sugawara, and K. Kitayama, “Regenerative Amplification by Using Self-Phase Modulation in a Quantum-Dot SOA,” IEEE Photon. Technol. Lett. 22(7), 492–494 (2010).
[CrossRef]

G. Contestabile, F. Martelli, A. Mecozzi, L. Graziani, A. D'Ottavi, P. Spano, G. Guekos, R. Dall'Ara, and J. Eckner, “Efficiency flattening and equalization of frequency up- and down-conversion using four-wave mixing in semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 10(10), 1398–1400 (1998).
[CrossRef]

Dahan, D.

A. Bilenca, R. Alizon, V. Mikhelashhvili, D. Dahan, G. Eisenstein, R. Schwertberger, D. Gold, J. P. Reithmaier, and A. Forchel, “Broad-band wavelength conversion based on cross-gain modulation and four-wave mixing in InAs-InP quantum-dash semiconductor optical amplifiers operating at 1550 nm,” IEEE Photon. Technol. Lett. 15(4), 563–565 (2003).
[CrossRef]

Dall'Ara, R.

G. Contestabile, F. Martelli, A. Mecozzi, L. Graziani, A. D'Ottavi, P. Spano, G. Guekos, R. Dall'Ara, and J. Eckner, “Efficiency flattening and equalization of frequency up- and down-conversion using four-wave mixing in semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 10(10), 1398–1400 (1998).
[CrossRef]

de Waardt, H.

S. L. Jansen, M. Heid, S. Spalter, E. Meissner, C. J. Weiske, A. Schopflin, D. Khoe, and H. de Waardt, “Demultiplexing 160 Gbit/s OTDM signal to 40 Gbit/s by FWM in SOA,” Electron. Lett. 38(17), 978–980 (2002).
[CrossRef]

Dietrich, E.

U. Feiste, R. Ludwig, C. Schmidt, E. Dietrich, S. Diez, H. Ehrke, E. Patzak, H. G. Weber, and T. Merker, “80-Gb/s transmission over 106-km standard-fiber using optical phase conjugation in a Sagnac-interferometer,” IEEE Photon. Technol. Lett. 11(8), 1063–1065 (1999).
[CrossRef]

Diez, S.

S. Diez, C. Schubert, H.-J. Ehrke, U. Feiste, R. Ludwig, E. Patzak, C. Schmidt, and H. G. Weber, “160 Gb/s all-optical demultiplexer using a hybrid gain-transparent SOA Mach-Zehnder-Interferometer,” Electron. Lett. 36(17), 1484 (2000).
[CrossRef]

U. Feiste, R. Ludwig, C. Schmidt, E. Dietrich, S. Diez, H. Ehrke, E. Patzak, H. G. Weber, and T. Merker, “80-Gb/s transmission over 106-km standard-fiber using optical phase conjugation in a Sagnac-interferometer,” IEEE Photon. Technol. Lett. 11(8), 1063–1065 (1999).
[CrossRef]

S. Diez, C. Schmidt, R. Ludwig, H. G. Weber, K. Obermann, S. Kindt, I. Koltchanov, and K. Petermann, “Four-wave mixing in semiconductor optical amplifiers for frequency conversion and fast optical switching,” IEEE J. Sel. Top. Quantum Electron. 3(5), 1131–1145 (1997).
[CrossRef]

D'Ottavi, A.

G. Contestabile, F. Martelli, A. Mecozzi, L. Graziani, A. D'Ottavi, P. Spano, G. Guekos, R. Dall'Ara, and J. Eckner, “Efficiency flattening and equalization of frequency up- and down-conversion using four-wave mixing in semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 10(10), 1398–1400 (1998).
[CrossRef]

Ebe, H.

M. Sugawara, N. Hatori, M. Ishida, H. Ebe, Y. Arakawa, T. Akiyama, K. Otsubo, Y. Yamamoto, and Y. Nakata, “Recent progress in self-assembled quantum-dot optical devices for optical telecommunication: temperature-insensitive 10 Gb s−1 directly modulated lasers and 40 Gb s−1 signal-regenerative amplifiers,” J. Phys. D Appl. Phys. 38(13), 2126–2134 (2005).
[CrossRef]

T. Akiyama, N. Hatori, Y. Nakata, H. Ebe, and M. Sugawara, “Pattern-effect-free amplification and cross-gain modulation achieved by using ultrafast gain nonlinearity in quantum-dot semiconductor optical amplifiers,” Phys. Status Solidi, B Basic Res. 238(2), 301–304 (2003).
[CrossRef]

T. Akiyama, H. Kuwatsuka, N. Hatori, Y. Nakata, H. Ebe, and M. Sugawara, “Symmetric Highly Efficient (~0 dB) Wavelength Conversion Based on Four-Wave Mixing in Quantum Dot Optical Amplifiers,” IEEE Photon. Technol. Lett. 14(8), 1139–1141 (2002).
[CrossRef]

Eckner, J.

G. Contestabile, F. Martelli, A. Mecozzi, L. Graziani, A. D'Ottavi, P. Spano, G. Guekos, R. Dall'Ara, and J. Eckner, “Efficiency flattening and equalization of frequency up- and down-conversion using four-wave mixing in semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 10(10), 1398–1400 (1998).
[CrossRef]

Ehrke, H.

U. Feiste, R. Ludwig, C. Schmidt, E. Dietrich, S. Diez, H. Ehrke, E. Patzak, H. G. Weber, and T. Merker, “80-Gb/s transmission over 106-km standard-fiber using optical phase conjugation in a Sagnac-interferometer,” IEEE Photon. Technol. Lett. 11(8), 1063–1065 (1999).
[CrossRef]

Ehrke, H.-J.

S. Diez, C. Schubert, H.-J. Ehrke, U. Feiste, R. Ludwig, E. Patzak, C. Schmidt, and H. G. Weber, “160 Gb/s all-optical demultiplexer using a hybrid gain-transparent SOA Mach-Zehnder-Interferometer,” Electron. Lett. 36(17), 1484 (2000).
[CrossRef]

Eisenstein, G.

C. Meuer, H. Schmeckebier, G. Fiol, D. Arsenijevic, J. Kim, G. Eisenstein, and D. Bimberg, “Cross-Gain Modulation and Four-Wave Mixing for Wavelength Conversion in undoped and p-doped 1.3 µm Quantum Dot Semiconductor Optical Amplifiers,” IEEE Photon. 2(2), 141–151 (2010).
[CrossRef]

A. Capua, S. O’Duill, V. Mikhelashvili, G. Eisenstein, J. P. Reithmaier, A. Somers, and A. Forchel, “Cross talk free multi channel processing of 10 Gbit/s data via four wave mixing in a 1550 nm InAs/InP quantum dash amplifier,” Opt. Express 16(23), 19072–19077 (2008).
[CrossRef]

D. Bimberg, C. Meuer, M. Laemmlin, S. Liebich, J. Kim, A. R. Kovsh, I. Krestnikov, and G. Eisenstein, “Nonlinear properties of quantum dot semiconductor optical amplifiers at 1.3 µm,” Chin. Opt. Lett. 6, 724–726 (2008).
[CrossRef]

A. Bilenca, R. Alizon, V. Mikhelashhvili, D. Dahan, G. Eisenstein, R. Schwertberger, D. Gold, J. P. Reithmaier, and A. Forchel, “Broad-band wavelength conversion based on cross-gain modulation and four-wave mixing in InAs-InP quantum-dash semiconductor optical amplifiers operating at 1550 nm,” IEEE Photon. Technol. Lett. 15(4), 563–565 (2003).
[CrossRef]

Ellis, A. D.

A. E. Kelly, A. D. Ellis, D. Nesset, R. Kashyap, and D. G. Moodie, “100Gbit/s wavelength conversion using FWM in an MQW semiconductor optical amplifier,” Electron. Lett. 34(20), 1955–1956 (1998).
[CrossRef]

Feiste, U.

S. Diez, C. Schubert, H.-J. Ehrke, U. Feiste, R. Ludwig, E. Patzak, C. Schmidt, and H. G. Weber, “160 Gb/s all-optical demultiplexer using a hybrid gain-transparent SOA Mach-Zehnder-Interferometer,” Electron. Lett. 36(17), 1484 (2000).
[CrossRef]

U. Feiste, R. Ludwig, C. Schmidt, E. Dietrich, S. Diez, H. Ehrke, E. Patzak, H. G. Weber, and T. Merker, “80-Gb/s transmission over 106-km standard-fiber using optical phase conjugation in a Sagnac-interferometer,” IEEE Photon. Technol. Lett. 11(8), 1063–1065 (1999).
[CrossRef]

Fiol, G.

C. Meuer, H. Schmeckebier, G. Fiol, D. Arsenijevic, J. Kim, G. Eisenstein, and D. Bimberg, “Cross-Gain Modulation and Four-Wave Mixing for Wavelength Conversion in undoped and p-doped 1.3 µm Quantum Dot Semiconductor Optical Amplifiers,” IEEE Photon. 2(2), 141–151 (2010).
[CrossRef]

Forchel, A.

A. Capua, S. O’Duill, V. Mikhelashvili, G. Eisenstein, J. P. Reithmaier, A. Somers, and A. Forchel, “Cross talk free multi channel processing of 10 Gbit/s data via four wave mixing in a 1550 nm InAs/InP quantum dash amplifier,” Opt. Express 16(23), 19072–19077 (2008).
[CrossRef]

A. Bilenca, R. Alizon, V. Mikhelashhvili, D. Dahan, G. Eisenstein, R. Schwertberger, D. Gold, J. P. Reithmaier, and A. Forchel, “Broad-band wavelength conversion based on cross-gain modulation and four-wave mixing in InAs-InP quantum-dash semiconductor optical amplifiers operating at 1550 nm,” IEEE Photon. Technol. Lett. 15(4), 563–565 (2003).
[CrossRef]

Freude, W.

Gold, D.

A. Bilenca, R. Alizon, V. Mikhelashhvili, D. Dahan, G. Eisenstein, R. Schwertberger, D. Gold, J. P. Reithmaier, and A. Forchel, “Broad-band wavelength conversion based on cross-gain modulation and four-wave mixing in InAs-InP quantum-dash semiconductor optical amplifiers operating at 1550 nm,” IEEE Photon. Technol. Lett. 15(4), 563–565 (2003).
[CrossRef]

Graziani, L.

G. Contestabile, F. Martelli, A. Mecozzi, L. Graziani, A. D'Ottavi, P. Spano, G. Guekos, R. Dall'Ara, and J. Eckner, “Efficiency flattening and equalization of frequency up- and down-conversion using four-wave mixing in semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 10(10), 1398–1400 (1998).
[CrossRef]

Grosskopf, G.

G. Grosskopf, R. Ludwig, and H. G. Weber, “140 Mbit/s DPSK Transmission Using an All-Optical Frequency-Converter with a 4000 GHz Conversion Range,” Electron. Lett. 24(17), 1106–1107 (1988).
[CrossRef]

Großkopt, G.

N. Schunk, G. Groβkopt, R. Ludwig, R. Schnabel, and H. G. Weber, “Frequency-Conversion by Nearly-Degenerate 4-Wave-Mixing in Traveling-Wave Semiconductor-Laser Amplifiers,” IEE Proc. Optoelectron. 137, 209–214 (1990).
[CrossRef]

Grundmann, M.

D. Bimberg, M. Grundmann, N. N. Ledentsov, S. S. Ruvimov, P. Werner, U. Richter, J. Heydenreich, V. M. Ustinov, P. S. Kopev, and Z. I. Alferov, “Self-organization processes in MBE-grown quantum dot structures,” Thin Solid Films 267(1-2), 32–36 (1995).
[CrossRef]

Guekos, G.

G. Contestabile, F. Martelli, A. Mecozzi, L. Graziani, A. D'Ottavi, P. Spano, G. Guekos, R. Dall'Ara, and J. Eckner, “Efficiency flattening and equalization of frequency up- and down-conversion using four-wave mixing in semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 10(10), 1398–1400 (1998).
[CrossRef]

Hatori, N.

M. Sugawara, N. Hatori, M. Ishida, H. Ebe, Y. Arakawa, T. Akiyama, K. Otsubo, Y. Yamamoto, and Y. Nakata, “Recent progress in self-assembled quantum-dot optical devices for optical telecommunication: temperature-insensitive 10 Gb s−1 directly modulated lasers and 40 Gb s−1 signal-regenerative amplifiers,” J. Phys. D Appl. Phys. 38(13), 2126–2134 (2005).
[CrossRef]

T. Akiyama, N. Hatori, Y. Nakata, H. Ebe, and M. Sugawara, “Pattern-effect-free amplification and cross-gain modulation achieved by using ultrafast gain nonlinearity in quantum-dot semiconductor optical amplifiers,” Phys. Status Solidi, B Basic Res. 238(2), 301–304 (2003).
[CrossRef]

T. Akiyama, H. Kuwatsuka, N. Hatori, Y. Nakata, H. Ebe, and M. Sugawara, “Symmetric Highly Efficient (~0 dB) Wavelength Conversion Based on Four-Wave Mixing in Quantum Dot Optical Amplifiers,” IEEE Photon. Technol. Lett. 14(8), 1139–1141 (2002).
[CrossRef]

Heid, M.

S. L. Jansen, M. Heid, S. Spalter, E. Meissner, C. J. Weiske, A. Schopflin, D. Khoe, and H. de Waardt, “Demultiplexing 160 Gbit/s OTDM signal to 40 Gbit/s by FWM in SOA,” Electron. Lett. 38(17), 978–980 (2002).
[CrossRef]

Heinrichsdorff, F.

P. Borri, W. Langbein, J. M. Hvam, F. Heinrichsdorff, H.-M. Mao, and D. Bimberg, “Spectral Hole-Burning and Carrier-Heating Dynamics in InGaAs Quantum-Dot Amplifiers,” IEEE J. Sel. Top. Quantum Electron. 6(3), 544–551 (2000).
[CrossRef]

Heydenreich, J.

D. Bimberg, M. Grundmann, N. N. Ledentsov, S. S. Ruvimov, P. Werner, U. Richter, J. Heydenreich, V. M. Ustinov, P. S. Kopev, and Z. I. Alferov, “Self-organization processes in MBE-grown quantum dot structures,” Thin Solid Films 267(1-2), 32–36 (1995).
[CrossRef]

Houlihan, J.

I. O'Driscoll, T. Piwonski, C. F. Schleussner, J. Houlihan, G. Huyet, and R. J. Manning, “Electron and hole dynamics of InAs/GaAs quantum dot semiconductor optical amplifiers,” Appl. Phys. Lett. 91(26), 263506 (2007).
[CrossRef]

Huyet, G.

I. O'Driscoll, T. Piwonski, C. F. Schleussner, J. Houlihan, G. Huyet, and R. J. Manning, “Electron and hole dynamics of InAs/GaAs quantum dot semiconductor optical amplifiers,” Appl. Phys. Lett. 91(26), 263506 (2007).
[CrossRef]

Hvam, J. M.

P. Borri, W. Langbein, J. M. Hvam, F. Heinrichsdorff, H.-M. Mao, and D. Bimberg, “Spectral Hole-Burning and Carrier-Heating Dynamics in InGaAs Quantum-Dot Amplifiers,” IEEE J. Sel. Top. Quantum Electron. 6(3), 544–551 (2000).
[CrossRef]

Ishida, M.

M. Sugawara, N. Hatori, M. Ishida, H. Ebe, Y. Arakawa, T. Akiyama, K. Otsubo, Y. Yamamoto, and Y. Nakata, “Recent progress in self-assembled quantum-dot optical devices for optical telecommunication: temperature-insensitive 10 Gb s−1 directly modulated lasers and 40 Gb s−1 signal-regenerative amplifiers,” J. Phys. D Appl. Phys. 38(13), 2126–2134 (2005).
[CrossRef]

Jansen, S. L.

S. L. Jansen, M. Heid, S. Spalter, E. Meissner, C. J. Weiske, A. Schopflin, D. Khoe, and H. de Waardt, “Demultiplexing 160 Gbit/s OTDM signal to 40 Gbit/s by FWM in SOA,” Electron. Lett. 38(17), 978–980 (2002).
[CrossRef]

Jeong, W. G.

D. Nielsen, S. L. Chuang, N. J. Kim, D. Lee, S. H. Pyun, W. G. Jeong, C. Y. Chen, and T. S. Lay, “High-speed wavelength conversion in quantum dot and quantum well semiconductor optical amplifiers,” Appl. Phys. Lett. 92(21), 211101 (2008).
[CrossRef]

Kakui, M.

K. Kikuchi, M. Kakui, C. E. Zah, and T. P. Lee, “Observation of Highly Nondegenerate 4-Wave-Mixing in 1.5 µm Traveling-Wave Semiconductor Optical Amplifiers and Estimation of Nonlinear Gain Coefficient,” IEEE J. Quantum Electron. 28(1), 151–156 (1992).
[CrossRef]

Kashyap, R.

A. E. Kelly, A. D. Ellis, D. Nesset, R. Kashyap, and D. G. Moodie, “100Gbit/s wavelength conversion using FWM in an MQW semiconductor optical amplifier,” Electron. Lett. 34(20), 1955–1956 (1998).
[CrossRef]

Kelly, A. E.

A. E. Kelly, A. D. Ellis, D. Nesset, R. Kashyap, and D. G. Moodie, “100Gbit/s wavelength conversion using FWM in an MQW semiconductor optical amplifier,” Electron. Lett. 34(20), 1955–1956 (1998).
[CrossRef]

A. E. Kelly, D. D. Marcenac, and D. Nesset, “40Gbit/s wavelength conversion over 24.6nm using FWM in a semiconductor optical amplifier with an optimised MQW active region,” Electron. Lett. 33(25), 2123–2124 (1997).
[CrossRef]

Khoe, D.

S. L. Jansen, M. Heid, S. Spalter, E. Meissner, C. J. Weiske, A. Schopflin, D. Khoe, and H. de Waardt, “Demultiplexing 160 Gbit/s OTDM signal to 40 Gbit/s by FWM in SOA,” Electron. Lett. 38(17), 978–980 (2002).
[CrossRef]

Kikuchi, K.

K. Kikuchi, M. Kakui, C. E. Zah, and T. P. Lee, “Observation of Highly Nondegenerate 4-Wave-Mixing in 1.5 µm Traveling-Wave Semiconductor Optical Amplifiers and Estimation of Nonlinear Gain Coefficient,” IEEE J. Quantum Electron. 28(1), 151–156 (1992).
[CrossRef]

Kim, J.

C. Meuer, H. Schmeckebier, G. Fiol, D. Arsenijevic, J. Kim, G. Eisenstein, and D. Bimberg, “Cross-Gain Modulation and Four-Wave Mixing for Wavelength Conversion in undoped and p-doped 1.3 µm Quantum Dot Semiconductor Optical Amplifiers,” IEEE Photon. 2(2), 141–151 (2010).
[CrossRef]

D. Bimberg, C. Meuer, M. Laemmlin, S. Liebich, J. Kim, A. R. Kovsh, I. Krestnikov, and G. Eisenstein, “Nonlinear properties of quantum dot semiconductor optical amplifiers at 1.3 µm,” Chin. Opt. Lett. 6, 724–726 (2008).
[CrossRef]

Kim, N. J.

D. Nielsen, S. L. Chuang, N. J. Kim, D. Lee, S. H. Pyun, W. G. Jeong, C. Y. Chen, and T. S. Lay, “High-speed wavelength conversion in quantum dot and quantum well semiconductor optical amplifiers,” Appl. Phys. Lett. 92(21), 211101 (2008).
[CrossRef]

Kindt, S.

S. Diez, C. Schmidt, R. Ludwig, H. G. Weber, K. Obermann, S. Kindt, I. Koltchanov, and K. Petermann, “Four-wave mixing in semiconductor optical amplifiers for frequency conversion and fast optical switching,” IEEE J. Sel. Top. Quantum Electron. 3(5), 1131–1145 (1997).
[CrossRef]

Kitayama, K.

G. Contestabile, A. Maruta, S. Sekiguchi, K. Morito, M. Sugawara, and K. Kitayama, “Regenerative Amplification by Using Self-Phase Modulation in a Quantum-Dot SOA,” IEEE Photon. Technol. Lett. 22(7), 492–494 (2010).
[CrossRef]

Koltchanov, I.

S. Diez, C. Schmidt, R. Ludwig, H. G. Weber, K. Obermann, S. Kindt, I. Koltchanov, and K. Petermann, “Four-wave mixing in semiconductor optical amplifiers for frequency conversion and fast optical switching,” IEEE J. Sel. Top. Quantum Electron. 3(5), 1131–1145 (1997).
[CrossRef]

Koos, C.

Kopev, P. S.

D. Bimberg, M. Grundmann, N. N. Ledentsov, S. S. Ruvimov, P. Werner, U. Richter, J. Heydenreich, V. M. Ustinov, P. S. Kopev, and Z. I. Alferov, “Self-organization processes in MBE-grown quantum dot structures,” Thin Solid Films 267(1-2), 32–36 (1995).
[CrossRef]

Kovsh, A. R.

D. Bimberg, C. Meuer, M. Laemmlin, S. Liebich, J. Kim, A. R. Kovsh, I. Krestnikov, and G. Eisenstein, “Nonlinear properties of quantum dot semiconductor optical amplifiers at 1.3 µm,” Chin. Opt. Lett. 6, 724–726 (2008).
[CrossRef]

A. R. Kovsh, N. A. Maleev, A. E. Zhukov, S. S. Mikhrin, A. P. Vasil'ev, E. A. Semenova, Y. M. Shernyakov, M. V. Maximov, D. A. Livshits, V. M. Ustinov, N. N. Ledentsov, D. Bimberg, and Z. I. Alferov, “InAs/InGaAs/GaAs quantum dot lasers of 1.3 µm range with enhanced optical gain,” J. Cryst. Growth 251(1-4), 729–736 (2003).
[CrossRef]

Krestnikov, I.

Kuntz, M.

D. Bimberg, M. Kuntz, and M. Laemmlin, “Quantum dot photonic devices for lightwave communication,” Microelectron. J. 36(3-6), 175–179 (2005).
[CrossRef]

Kuwatsuka, H.

T. Akiyama, H. Kuwatsuka, N. Hatori, Y. Nakata, H. Ebe, and M. Sugawara, “Symmetric Highly Efficient (~0 dB) Wavelength Conversion Based on Four-Wave Mixing in Quantum Dot Optical Amplifiers,” IEEE Photon. Technol. Lett. 14(8), 1139–1141 (2002).
[CrossRef]

Lacey, J. P. R.

T. J. Morgan, J. P. R. Lacey, and R. S. Tucker, “Widely tunable four-wave mixing in semiconductor optical amplifiers with constant conversion efficiency,” IEEE Photon. Technol. Lett. 10(10), 1401–1403 (1998).
[CrossRef]

Laemmlin, M.

T. Vallaitis, C. Koos, R. Bonk, W. Freude, M. Laemmlin, C. Meuer, D. Bimberg, and J. Leuthold, “Slow and fast dynamics of gain and phase in a quantum dot semiconductor optical amplifier,” Opt. Express 16(1), 170–178 (2008).
[CrossRef] [PubMed]

D. Bimberg, C. Meuer, M. Laemmlin, S. Liebich, J. Kim, A. R. Kovsh, I. Krestnikov, and G. Eisenstein, “Nonlinear properties of quantum dot semiconductor optical amplifiers at 1.3 µm,” Chin. Opt. Lett. 6, 724–726 (2008).
[CrossRef]

D. Bimberg, M. Kuntz, and M. Laemmlin, “Quantum dot photonic devices for lightwave communication,” Microelectron. J. 36(3-6), 175–179 (2005).
[CrossRef]

A. V. Uskov, E. P. O'Reilly, M. Laemmlin, N. N. Ledentsov, and D. Bimberg, “On gain saturation in quantum dot semiconductor optical amplifiers,” Opt. Commun. 248(1-3), 211–219 (2005).
[CrossRef]

Langbein, W.

P. Borri, W. Langbein, J. M. Hvam, F. Heinrichsdorff, H.-M. Mao, and D. Bimberg, “Spectral Hole-Burning and Carrier-Heating Dynamics in InGaAs Quantum-Dot Amplifiers,” IEEE J. Sel. Top. Quantum Electron. 6(3), 544–551 (2000).
[CrossRef]

Lay, T. S.

D. Nielsen, S. L. Chuang, N. J. Kim, D. Lee, S. H. Pyun, W. G. Jeong, C. Y. Chen, and T. S. Lay, “High-speed wavelength conversion in quantum dot and quantum well semiconductor optical amplifiers,” Appl. Phys. Lett. 92(21), 211101 (2008).
[CrossRef]

Ledentsov, N. N.

A. V. Uskov, E. P. O'Reilly, M. Laemmlin, N. N. Ledentsov, and D. Bimberg, “On gain saturation in quantum dot semiconductor optical amplifiers,” Opt. Commun. 248(1-3), 211–219 (2005).
[CrossRef]

A. R. Kovsh, N. A. Maleev, A. E. Zhukov, S. S. Mikhrin, A. P. Vasil'ev, E. A. Semenova, Y. M. Shernyakov, M. V. Maximov, D. A. Livshits, V. M. Ustinov, N. N. Ledentsov, D. Bimberg, and Z. I. Alferov, “InAs/InGaAs/GaAs quantum dot lasers of 1.3 µm range with enhanced optical gain,” J. Cryst. Growth 251(1-4), 729–736 (2003).
[CrossRef]

D. Bimberg, M. Grundmann, N. N. Ledentsov, S. S. Ruvimov, P. Werner, U. Richter, J. Heydenreich, V. M. Ustinov, P. S. Kopev, and Z. I. Alferov, “Self-organization processes in MBE-grown quantum dot structures,” Thin Solid Films 267(1-2), 32–36 (1995).
[CrossRef]

Lee, D.

D. Nielsen, S. L. Chuang, N. J. Kim, D. Lee, S. H. Pyun, W. G. Jeong, C. Y. Chen, and T. S. Lay, “High-speed wavelength conversion in quantum dot and quantum well semiconductor optical amplifiers,” Appl. Phys. Lett. 92(21), 211101 (2008).
[CrossRef]

Lee, T. P.

K. Kikuchi, M. Kakui, C. E. Zah, and T. P. Lee, “Observation of Highly Nondegenerate 4-Wave-Mixing in 1.5 µm Traveling-Wave Semiconductor Optical Amplifiers and Estimation of Nonlinear Gain Coefficient,” IEEE J. Quantum Electron. 28(1), 151–156 (1992).
[CrossRef]

Leuthold, J.

Liebich, S.

Livshits, D. A.

A. R. Kovsh, N. A. Maleev, A. E. Zhukov, S. S. Mikhrin, A. P. Vasil'ev, E. A. Semenova, Y. M. Shernyakov, M. V. Maximov, D. A. Livshits, V. M. Ustinov, N. N. Ledentsov, D. Bimberg, and Z. I. Alferov, “InAs/InGaAs/GaAs quantum dot lasers of 1.3 µm range with enhanced optical gain,” J. Cryst. Growth 251(1-4), 729–736 (2003).
[CrossRef]

Ludwig, R.

S. Diez, C. Schubert, H.-J. Ehrke, U. Feiste, R. Ludwig, E. Patzak, C. Schmidt, and H. G. Weber, “160 Gb/s all-optical demultiplexer using a hybrid gain-transparent SOA Mach-Zehnder-Interferometer,” Electron. Lett. 36(17), 1484 (2000).
[CrossRef]

U. Feiste, R. Ludwig, C. Schmidt, E. Dietrich, S. Diez, H. Ehrke, E. Patzak, H. G. Weber, and T. Merker, “80-Gb/s transmission over 106-km standard-fiber using optical phase conjugation in a Sagnac-interferometer,” IEEE Photon. Technol. Lett. 11(8), 1063–1065 (1999).
[CrossRef]

S. Diez, C. Schmidt, R. Ludwig, H. G. Weber, K. Obermann, S. Kindt, I. Koltchanov, and K. Petermann, “Four-wave mixing in semiconductor optical amplifiers for frequency conversion and fast optical switching,” IEEE J. Sel. Top. Quantum Electron. 3(5), 1131–1145 (1997).
[CrossRef]

N. Schunk, G. Groβkopt, R. Ludwig, R. Schnabel, and H. G. Weber, “Frequency-Conversion by Nearly-Degenerate 4-Wave-Mixing in Traveling-Wave Semiconductor-Laser Amplifiers,” IEE Proc. Optoelectron. 137, 209–214 (1990).
[CrossRef]

G. Grosskopf, R. Ludwig, and H. G. Weber, “140 Mbit/s DPSK Transmission Using an All-Optical Frequency-Converter with a 4000 GHz Conversion Range,” Electron. Lett. 24(17), 1106–1107 (1988).
[CrossRef]

Maleev, N. A.

A. R. Kovsh, N. A. Maleev, A. E. Zhukov, S. S. Mikhrin, A. P. Vasil'ev, E. A. Semenova, Y. M. Shernyakov, M. V. Maximov, D. A. Livshits, V. M. Ustinov, N. N. Ledentsov, D. Bimberg, and Z. I. Alferov, “InAs/InGaAs/GaAs quantum dot lasers of 1.3 µm range with enhanced optical gain,” J. Cryst. Growth 251(1-4), 729–736 (2003).
[CrossRef]

Manning, R. J.

I. O'Driscoll, T. Piwonski, C. F. Schleussner, J. Houlihan, G. Huyet, and R. J. Manning, “Electron and hole dynamics of InAs/GaAs quantum dot semiconductor optical amplifiers,” Appl. Phys. Lett. 91(26), 263506 (2007).
[CrossRef]

Mao, H.-M.

P. Borri, W. Langbein, J. M. Hvam, F. Heinrichsdorff, H.-M. Mao, and D. Bimberg, “Spectral Hole-Burning and Carrier-Heating Dynamics in InGaAs Quantum-Dot Amplifiers,” IEEE J. Sel. Top. Quantum Electron. 6(3), 544–551 (2000).
[CrossRef]

Marcenac, D. D.

A. E. Kelly, D. D. Marcenac, and D. Nesset, “40Gbit/s wavelength conversion over 24.6nm using FWM in a semiconductor optical amplifier with an optimised MQW active region,” Electron. Lett. 33(25), 2123–2124 (1997).
[CrossRef]

Martelli, F.

G. Contestabile, F. Martelli, A. Mecozzi, L. Graziani, A. D'Ottavi, P. Spano, G. Guekos, R. Dall'Ara, and J. Eckner, “Efficiency flattening and equalization of frequency up- and down-conversion using four-wave mixing in semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 10(10), 1398–1400 (1998).
[CrossRef]

Maruta, A.

G. Contestabile, A. Maruta, S. Sekiguchi, K. Morito, M. Sugawara, and K. Kitayama, “Regenerative Amplification by Using Self-Phase Modulation in a Quantum-Dot SOA,” IEEE Photon. Technol. Lett. 22(7), 492–494 (2010).
[CrossRef]

Maximov, M. V.

A. R. Kovsh, N. A. Maleev, A. E. Zhukov, S. S. Mikhrin, A. P. Vasil'ev, E. A. Semenova, Y. M. Shernyakov, M. V. Maximov, D. A. Livshits, V. M. Ustinov, N. N. Ledentsov, D. Bimberg, and Z. I. Alferov, “InAs/InGaAs/GaAs quantum dot lasers of 1.3 µm range with enhanced optical gain,” J. Cryst. Growth 251(1-4), 729–736 (2003).
[CrossRef]

Mecozzi, A.

G. Contestabile, F. Martelli, A. Mecozzi, L. Graziani, A. D'Ottavi, P. Spano, G. Guekos, R. Dall'Ara, and J. Eckner, “Efficiency flattening and equalization of frequency up- and down-conversion using four-wave mixing in semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 10(10), 1398–1400 (1998).
[CrossRef]

Meissner, E.

S. L. Jansen, M. Heid, S. Spalter, E. Meissner, C. J. Weiske, A. Schopflin, D. Khoe, and H. de Waardt, “Demultiplexing 160 Gbit/s OTDM signal to 40 Gbit/s by FWM in SOA,” Electron. Lett. 38(17), 978–980 (2002).
[CrossRef]

Merker, T.

U. Feiste, R. Ludwig, C. Schmidt, E. Dietrich, S. Diez, H. Ehrke, E. Patzak, H. G. Weber, and T. Merker, “80-Gb/s transmission over 106-km standard-fiber using optical phase conjugation in a Sagnac-interferometer,” IEEE Photon. Technol. Lett. 11(8), 1063–1065 (1999).
[CrossRef]

Meuer, C.

Mikhelashhvili, V.

A. Bilenca, R. Alizon, V. Mikhelashhvili, D. Dahan, G. Eisenstein, R. Schwertberger, D. Gold, J. P. Reithmaier, and A. Forchel, “Broad-band wavelength conversion based on cross-gain modulation and four-wave mixing in InAs-InP quantum-dash semiconductor optical amplifiers operating at 1550 nm,” IEEE Photon. Technol. Lett. 15(4), 563–565 (2003).
[CrossRef]

Mikhelashvili, V.

Mikhrin, S. S.

A. R. Kovsh, N. A. Maleev, A. E. Zhukov, S. S. Mikhrin, A. P. Vasil'ev, E. A. Semenova, Y. M. Shernyakov, M. V. Maximov, D. A. Livshits, V. M. Ustinov, N. N. Ledentsov, D. Bimberg, and Z. I. Alferov, “InAs/InGaAs/GaAs quantum dot lasers of 1.3 µm range with enhanced optical gain,” J. Cryst. Growth 251(1-4), 729–736 (2003).
[CrossRef]

Moodie, D. G.

A. E. Kelly, A. D. Ellis, D. Nesset, R. Kashyap, and D. G. Moodie, “100Gbit/s wavelength conversion using FWM in an MQW semiconductor optical amplifier,” Electron. Lett. 34(20), 1955–1956 (1998).
[CrossRef]

Morgan, T. J.

T. J. Morgan, J. P. R. Lacey, and R. S. Tucker, “Widely tunable four-wave mixing in semiconductor optical amplifiers with constant conversion efficiency,” IEEE Photon. Technol. Lett. 10(10), 1401–1403 (1998).
[CrossRef]

Morito, K.

G. Contestabile, A. Maruta, S. Sekiguchi, K. Morito, M. Sugawara, and K. Kitayama, “Regenerative Amplification by Using Self-Phase Modulation in a Quantum-Dot SOA,” IEEE Photon. Technol. Lett. 22(7), 492–494 (2010).
[CrossRef]

Nakata, Y.

M. Sugawara, N. Hatori, M. Ishida, H. Ebe, Y. Arakawa, T. Akiyama, K. Otsubo, Y. Yamamoto, and Y. Nakata, “Recent progress in self-assembled quantum-dot optical devices for optical telecommunication: temperature-insensitive 10 Gb s−1 directly modulated lasers and 40 Gb s−1 signal-regenerative amplifiers,” J. Phys. D Appl. Phys. 38(13), 2126–2134 (2005).
[CrossRef]

T. Akiyama, N. Hatori, Y. Nakata, H. Ebe, and M. Sugawara, “Pattern-effect-free amplification and cross-gain modulation achieved by using ultrafast gain nonlinearity in quantum-dot semiconductor optical amplifiers,” Phys. Status Solidi, B Basic Res. 238(2), 301–304 (2003).
[CrossRef]

T. Akiyama, H. Kuwatsuka, N. Hatori, Y. Nakata, H. Ebe, and M. Sugawara, “Symmetric Highly Efficient (~0 dB) Wavelength Conversion Based on Four-Wave Mixing in Quantum Dot Optical Amplifiers,” IEEE Photon. Technol. Lett. 14(8), 1139–1141 (2002).
[CrossRef]

Nesset, D.

A. E. Kelly, A. D. Ellis, D. Nesset, R. Kashyap, and D. G. Moodie, “100Gbit/s wavelength conversion using FWM in an MQW semiconductor optical amplifier,” Electron. Lett. 34(20), 1955–1956 (1998).
[CrossRef]

A. E. Kelly, D. D. Marcenac, and D. Nesset, “40Gbit/s wavelength conversion over 24.6nm using FWM in a semiconductor optical amplifier with an optimised MQW active region,” Electron. Lett. 33(25), 2123–2124 (1997).
[CrossRef]

Nielsen, D.

D. Nielsen, S. L. Chuang, N. J. Kim, D. Lee, S. H. Pyun, W. G. Jeong, C. Y. Chen, and T. S. Lay, “High-speed wavelength conversion in quantum dot and quantum well semiconductor optical amplifiers,” Appl. Phys. Lett. 92(21), 211101 (2008).
[CrossRef]

O’Duill, S.

Obermann, K.

S. Diez, C. Schmidt, R. Ludwig, H. G. Weber, K. Obermann, S. Kindt, I. Koltchanov, and K. Petermann, “Four-wave mixing in semiconductor optical amplifiers for frequency conversion and fast optical switching,” IEEE J. Sel. Top. Quantum Electron. 3(5), 1131–1145 (1997).
[CrossRef]

O'Driscoll, I.

I. O'Driscoll, T. Piwonski, C. F. Schleussner, J. Houlihan, G. Huyet, and R. J. Manning, “Electron and hole dynamics of InAs/GaAs quantum dot semiconductor optical amplifiers,” Appl. Phys. Lett. 91(26), 263506 (2007).
[CrossRef]

O'Reilly, E. P.

A. V. Uskov, E. P. O'Reilly, M. Laemmlin, N. N. Ledentsov, and D. Bimberg, “On gain saturation in quantum dot semiconductor optical amplifiers,” Opt. Commun. 248(1-3), 211–219 (2005).
[CrossRef]

Otsubo, K.

M. Sugawara, N. Hatori, M. Ishida, H. Ebe, Y. Arakawa, T. Akiyama, K. Otsubo, Y. Yamamoto, and Y. Nakata, “Recent progress in self-assembled quantum-dot optical devices for optical telecommunication: temperature-insensitive 10 Gb s−1 directly modulated lasers and 40 Gb s−1 signal-regenerative amplifiers,” J. Phys. D Appl. Phys. 38(13), 2126–2134 (2005).
[CrossRef]

Patzak, E.

S. Diez, C. Schubert, H.-J. Ehrke, U. Feiste, R. Ludwig, E. Patzak, C. Schmidt, and H. G. Weber, “160 Gb/s all-optical demultiplexer using a hybrid gain-transparent SOA Mach-Zehnder-Interferometer,” Electron. Lett. 36(17), 1484 (2000).
[CrossRef]

U. Feiste, R. Ludwig, C. Schmidt, E. Dietrich, S. Diez, H. Ehrke, E. Patzak, H. G. Weber, and T. Merker, “80-Gb/s transmission over 106-km standard-fiber using optical phase conjugation in a Sagnac-interferometer,” IEEE Photon. Technol. Lett. 11(8), 1063–1065 (1999).
[CrossRef]

Petermann, K.

S. Diez, C. Schmidt, R. Ludwig, H. G. Weber, K. Obermann, S. Kindt, I. Koltchanov, and K. Petermann, “Four-wave mixing in semiconductor optical amplifiers for frequency conversion and fast optical switching,” IEEE J. Sel. Top. Quantum Electron. 3(5), 1131–1145 (1997).
[CrossRef]

Piwonski, T.

I. O'Driscoll, T. Piwonski, C. F. Schleussner, J. Houlihan, G. Huyet, and R. J. Manning, “Electron and hole dynamics of InAs/GaAs quantum dot semiconductor optical amplifiers,” Appl. Phys. Lett. 91(26), 263506 (2007).
[CrossRef]

Pyun, S. H.

D. Nielsen, S. L. Chuang, N. J. Kim, D. Lee, S. H. Pyun, W. G. Jeong, C. Y. Chen, and T. S. Lay, “High-speed wavelength conversion in quantum dot and quantum well semiconductor optical amplifiers,” Appl. Phys. Lett. 92(21), 211101 (2008).
[CrossRef]

Reithmaier, J. P.

A. Capua, S. O’Duill, V. Mikhelashvili, G. Eisenstein, J. P. Reithmaier, A. Somers, and A. Forchel, “Cross talk free multi channel processing of 10 Gbit/s data via four wave mixing in a 1550 nm InAs/InP quantum dash amplifier,” Opt. Express 16(23), 19072–19077 (2008).
[CrossRef]

A. Bilenca, R. Alizon, V. Mikhelashhvili, D. Dahan, G. Eisenstein, R. Schwertberger, D. Gold, J. P. Reithmaier, and A. Forchel, “Broad-band wavelength conversion based on cross-gain modulation and four-wave mixing in InAs-InP quantum-dash semiconductor optical amplifiers operating at 1550 nm,” IEEE Photon. Technol. Lett. 15(4), 563–565 (2003).
[CrossRef]

Richter, U.

D. Bimberg, M. Grundmann, N. N. Ledentsov, S. S. Ruvimov, P. Werner, U. Richter, J. Heydenreich, V. M. Ustinov, P. S. Kopev, and Z. I. Alferov, “Self-organization processes in MBE-grown quantum dot structures,” Thin Solid Films 267(1-2), 32–36 (1995).
[CrossRef]

Roditi, E.

I. Tomkos, I. Zacharopoulos, D. Syvridis, T. Sphicopoulos, and E. Roditi, “Improved performance of a wavelength converter based on dual pump four-wave mixing in a bulk semiconductor optical amplifier,” Appl. Phys. Lett. 72(20), 2499–2501 (1998).
[CrossRef]

Ruvimov, S. S.

D. Bimberg, M. Grundmann, N. N. Ledentsov, S. S. Ruvimov, P. Werner, U. Richter, J. Heydenreich, V. M. Ustinov, P. S. Kopev, and Z. I. Alferov, “Self-organization processes in MBE-grown quantum dot structures,” Thin Solid Films 267(1-2), 32–36 (1995).
[CrossRef]

Schleussner, C. F.

I. O'Driscoll, T. Piwonski, C. F. Schleussner, J. Houlihan, G. Huyet, and R. J. Manning, “Electron and hole dynamics of InAs/GaAs quantum dot semiconductor optical amplifiers,” Appl. Phys. Lett. 91(26), 263506 (2007).
[CrossRef]

Schmeckebier, H.

C. Meuer, H. Schmeckebier, G. Fiol, D. Arsenijevic, J. Kim, G. Eisenstein, and D. Bimberg, “Cross-Gain Modulation and Four-Wave Mixing for Wavelength Conversion in undoped and p-doped 1.3 µm Quantum Dot Semiconductor Optical Amplifiers,” IEEE Photon. 2(2), 141–151 (2010).
[CrossRef]

Schmidt, C.

S. Diez, C. Schubert, H.-J. Ehrke, U. Feiste, R. Ludwig, E. Patzak, C. Schmidt, and H. G. Weber, “160 Gb/s all-optical demultiplexer using a hybrid gain-transparent SOA Mach-Zehnder-Interferometer,” Electron. Lett. 36(17), 1484 (2000).
[CrossRef]

U. Feiste, R. Ludwig, C. Schmidt, E. Dietrich, S. Diez, H. Ehrke, E. Patzak, H. G. Weber, and T. Merker, “80-Gb/s transmission over 106-km standard-fiber using optical phase conjugation in a Sagnac-interferometer,” IEEE Photon. Technol. Lett. 11(8), 1063–1065 (1999).
[CrossRef]

S. Diez, C. Schmidt, R. Ludwig, H. G. Weber, K. Obermann, S. Kindt, I. Koltchanov, and K. Petermann, “Four-wave mixing in semiconductor optical amplifiers for frequency conversion and fast optical switching,” IEEE J. Sel. Top. Quantum Electron. 3(5), 1131–1145 (1997).
[CrossRef]

Schnabel, R.

N. Schunk, G. Groβkopt, R. Ludwig, R. Schnabel, and H. G. Weber, “Frequency-Conversion by Nearly-Degenerate 4-Wave-Mixing in Traveling-Wave Semiconductor-Laser Amplifiers,” IEE Proc. Optoelectron. 137, 209–214 (1990).
[CrossRef]

Schopflin, A.

S. L. Jansen, M. Heid, S. Spalter, E. Meissner, C. J. Weiske, A. Schopflin, D. Khoe, and H. de Waardt, “Demultiplexing 160 Gbit/s OTDM signal to 40 Gbit/s by FWM in SOA,” Electron. Lett. 38(17), 978–980 (2002).
[CrossRef]

Schubert, C.

S. Diez, C. Schubert, H.-J. Ehrke, U. Feiste, R. Ludwig, E. Patzak, C. Schmidt, and H. G. Weber, “160 Gb/s all-optical demultiplexer using a hybrid gain-transparent SOA Mach-Zehnder-Interferometer,” Electron. Lett. 36(17), 1484 (2000).
[CrossRef]

Schunk, N.

N. Schunk, G. Groβkopt, R. Ludwig, R. Schnabel, and H. G. Weber, “Frequency-Conversion by Nearly-Degenerate 4-Wave-Mixing in Traveling-Wave Semiconductor-Laser Amplifiers,” IEE Proc. Optoelectron. 137, 209–214 (1990).
[CrossRef]

Schwertberger, R.

A. Bilenca, R. Alizon, V. Mikhelashhvili, D. Dahan, G. Eisenstein, R. Schwertberger, D. Gold, J. P. Reithmaier, and A. Forchel, “Broad-band wavelength conversion based on cross-gain modulation and four-wave mixing in InAs-InP quantum-dash semiconductor optical amplifiers operating at 1550 nm,” IEEE Photon. Technol. Lett. 15(4), 563–565 (2003).
[CrossRef]

Sekiguchi, S.

G. Contestabile, A. Maruta, S. Sekiguchi, K. Morito, M. Sugawara, and K. Kitayama, “Regenerative Amplification by Using Self-Phase Modulation in a Quantum-Dot SOA,” IEEE Photon. Technol. Lett. 22(7), 492–494 (2010).
[CrossRef]

Semenova, E. A.

A. R. Kovsh, N. A. Maleev, A. E. Zhukov, S. S. Mikhrin, A. P. Vasil'ev, E. A. Semenova, Y. M. Shernyakov, M. V. Maximov, D. A. Livshits, V. M. Ustinov, N. N. Ledentsov, D. Bimberg, and Z. I. Alferov, “InAs/InGaAs/GaAs quantum dot lasers of 1.3 µm range with enhanced optical gain,” J. Cryst. Growth 251(1-4), 729–736 (2003).
[CrossRef]

Shernyakov, Y. M.

A. R. Kovsh, N. A. Maleev, A. E. Zhukov, S. S. Mikhrin, A. P. Vasil'ev, E. A. Semenova, Y. M. Shernyakov, M. V. Maximov, D. A. Livshits, V. M. Ustinov, N. N. Ledentsov, D. Bimberg, and Z. I. Alferov, “InAs/InGaAs/GaAs quantum dot lasers of 1.3 µm range with enhanced optical gain,” J. Cryst. Growth 251(1-4), 729–736 (2003).
[CrossRef]

Somers, A.

Spalter, S.

S. L. Jansen, M. Heid, S. Spalter, E. Meissner, C. J. Weiske, A. Schopflin, D. Khoe, and H. de Waardt, “Demultiplexing 160 Gbit/s OTDM signal to 40 Gbit/s by FWM in SOA,” Electron. Lett. 38(17), 978–980 (2002).
[CrossRef]

Spano, P.

G. Contestabile, F. Martelli, A. Mecozzi, L. Graziani, A. D'Ottavi, P. Spano, G. Guekos, R. Dall'Ara, and J. Eckner, “Efficiency flattening and equalization of frequency up- and down-conversion using four-wave mixing in semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 10(10), 1398–1400 (1998).
[CrossRef]

Sphicopoulos, T.

I. Tomkos, I. Zacharopoulos, D. Syvridis, T. Sphicopoulos, and E. Roditi, “Improved performance of a wavelength converter based on dual pump four-wave mixing in a bulk semiconductor optical amplifier,” Appl. Phys. Lett. 72(20), 2499–2501 (1998).
[CrossRef]

Sugawara, M.

G. Contestabile, A. Maruta, S. Sekiguchi, K. Morito, M. Sugawara, and K. Kitayama, “Regenerative Amplification by Using Self-Phase Modulation in a Quantum-Dot SOA,” IEEE Photon. Technol. Lett. 22(7), 492–494 (2010).
[CrossRef]

M. Sugawara, N. Hatori, M. Ishida, H. Ebe, Y. Arakawa, T. Akiyama, K. Otsubo, Y. Yamamoto, and Y. Nakata, “Recent progress in self-assembled quantum-dot optical devices for optical telecommunication: temperature-insensitive 10 Gb s−1 directly modulated lasers and 40 Gb s−1 signal-regenerative amplifiers,” J. Phys. D Appl. Phys. 38(13), 2126–2134 (2005).
[CrossRef]

T. Akiyama, N. Hatori, Y. Nakata, H. Ebe, and M. Sugawara, “Pattern-effect-free amplification and cross-gain modulation achieved by using ultrafast gain nonlinearity in quantum-dot semiconductor optical amplifiers,” Phys. Status Solidi, B Basic Res. 238(2), 301–304 (2003).
[CrossRef]

T. Akiyama, H. Kuwatsuka, N. Hatori, Y. Nakata, H. Ebe, and M. Sugawara, “Symmetric Highly Efficient (~0 dB) Wavelength Conversion Based on Four-Wave Mixing in Quantum Dot Optical Amplifiers,” IEEE Photon. Technol. Lett. 14(8), 1139–1141 (2002).
[CrossRef]

Syvridis, D.

I. Tomkos, I. Zacharopoulos, D. Syvridis, T. Sphicopoulos, and E. Roditi, “Improved performance of a wavelength converter based on dual pump four-wave mixing in a bulk semiconductor optical amplifier,” Appl. Phys. Lett. 72(20), 2499–2501 (1998).
[CrossRef]

Tomkos, I.

I. Tomkos, I. Zacharopoulos, D. Syvridis, T. Sphicopoulos, and E. Roditi, “Improved performance of a wavelength converter based on dual pump four-wave mixing in a bulk semiconductor optical amplifier,” Appl. Phys. Lett. 72(20), 2499–2501 (1998).
[CrossRef]

Tucker, R. S.

T. J. Morgan, J. P. R. Lacey, and R. S. Tucker, “Widely tunable four-wave mixing in semiconductor optical amplifiers with constant conversion efficiency,” IEEE Photon. Technol. Lett. 10(10), 1401–1403 (1998).
[CrossRef]

Uskov, A. V.

A. V. Uskov, E. P. O'Reilly, M. Laemmlin, N. N. Ledentsov, and D. Bimberg, “On gain saturation in quantum dot semiconductor optical amplifiers,” Opt. Commun. 248(1-3), 211–219 (2005).
[CrossRef]

Ustinov, V. M.

A. R. Kovsh, N. A. Maleev, A. E. Zhukov, S. S. Mikhrin, A. P. Vasil'ev, E. A. Semenova, Y. M. Shernyakov, M. V. Maximov, D. A. Livshits, V. M. Ustinov, N. N. Ledentsov, D. Bimberg, and Z. I. Alferov, “InAs/InGaAs/GaAs quantum dot lasers of 1.3 µm range with enhanced optical gain,” J. Cryst. Growth 251(1-4), 729–736 (2003).
[CrossRef]

D. Bimberg, M. Grundmann, N. N. Ledentsov, S. S. Ruvimov, P. Werner, U. Richter, J. Heydenreich, V. M. Ustinov, P. S. Kopev, and Z. I. Alferov, “Self-organization processes in MBE-grown quantum dot structures,” Thin Solid Films 267(1-2), 32–36 (1995).
[CrossRef]

Vallaitis, T.

Vasil'ev, A. P.

A. R. Kovsh, N. A. Maleev, A. E. Zhukov, S. S. Mikhrin, A. P. Vasil'ev, E. A. Semenova, Y. M. Shernyakov, M. V. Maximov, D. A. Livshits, V. M. Ustinov, N. N. Ledentsov, D. Bimberg, and Z. I. Alferov, “InAs/InGaAs/GaAs quantum dot lasers of 1.3 µm range with enhanced optical gain,” J. Cryst. Growth 251(1-4), 729–736 (2003).
[CrossRef]

Weber, H. G.

S. Diez, C. Schubert, H.-J. Ehrke, U. Feiste, R. Ludwig, E. Patzak, C. Schmidt, and H. G. Weber, “160 Gb/s all-optical demultiplexer using a hybrid gain-transparent SOA Mach-Zehnder-Interferometer,” Electron. Lett. 36(17), 1484 (2000).
[CrossRef]

U. Feiste, R. Ludwig, C. Schmidt, E. Dietrich, S. Diez, H. Ehrke, E. Patzak, H. G. Weber, and T. Merker, “80-Gb/s transmission over 106-km standard-fiber using optical phase conjugation in a Sagnac-interferometer,” IEEE Photon. Technol. Lett. 11(8), 1063–1065 (1999).
[CrossRef]

S. Diez, C. Schmidt, R. Ludwig, H. G. Weber, K. Obermann, S. Kindt, I. Koltchanov, and K. Petermann, “Four-wave mixing in semiconductor optical amplifiers for frequency conversion and fast optical switching,” IEEE J. Sel. Top. Quantum Electron. 3(5), 1131–1145 (1997).
[CrossRef]

N. Schunk, G. Groβkopt, R. Ludwig, R. Schnabel, and H. G. Weber, “Frequency-Conversion by Nearly-Degenerate 4-Wave-Mixing in Traveling-Wave Semiconductor-Laser Amplifiers,” IEE Proc. Optoelectron. 137, 209–214 (1990).
[CrossRef]

G. Grosskopf, R. Ludwig, and H. G. Weber, “140 Mbit/s DPSK Transmission Using an All-Optical Frequency-Converter with a 4000 GHz Conversion Range,” Electron. Lett. 24(17), 1106–1107 (1988).
[CrossRef]

Weiske, C. J.

S. L. Jansen, M. Heid, S. Spalter, E. Meissner, C. J. Weiske, A. Schopflin, D. Khoe, and H. de Waardt, “Demultiplexing 160 Gbit/s OTDM signal to 40 Gbit/s by FWM in SOA,” Electron. Lett. 38(17), 978–980 (2002).
[CrossRef]

Werner, P.

D. Bimberg, M. Grundmann, N. N. Ledentsov, S. S. Ruvimov, P. Werner, U. Richter, J. Heydenreich, V. M. Ustinov, P. S. Kopev, and Z. I. Alferov, “Self-organization processes in MBE-grown quantum dot structures,” Thin Solid Films 267(1-2), 32–36 (1995).
[CrossRef]

Yamamoto, Y.

M. Sugawara, N. Hatori, M. Ishida, H. Ebe, Y. Arakawa, T. Akiyama, K. Otsubo, Y. Yamamoto, and Y. Nakata, “Recent progress in self-assembled quantum-dot optical devices for optical telecommunication: temperature-insensitive 10 Gb s−1 directly modulated lasers and 40 Gb s−1 signal-regenerative amplifiers,” J. Phys. D Appl. Phys. 38(13), 2126–2134 (2005).
[CrossRef]

Yoo, S. J. B.

S. J. B. Yoo, “Wavelength conversion technologies for WDM network applications,” J. Lightwave Technol. 14(6), 955–966 (1996).
[CrossRef]

Zacharopoulos, I.

I. Tomkos, I. Zacharopoulos, D. Syvridis, T. Sphicopoulos, and E. Roditi, “Improved performance of a wavelength converter based on dual pump four-wave mixing in a bulk semiconductor optical amplifier,” Appl. Phys. Lett. 72(20), 2499–2501 (1998).
[CrossRef]

Zah, C. E.

K. Kikuchi, M. Kakui, C. E. Zah, and T. P. Lee, “Observation of Highly Nondegenerate 4-Wave-Mixing in 1.5 µm Traveling-Wave Semiconductor Optical Amplifiers and Estimation of Nonlinear Gain Coefficient,” IEEE J. Quantum Electron. 28(1), 151–156 (1992).
[CrossRef]

Zhukov, A. E.

A. R. Kovsh, N. A. Maleev, A. E. Zhukov, S. S. Mikhrin, A. P. Vasil'ev, E. A. Semenova, Y. M. Shernyakov, M. V. Maximov, D. A. Livshits, V. M. Ustinov, N. N. Ledentsov, D. Bimberg, and Z. I. Alferov, “InAs/InGaAs/GaAs quantum dot lasers of 1.3 µm range with enhanced optical gain,” J. Cryst. Growth 251(1-4), 729–736 (2003).
[CrossRef]

Appl. Phys. Lett. (3)

I. O'Driscoll, T. Piwonski, C. F. Schleussner, J. Houlihan, G. Huyet, and R. J. Manning, “Electron and hole dynamics of InAs/GaAs quantum dot semiconductor optical amplifiers,” Appl. Phys. Lett. 91(26), 263506 (2007).
[CrossRef]

I. Tomkos, I. Zacharopoulos, D. Syvridis, T. Sphicopoulos, and E. Roditi, “Improved performance of a wavelength converter based on dual pump four-wave mixing in a bulk semiconductor optical amplifier,” Appl. Phys. Lett. 72(20), 2499–2501 (1998).
[CrossRef]

D. Nielsen, S. L. Chuang, N. J. Kim, D. Lee, S. H. Pyun, W. G. Jeong, C. Y. Chen, and T. S. Lay, “High-speed wavelength conversion in quantum dot and quantum well semiconductor optical amplifiers,” Appl. Phys. Lett. 92(21), 211101 (2008).
[CrossRef]

Chin. Opt. Lett. (1)

Electron. Lett. (5)

A. E. Kelly, D. D. Marcenac, and D. Nesset, “40Gbit/s wavelength conversion over 24.6nm using FWM in a semiconductor optical amplifier with an optimised MQW active region,” Electron. Lett. 33(25), 2123–2124 (1997).
[CrossRef]

G. Grosskopf, R. Ludwig, and H. G. Weber, “140 Mbit/s DPSK Transmission Using an All-Optical Frequency-Converter with a 4000 GHz Conversion Range,” Electron. Lett. 24(17), 1106–1107 (1988).
[CrossRef]

S. Diez, C. Schubert, H.-J. Ehrke, U. Feiste, R. Ludwig, E. Patzak, C. Schmidt, and H. G. Weber, “160 Gb/s all-optical demultiplexer using a hybrid gain-transparent SOA Mach-Zehnder-Interferometer,” Electron. Lett. 36(17), 1484 (2000).
[CrossRef]

S. L. Jansen, M. Heid, S. Spalter, E. Meissner, C. J. Weiske, A. Schopflin, D. Khoe, and H. de Waardt, “Demultiplexing 160 Gbit/s OTDM signal to 40 Gbit/s by FWM in SOA,” Electron. Lett. 38(17), 978–980 (2002).
[CrossRef]

A. E. Kelly, A. D. Ellis, D. Nesset, R. Kashyap, and D. G. Moodie, “100Gbit/s wavelength conversion using FWM in an MQW semiconductor optical amplifier,” Electron. Lett. 34(20), 1955–1956 (1998).
[CrossRef]

IEE Proc. Optoelectron. (1)

N. Schunk, G. Groβkopt, R. Ludwig, R. Schnabel, and H. G. Weber, “Frequency-Conversion by Nearly-Degenerate 4-Wave-Mixing in Traveling-Wave Semiconductor-Laser Amplifiers,” IEE Proc. Optoelectron. 137, 209–214 (1990).
[CrossRef]

IEEE J. Quantum Electron. (1)

K. Kikuchi, M. Kakui, C. E. Zah, and T. P. Lee, “Observation of Highly Nondegenerate 4-Wave-Mixing in 1.5 µm Traveling-Wave Semiconductor Optical Amplifiers and Estimation of Nonlinear Gain Coefficient,” IEEE J. Quantum Electron. 28(1), 151–156 (1992).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

S. Diez, C. Schmidt, R. Ludwig, H. G. Weber, K. Obermann, S. Kindt, I. Koltchanov, and K. Petermann, “Four-wave mixing in semiconductor optical amplifiers for frequency conversion and fast optical switching,” IEEE J. Sel. Top. Quantum Electron. 3(5), 1131–1145 (1997).
[CrossRef]

P. Borri, W. Langbein, J. M. Hvam, F. Heinrichsdorff, H.-M. Mao, and D. Bimberg, “Spectral Hole-Burning and Carrier-Heating Dynamics in InGaAs Quantum-Dot Amplifiers,” IEEE J. Sel. Top. Quantum Electron. 6(3), 544–551 (2000).
[CrossRef]

IEEE Photon. (1)

C. Meuer, H. Schmeckebier, G. Fiol, D. Arsenijevic, J. Kim, G. Eisenstein, and D. Bimberg, “Cross-Gain Modulation and Four-Wave Mixing for Wavelength Conversion in undoped and p-doped 1.3 µm Quantum Dot Semiconductor Optical Amplifiers,” IEEE Photon. 2(2), 141–151 (2010).
[CrossRef]

IEEE Photon. Technol. Lett. (6)

A. Bilenca, R. Alizon, V. Mikhelashhvili, D. Dahan, G. Eisenstein, R. Schwertberger, D. Gold, J. P. Reithmaier, and A. Forchel, “Broad-band wavelength conversion based on cross-gain modulation and four-wave mixing in InAs-InP quantum-dash semiconductor optical amplifiers operating at 1550 nm,” IEEE Photon. Technol. Lett. 15(4), 563–565 (2003).
[CrossRef]

U. Feiste, R. Ludwig, C. Schmidt, E. Dietrich, S. Diez, H. Ehrke, E. Patzak, H. G. Weber, and T. Merker, “80-Gb/s transmission over 106-km standard-fiber using optical phase conjugation in a Sagnac-interferometer,” IEEE Photon. Technol. Lett. 11(8), 1063–1065 (1999).
[CrossRef]

T. Akiyama, H. Kuwatsuka, N. Hatori, Y. Nakata, H. Ebe, and M. Sugawara, “Symmetric Highly Efficient (~0 dB) Wavelength Conversion Based on Four-Wave Mixing in Quantum Dot Optical Amplifiers,” IEEE Photon. Technol. Lett. 14(8), 1139–1141 (2002).
[CrossRef]

G. Contestabile, A. Maruta, S. Sekiguchi, K. Morito, M. Sugawara, and K. Kitayama, “Regenerative Amplification by Using Self-Phase Modulation in a Quantum-Dot SOA,” IEEE Photon. Technol. Lett. 22(7), 492–494 (2010).
[CrossRef]

G. Contestabile, F. Martelli, A. Mecozzi, L. Graziani, A. D'Ottavi, P. Spano, G. Guekos, R. Dall'Ara, and J. Eckner, “Efficiency flattening and equalization of frequency up- and down-conversion using four-wave mixing in semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 10(10), 1398–1400 (1998).
[CrossRef]

T. J. Morgan, J. P. R. Lacey, and R. S. Tucker, “Widely tunable four-wave mixing in semiconductor optical amplifiers with constant conversion efficiency,” IEEE Photon. Technol. Lett. 10(10), 1401–1403 (1998).
[CrossRef]

J. Cryst. Growth (1)

A. R. Kovsh, N. A. Maleev, A. E. Zhukov, S. S. Mikhrin, A. P. Vasil'ev, E. A. Semenova, Y. M. Shernyakov, M. V. Maximov, D. A. Livshits, V. M. Ustinov, N. N. Ledentsov, D. Bimberg, and Z. I. Alferov, “InAs/InGaAs/GaAs quantum dot lasers of 1.3 µm range with enhanced optical gain,” J. Cryst. Growth 251(1-4), 729–736 (2003).
[CrossRef]

J. Lightwave Technol. (1)

S. J. B. Yoo, “Wavelength conversion technologies for WDM network applications,” J. Lightwave Technol. 14(6), 955–966 (1996).
[CrossRef]

J. Phys. D Appl. Phys. (1)

M. Sugawara, N. Hatori, M. Ishida, H. Ebe, Y. Arakawa, T. Akiyama, K. Otsubo, Y. Yamamoto, and Y. Nakata, “Recent progress in self-assembled quantum-dot optical devices for optical telecommunication: temperature-insensitive 10 Gb s−1 directly modulated lasers and 40 Gb s−1 signal-regenerative amplifiers,” J. Phys. D Appl. Phys. 38(13), 2126–2134 (2005).
[CrossRef]

Microelectron. J. (1)

D. Bimberg, M. Kuntz, and M. Laemmlin, “Quantum dot photonic devices for lightwave communication,” Microelectron. J. 36(3-6), 175–179 (2005).
[CrossRef]

Opt. Commun. (1)

A. V. Uskov, E. P. O'Reilly, M. Laemmlin, N. N. Ledentsov, and D. Bimberg, “On gain saturation in quantum dot semiconductor optical amplifiers,” Opt. Commun. 248(1-3), 211–219 (2005).
[CrossRef]

Opt. Express (2)

Phys. Status Solidi, B Basic Res. (1)

T. Akiyama, N. Hatori, Y. Nakata, H. Ebe, and M. Sugawara, “Pattern-effect-free amplification and cross-gain modulation achieved by using ultrafast gain nonlinearity in quantum-dot semiconductor optical amplifiers,” Phys. Status Solidi, B Basic Res. 238(2), 301–304 (2003).
[CrossRef]

Thin Solid Films (1)

D. Bimberg, M. Grundmann, N. N. Ledentsov, S. S. Ruvimov, P. Werner, U. Richter, J. Heydenreich, V. M. Ustinov, P. S. Kopev, and Z. I. Alferov, “Self-organization processes in MBE-grown quantum dot structures,” Thin Solid Films 267(1-2), 32–36 (1995).
[CrossRef]

Other (7)

D. Nielsen, S. L. Chuang, N. J. Kim, D. Lee, S. H. Pyun, and W. G. Jeong, “160 GHz wavelength conversion using four-wave mixing in quantum dots,” in Conference on Lasers and Electro-Optics (CLEO)(Baltimore, MD, USA, 2009).

D. Bimberg, M. Grundmann, and N. N. Ledentsov, Quantum Dot Heterostructures (John Wiley & Sons Ltd, Chichester, 1999).

G. Contestabile, A. Maruta, S. Sekiguchi, K. Morito, and K. Kitayama, “80 Gb/s Multicast Wavelength Conversion by XGM in a QD-SOA,” in European Conference on Optical Communication (ECOC2010)(Torino, Italy, 2010), p. Mo.2.A.3.

G. Contestabile, A. Maruta, S. Sekiguchi, K. Morito, M. Sugawara, and K. Kitayama, “160 Gb/s cross gain modulation in quantum dot SOA at 1550 nm,” in European Conference on Optical Communication (ECOC 2009)(Vienna, Austria, 2009), p. PDP 1.4.

R. Bonk, C. Meuer, T. Vallaitis, S. Sygletos, P. Vorreau, S. Ben-Ezra, S. Tsadka, A. Kovsh, I. Krestnikov, M. Laemmlin, D. Bimberg, W. Freude, and J. Leuthold, “Single and Multiple Channel Operation Dynamics of Linear Quantum-Dot Semiconductor Optical Amplifier,” in European Conference on Optical Communications (ECOC 2008)(Brussels, Belgium, 2008), p. Th.1.C.2.

C. Schmidt-Langhorst, C. Meuer, A. Galperin, H. Schmeckebier, R. Ludwig, D. Puris, D. Bimberg, K. Petermann, and C. Schubert, “80 Gb/s Multi-Wavelength Booster Amplification in an InGaAs/GaAs Quantum-Dot Semiconductor Optical Amplifier,” in European Conference on Optical Communication (ECOC 2010)(Torino, Italy, 2010), p. Mo.1.F.6.

G. Contestabile, A. Maruta, S. Sekiguchi, K. Morito, M. Sugawara, and K. Kitayama, “Regenerative Amplification in a Quantum Dot SOA ” in Optical Fiber Communication Conference (OFC 2010)(San Diego, CA, USA, 2010), p. OMT2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

ASE spectra at various injection currents. The vertical blue lines denote the wavelengths of the pump signals at 1291 nm and 1311 nm.

Fig. 2
Fig. 2

(a) Dependence of the FWM efficiency on the pump power at 1 nm detuning for different operating currents of the QD SOA. (b, solid symbols) FWM efficiency as a function of the pump power for probe power levels of −8, −3 and 2 dBm and (open symbols) corresponding optical signal-to-noise ratio.

Fig. 3
Fig. 3

Dependence of the FWM efficiency on the pump-probe detuning for different operating currents at a pump wavelength of (a) 1291 nm and (b) 1311 nm.

Fig. 4
Fig. 4

Dependence of OSNR on the pump-probe detuning for different operating currents at a pump wavelength of (a) 1291 nm and (b) 1311 nm.

Fig. 5
Fig. 5

(a) FWM efficiency dependent on the modulation frequency at different currents and (b) normalized FWM efficiency as a function of the detuning at various frequencies deduced from small-signal measurements. The FWM traces dependent on the modulation frequency are normalized to their respective maximum to get of the influence of the gain spectrum. Only values at distinct frequencies are shown as a function of the wavelength in (b).

Fig. 6
Fig. 6

Setup for wavelength conversion via FWM and successive bit-error-ratio measurements of a 40 Gb/s PRBS 231-1 NRZ data signal either around 1291 nm or 1311 nm. ECL: external cavity laser, DFB: distributed feedback laser, MZM: Mach-Zehnder modulator, PDFA: Praseodymium doped fiber amplifier, FBG: fiber-Bragg grating, WDM Mux: wavelength division multiplexer, QW SOA: quantum-well SOA, ISO: Isolator, VOA: variable optical attenuator, PD: photo diode, PWM: optical power meter.

Fig. 7
Fig. 7

Eye diagrams of (a) a back-to-back signal at 1288 nm and (b) the down converted signal (1293 nm to 1288 nm) at a BER of 10-9.

Fig. 8
Fig. 8

BER versus received power for 5 nm wavelength down conversion at a pump wavelength of (a) 1291 nm and (b) 1311 nm.

Fig. 9
Fig. 9

BER as a function of the received power for 5 nm wavelength up conversion at (a) 1291 nm and (b) 1311 nm. The dashed red line is an extrapolation of the BER curve for estimation of the penalty at a BER of 10−9.

Fig. 10
Fig. 10

(a) Output spectrum of the QD SOA after FWM generation using two pump signals (pump 1 at 1291 nm and pump 2 at 1311 nm) both with an input power of 12 dBm. The data signal (1293.5 nm) is converted to conjugate 1 (1288.7), conjugate 2 (1308.9 nm) and conjugate 3 (1313.7 nm). (b) Zoom of the FWM conjugate 1 demonstrating the 5 dB reduction of the FWM power if the second pump is additionally injected to the QD SOA.

Fig. 11
Fig. 11

(a) BER as a function of the received power for wavelength down conversion with a single pump at 1291 nm (red circles, same as in Fig. 8(a)) and for the dual pump configuration (green triangles). (b) BER vs. received power for dual pump wavelength up conversion from 1293.5 nm to 1308.9 nm (green triangles).

Tables (1)

Tables Icon

Table 1 Values of the FWM efficiency and the OSNR at 2.5 nm and −2.5 nm detuning for the pump wavelengths of 1291 nm and 1311 nm and a current of 650 mA.

Metrics