Abstract

Mode-locked lasers have an undisputed position in the ultrafast domain, though they are fairly expensive for miscellaneous applications. Thus, laser consumers revert to more cost-effective systems like Q-switched lasers. Here we report on the nonlinear compression of passively Q-switched laser pulses that allows accessing the time domain of sub-10-picoseconds, which has been so far the realm of mode-locked lasers. Laser pulses with an initial duration of 100ps from a passively Q-switched microchip laser are amplified in a photonic crystal fiber and spectrally broadened from 20pm to 0.68nm by self-phase modulation. These pulses are compressed in a grating compressor to a duration of 6ps with a pulse energy of 13µJ.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Magyar, “Ultrashort laser pulses and their uses,” Nature 218(5136), 16–19 (1968).
    [CrossRef]
  2. A. J. DeMaria, D. A. Stetser, and W. H. Glenn., “Ultrashort light pulses,” Science 156(3782), 1557–1568 (1967).
    [CrossRef] [PubMed]
  3. D. J. Kuizenga and A. M. Siegman, “FM and AM mode locking of the homogeneous laser – Part I: Theory,” IEEE J. Quantum Electron. 6, 709–715 (1970).
    [CrossRef]
  4. U. Morgner, F. X. Kärtner, S. H. Cho, Y. Chen, H. A. Haus, J. G. Fujimoto, E. P. Ippen, V. Scheuer, G. Angelow, and T. Tschudi, “Sub-two-cycle pulses from a Kerr-lens mode-locked Ti:sapphire laser,” Opt. Lett. 24(6), 411–413 (1999).
    [CrossRef]
  5. U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424(6950), 831–838 (2003).
    [CrossRef] [PubMed]
  6. A. Ancona, F. Röser, K. Rademaker, J. Limpert, S. Nolte, and A. Tünnermann, “High speed laser drilling of metals using a high repetition rate, high average power ultrafast fiber CPA system,” Opt. Express 16(12), 8958–8968 (2008).
    [CrossRef] [PubMed]
  7. M. E. Fermann, A. Galvanauskas, and G. Sucha, Ultrafast Lasers: Technology and Applications (Marcel Dekker Inc., New York, 2001), Chap. 6–16.
  8. F. Druon, F. Balembois, P. Georges, and A. Brun, “High-repetition-rate 300-ps pulsed ultraviolet source with a passively Q-switched microchip laser and a multipass amplifier,” Opt. Lett. 24(7), 499–501 (1999).
    [CrossRef]
  9. G. J. Spühler, R. Paschotta, R. Fluck, B. Braun, M. Moser, G. Zhang, E. Gini, and U. Keller, “Experimentally confirmed design guidelines for passively Q-switched microchip lasers using semiconductor saturable absorbers,” J. Opt. Soc. B 16(3), 376–388 (1999).
    [CrossRef]
  10. D. Nodop, J. Limpert, R. Hohmuth, W. Richter, M. Guina, and A. Tünnermann, “High-pulse-energy passively Q-switched quasi-monolithic microchip lasers operating in the sub-100-ps pulse regime,” Opt. Lett. 32(15), 2115–2117 (2007).
    [CrossRef] [PubMed]
  11. A. Steinmetz, D. Nodop, J. Limpert, R. Hohmuth, W. Richter, and A. Tünnermann, “2 MHz repetition rate, 200 ps pulse duration from a monolithic, passively Q-switched microchip laser,” Appl. Phys. B 97(2), 317–320 (2009).
    [CrossRef]
  12. A. Steinmetz, D. Nodop, A. Martin, J. Limpert, and A. Tünnermann, “Reduction of timing jitter in passively Q-switched microchip lasers using self-injection seeding,” Opt. Lett. 35(17), 2885–2887 (2010).
    [CrossRef] [PubMed]
  13. S. K. Sundaram and E. Mazur, “Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses,” Nat. Mater. 1(4), 217–224 (2002).
    [CrossRef]
  14. X. Chen and X. Liu, “Short pulsed laser machining: How short is short enough?” J. Laser Appl. 11(6), 268–272 (1999).
    [CrossRef]
  15. J. T. Mok, I. C. M. Littler, E. Tsoy, and B. J. Eggleton, “Soliton compression and pulse-train generation by use of microchip Q-switched pulses in Bragg gratings,” Opt. Lett. 30(18), 2457–2459 (2005).
    [CrossRef] [PubMed]
  16. C. V. Shank, R. L. Fork, R. Yen, R. H. Stolen, and W. J. Tomlinson, “Compression of femtosecond optical pulses,” Appl. Phys. Lett. 40(9), 761 (1982).
    [CrossRef]
  17. R. H. Stolen and C. Lin, “Self-phase-modulation in silica optical fibers,” Phys. Rev. A 17(4), 1448–1453 (1978).
    [CrossRef]
  18. Th. Walther, M. P. Larsen, and E. S. Fry, “Generation of Fourier-transform-limited 35-ns pulses with a ramp-hold-fire seeding technique in a Ti:sapphire laser,” Appl. Opt. 40(18), 3046–3050 (2001).
    [CrossRef]
  19. R. L. Schmitt and L. A. Rahn, “Diode-laser-pumped Nd:YAG laser injection seeding system,” Appl. Opt. 25(5), 629–633 (1986).
    [CrossRef] [PubMed]
  20. Y. K. Park, G. Giuliani, and R. L. Byer, “Stable single-axial-mode operation of an unstable-resonator Nd:YAG oscillator by injection locking,” Opt. Lett. 5(3), 96–98 (1980).
    [CrossRef] [PubMed]
  21. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, San Diego, 2001), Chap. 4.
  22. D. Nodop, C. Jauregui, D. Schimpf, J. Limpert, and A. Tünnermann, “Efficient high-power generation of visible and mid-infrared light by degenerate four-wave-mixing in a large-mode-area photonic-crystal fiber,” Opt. Lett. 34(22), 3499–3501 (2009).
    [CrossRef] [PubMed]
  23. J. Limpert, F. Röser, T. Schreiber, and A. Tünnermann, “High-power ultrafast fiber laser systems,” IEEE J. Sel. Top. Quant. 12(2), 233–244 (2006).
    [CrossRef]

2010 (1)

2009 (2)

D. Nodop, C. Jauregui, D. Schimpf, J. Limpert, and A. Tünnermann, “Efficient high-power generation of visible and mid-infrared light by degenerate four-wave-mixing in a large-mode-area photonic-crystal fiber,” Opt. Lett. 34(22), 3499–3501 (2009).
[CrossRef] [PubMed]

A. Steinmetz, D. Nodop, J. Limpert, R. Hohmuth, W. Richter, and A. Tünnermann, “2 MHz repetition rate, 200 ps pulse duration from a monolithic, passively Q-switched microchip laser,” Appl. Phys. B 97(2), 317–320 (2009).
[CrossRef]

2008 (1)

2007 (1)

2006 (1)

J. Limpert, F. Röser, T. Schreiber, and A. Tünnermann, “High-power ultrafast fiber laser systems,” IEEE J. Sel. Top. Quant. 12(2), 233–244 (2006).
[CrossRef]

2005 (1)

2003 (1)

U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424(6950), 831–838 (2003).
[CrossRef] [PubMed]

2002 (1)

S. K. Sundaram and E. Mazur, “Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses,” Nat. Mater. 1(4), 217–224 (2002).
[CrossRef]

2001 (1)

1999 (4)

U. Morgner, F. X. Kärtner, S. H. Cho, Y. Chen, H. A. Haus, J. G. Fujimoto, E. P. Ippen, V. Scheuer, G. Angelow, and T. Tschudi, “Sub-two-cycle pulses from a Kerr-lens mode-locked Ti:sapphire laser,” Opt. Lett. 24(6), 411–413 (1999).
[CrossRef]

F. Druon, F. Balembois, P. Georges, and A. Brun, “High-repetition-rate 300-ps pulsed ultraviolet source with a passively Q-switched microchip laser and a multipass amplifier,” Opt. Lett. 24(7), 499–501 (1999).
[CrossRef]

X. Chen and X. Liu, “Short pulsed laser machining: How short is short enough?” J. Laser Appl. 11(6), 268–272 (1999).
[CrossRef]

G. J. Spühler, R. Paschotta, R. Fluck, B. Braun, M. Moser, G. Zhang, E. Gini, and U. Keller, “Experimentally confirmed design guidelines for passively Q-switched microchip lasers using semiconductor saturable absorbers,” J. Opt. Soc. B 16(3), 376–388 (1999).
[CrossRef]

1986 (1)

1982 (1)

C. V. Shank, R. L. Fork, R. Yen, R. H. Stolen, and W. J. Tomlinson, “Compression of femtosecond optical pulses,” Appl. Phys. Lett. 40(9), 761 (1982).
[CrossRef]

1980 (1)

1978 (1)

R. H. Stolen and C. Lin, “Self-phase-modulation in silica optical fibers,” Phys. Rev. A 17(4), 1448–1453 (1978).
[CrossRef]

1970 (1)

D. J. Kuizenga and A. M. Siegman, “FM and AM mode locking of the homogeneous laser – Part I: Theory,” IEEE J. Quantum Electron. 6, 709–715 (1970).
[CrossRef]

1968 (1)

G. Magyar, “Ultrashort laser pulses and their uses,” Nature 218(5136), 16–19 (1968).
[CrossRef]

1967 (1)

A. J. DeMaria, D. A. Stetser, and W. H. Glenn., “Ultrashort light pulses,” Science 156(3782), 1557–1568 (1967).
[CrossRef] [PubMed]

Ancona, A.

Angelow, G.

Balembois, F.

Braun, B.

G. J. Spühler, R. Paschotta, R. Fluck, B. Braun, M. Moser, G. Zhang, E. Gini, and U. Keller, “Experimentally confirmed design guidelines for passively Q-switched microchip lasers using semiconductor saturable absorbers,” J. Opt. Soc. B 16(3), 376–388 (1999).
[CrossRef]

Brun, A.

Byer, R. L.

Chen, X.

X. Chen and X. Liu, “Short pulsed laser machining: How short is short enough?” J. Laser Appl. 11(6), 268–272 (1999).
[CrossRef]

Chen, Y.

Cho, S. H.

DeMaria, A. J.

A. J. DeMaria, D. A. Stetser, and W. H. Glenn., “Ultrashort light pulses,” Science 156(3782), 1557–1568 (1967).
[CrossRef] [PubMed]

Druon, F.

Eggleton, B. J.

Fluck, R.

G. J. Spühler, R. Paschotta, R. Fluck, B. Braun, M. Moser, G. Zhang, E. Gini, and U. Keller, “Experimentally confirmed design guidelines for passively Q-switched microchip lasers using semiconductor saturable absorbers,” J. Opt. Soc. B 16(3), 376–388 (1999).
[CrossRef]

Fork, R. L.

C. V. Shank, R. L. Fork, R. Yen, R. H. Stolen, and W. J. Tomlinson, “Compression of femtosecond optical pulses,” Appl. Phys. Lett. 40(9), 761 (1982).
[CrossRef]

Fry, E. S.

Fujimoto, J. G.

Georges, P.

Gini, E.

G. J. Spühler, R. Paschotta, R. Fluck, B. Braun, M. Moser, G. Zhang, E. Gini, and U. Keller, “Experimentally confirmed design guidelines for passively Q-switched microchip lasers using semiconductor saturable absorbers,” J. Opt. Soc. B 16(3), 376–388 (1999).
[CrossRef]

Giuliani, G.

Glenn, W. H.

A. J. DeMaria, D. A. Stetser, and W. H. Glenn., “Ultrashort light pulses,” Science 156(3782), 1557–1568 (1967).
[CrossRef] [PubMed]

Guina, M.

Haus, H. A.

Hohmuth, R.

A. Steinmetz, D. Nodop, J. Limpert, R. Hohmuth, W. Richter, and A. Tünnermann, “2 MHz repetition rate, 200 ps pulse duration from a monolithic, passively Q-switched microchip laser,” Appl. Phys. B 97(2), 317–320 (2009).
[CrossRef]

D. Nodop, J. Limpert, R. Hohmuth, W. Richter, M. Guina, and A. Tünnermann, “High-pulse-energy passively Q-switched quasi-monolithic microchip lasers operating in the sub-100-ps pulse regime,” Opt. Lett. 32(15), 2115–2117 (2007).
[CrossRef] [PubMed]

Ippen, E. P.

Jauregui, C.

Kärtner, F. X.

Keller, U.

U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424(6950), 831–838 (2003).
[CrossRef] [PubMed]

G. J. Spühler, R. Paschotta, R. Fluck, B. Braun, M. Moser, G. Zhang, E. Gini, and U. Keller, “Experimentally confirmed design guidelines for passively Q-switched microchip lasers using semiconductor saturable absorbers,” J. Opt. Soc. B 16(3), 376–388 (1999).
[CrossRef]

Kuizenga, D. J.

D. J. Kuizenga and A. M. Siegman, “FM and AM mode locking of the homogeneous laser – Part I: Theory,” IEEE J. Quantum Electron. 6, 709–715 (1970).
[CrossRef]

Larsen, M. P.

Limpert, J.

Lin, C.

R. H. Stolen and C. Lin, “Self-phase-modulation in silica optical fibers,” Phys. Rev. A 17(4), 1448–1453 (1978).
[CrossRef]

Littler, I. C. M.

Liu, X.

X. Chen and X. Liu, “Short pulsed laser machining: How short is short enough?” J. Laser Appl. 11(6), 268–272 (1999).
[CrossRef]

Magyar, G.

G. Magyar, “Ultrashort laser pulses and their uses,” Nature 218(5136), 16–19 (1968).
[CrossRef]

Martin, A.

Mazur, E.

S. K. Sundaram and E. Mazur, “Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses,” Nat. Mater. 1(4), 217–224 (2002).
[CrossRef]

Mok, J. T.

Morgner, U.

Moser, M.

G. J. Spühler, R. Paschotta, R. Fluck, B. Braun, M. Moser, G. Zhang, E. Gini, and U. Keller, “Experimentally confirmed design guidelines for passively Q-switched microchip lasers using semiconductor saturable absorbers,” J. Opt. Soc. B 16(3), 376–388 (1999).
[CrossRef]

Nodop, D.

Nolte, S.

Park, Y. K.

Paschotta, R.

G. J. Spühler, R. Paschotta, R. Fluck, B. Braun, M. Moser, G. Zhang, E. Gini, and U. Keller, “Experimentally confirmed design guidelines for passively Q-switched microchip lasers using semiconductor saturable absorbers,” J. Opt. Soc. B 16(3), 376–388 (1999).
[CrossRef]

Rademaker, K.

Rahn, L. A.

Richter, W.

A. Steinmetz, D. Nodop, J. Limpert, R. Hohmuth, W. Richter, and A. Tünnermann, “2 MHz repetition rate, 200 ps pulse duration from a monolithic, passively Q-switched microchip laser,” Appl. Phys. B 97(2), 317–320 (2009).
[CrossRef]

D. Nodop, J. Limpert, R. Hohmuth, W. Richter, M. Guina, and A. Tünnermann, “High-pulse-energy passively Q-switched quasi-monolithic microchip lasers operating in the sub-100-ps pulse regime,” Opt. Lett. 32(15), 2115–2117 (2007).
[CrossRef] [PubMed]

Röser, F.

Scheuer, V.

Schimpf, D.

Schmitt, R. L.

Schreiber, T.

J. Limpert, F. Röser, T. Schreiber, and A. Tünnermann, “High-power ultrafast fiber laser systems,” IEEE J. Sel. Top. Quant. 12(2), 233–244 (2006).
[CrossRef]

Shank, C. V.

C. V. Shank, R. L. Fork, R. Yen, R. H. Stolen, and W. J. Tomlinson, “Compression of femtosecond optical pulses,” Appl. Phys. Lett. 40(9), 761 (1982).
[CrossRef]

Siegman, A. M.

D. J. Kuizenga and A. M. Siegman, “FM and AM mode locking of the homogeneous laser – Part I: Theory,” IEEE J. Quantum Electron. 6, 709–715 (1970).
[CrossRef]

Spühler, G. J.

G. J. Spühler, R. Paschotta, R. Fluck, B. Braun, M. Moser, G. Zhang, E. Gini, and U. Keller, “Experimentally confirmed design guidelines for passively Q-switched microchip lasers using semiconductor saturable absorbers,” J. Opt. Soc. B 16(3), 376–388 (1999).
[CrossRef]

Steinmetz, A.

A. Steinmetz, D. Nodop, A. Martin, J. Limpert, and A. Tünnermann, “Reduction of timing jitter in passively Q-switched microchip lasers using self-injection seeding,” Opt. Lett. 35(17), 2885–2887 (2010).
[CrossRef] [PubMed]

A. Steinmetz, D. Nodop, J. Limpert, R. Hohmuth, W. Richter, and A. Tünnermann, “2 MHz repetition rate, 200 ps pulse duration from a monolithic, passively Q-switched microchip laser,” Appl. Phys. B 97(2), 317–320 (2009).
[CrossRef]

Stetser, D. A.

A. J. DeMaria, D. A. Stetser, and W. H. Glenn., “Ultrashort light pulses,” Science 156(3782), 1557–1568 (1967).
[CrossRef] [PubMed]

Stolen, R. H.

C. V. Shank, R. L. Fork, R. Yen, R. H. Stolen, and W. J. Tomlinson, “Compression of femtosecond optical pulses,” Appl. Phys. Lett. 40(9), 761 (1982).
[CrossRef]

R. H. Stolen and C. Lin, “Self-phase-modulation in silica optical fibers,” Phys. Rev. A 17(4), 1448–1453 (1978).
[CrossRef]

Sundaram, S. K.

S. K. Sundaram and E. Mazur, “Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses,” Nat. Mater. 1(4), 217–224 (2002).
[CrossRef]

Tomlinson, W. J.

C. V. Shank, R. L. Fork, R. Yen, R. H. Stolen, and W. J. Tomlinson, “Compression of femtosecond optical pulses,” Appl. Phys. Lett. 40(9), 761 (1982).
[CrossRef]

Tschudi, T.

Tsoy, E.

Tünnermann, A.

Walther, Th.

Yen, R.

C. V. Shank, R. L. Fork, R. Yen, R. H. Stolen, and W. J. Tomlinson, “Compression of femtosecond optical pulses,” Appl. Phys. Lett. 40(9), 761 (1982).
[CrossRef]

Zhang, G.

G. J. Spühler, R. Paschotta, R. Fluck, B. Braun, M. Moser, G. Zhang, E. Gini, and U. Keller, “Experimentally confirmed design guidelines for passively Q-switched microchip lasers using semiconductor saturable absorbers,” J. Opt. Soc. B 16(3), 376–388 (1999).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. B (1)

A. Steinmetz, D. Nodop, J. Limpert, R. Hohmuth, W. Richter, and A. Tünnermann, “2 MHz repetition rate, 200 ps pulse duration from a monolithic, passively Q-switched microchip laser,” Appl. Phys. B 97(2), 317–320 (2009).
[CrossRef]

Appl. Phys. Lett. (1)

C. V. Shank, R. L. Fork, R. Yen, R. H. Stolen, and W. J. Tomlinson, “Compression of femtosecond optical pulses,” Appl. Phys. Lett. 40(9), 761 (1982).
[CrossRef]

IEEE J. Quantum Electron. (1)

D. J. Kuizenga and A. M. Siegman, “FM and AM mode locking of the homogeneous laser – Part I: Theory,” IEEE J. Quantum Electron. 6, 709–715 (1970).
[CrossRef]

IEEE J. Sel. Top. Quant. (1)

J. Limpert, F. Röser, T. Schreiber, and A. Tünnermann, “High-power ultrafast fiber laser systems,” IEEE J. Sel. Top. Quant. 12(2), 233–244 (2006).
[CrossRef]

J. Laser Appl. (1)

X. Chen and X. Liu, “Short pulsed laser machining: How short is short enough?” J. Laser Appl. 11(6), 268–272 (1999).
[CrossRef]

J. Opt. Soc. B (1)

G. J. Spühler, R. Paschotta, R. Fluck, B. Braun, M. Moser, G. Zhang, E. Gini, and U. Keller, “Experimentally confirmed design guidelines for passively Q-switched microchip lasers using semiconductor saturable absorbers,” J. Opt. Soc. B 16(3), 376–388 (1999).
[CrossRef]

Nat. Mater. (1)

S. K. Sundaram and E. Mazur, “Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses,” Nat. Mater. 1(4), 217–224 (2002).
[CrossRef]

Nature (2)

U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424(6950), 831–838 (2003).
[CrossRef] [PubMed]

G. Magyar, “Ultrashort laser pulses and their uses,” Nature 218(5136), 16–19 (1968).
[CrossRef]

Opt. Express (1)

Opt. Lett. (7)

D. Nodop, J. Limpert, R. Hohmuth, W. Richter, M. Guina, and A. Tünnermann, “High-pulse-energy passively Q-switched quasi-monolithic microchip lasers operating in the sub-100-ps pulse regime,” Opt. Lett. 32(15), 2115–2117 (2007).
[CrossRef] [PubMed]

U. Morgner, F. X. Kärtner, S. H. Cho, Y. Chen, H. A. Haus, J. G. Fujimoto, E. P. Ippen, V. Scheuer, G. Angelow, and T. Tschudi, “Sub-two-cycle pulses from a Kerr-lens mode-locked Ti:sapphire laser,” Opt. Lett. 24(6), 411–413 (1999).
[CrossRef]

F. Druon, F. Balembois, P. Georges, and A. Brun, “High-repetition-rate 300-ps pulsed ultraviolet source with a passively Q-switched microchip laser and a multipass amplifier,” Opt. Lett. 24(7), 499–501 (1999).
[CrossRef]

A. Steinmetz, D. Nodop, A. Martin, J. Limpert, and A. Tünnermann, “Reduction of timing jitter in passively Q-switched microchip lasers using self-injection seeding,” Opt. Lett. 35(17), 2885–2887 (2010).
[CrossRef] [PubMed]

J. T. Mok, I. C. M. Littler, E. Tsoy, and B. J. Eggleton, “Soliton compression and pulse-train generation by use of microchip Q-switched pulses in Bragg gratings,” Opt. Lett. 30(18), 2457–2459 (2005).
[CrossRef] [PubMed]

D. Nodop, C. Jauregui, D. Schimpf, J. Limpert, and A. Tünnermann, “Efficient high-power generation of visible and mid-infrared light by degenerate four-wave-mixing in a large-mode-area photonic-crystal fiber,” Opt. Lett. 34(22), 3499–3501 (2009).
[CrossRef] [PubMed]

Y. K. Park, G. Giuliani, and R. L. Byer, “Stable single-axial-mode operation of an unstable-resonator Nd:YAG oscillator by injection locking,” Opt. Lett. 5(3), 96–98 (1980).
[CrossRef] [PubMed]

Phys. Rev. A (1)

R. H. Stolen and C. Lin, “Self-phase-modulation in silica optical fibers,” Phys. Rev. A 17(4), 1448–1453 (1978).
[CrossRef]

Science (1)

A. J. DeMaria, D. A. Stetser, and W. H. Glenn., “Ultrashort light pulses,” Science 156(3782), 1557–1568 (1967).
[CrossRef] [PubMed]

Other (2)

M. E. Fermann, A. Galvanauskas, and G. Sucha, Ultrafast Lasers: Technology and Applications (Marcel Dekker Inc., New York, 2001), Chap. 6–16.

G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, San Diego, 2001), Chap. 4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) exploded view of a passively Q-Switched microchip assembly consisting of laser crystal (output coupler coated on one side) bonded to a semiconductor saturable absorber mirror (SESAM) with spin-on-glass and connected to a copper heat sink for extraction of the thermal load. The length of the SESAM (of the order of several µm) is negligible compared to the thickness of the laser crystal (350µm) and, therefore, the resonator length is nearly equal to the crystal length. Such a short resonator functions as Fabry-Perot-Etalon forcing the laser to operate only on a single resonator mode and in a nearly transform limited regime. (b) view of the monolithic microchip optically pumped by a laser diode and producing Q-Switched pulses.(c) comparison of the microchip assembly with 1-cent euro coin. (d) the red curve shows the measurement of a passively Q-Switched pulse of τp=100ps FWHM-duration. The black curve is a Gaussian fit of the measured pulse and reveals its symmetry and shape. (e) the measured spectrum of the pulse with a FWHM-width smaller than 20pm. The data shown in (d) and (e) are a good evidence of the pulses being nearly Fourier-transform limited.

Fig. 2
Fig. 2

Schematic of the experimental setup for nonlinear compression of passively Q-Switched laser. The unchirped 100ps pulses from the microchip laser are launched into a fiber amplifier based on photonic crystal fiber (PCF 170/40) with a total length of 3.8m and a mode-field diameter of 30µm, boosting its pulse energy up to 17µJ. Simultaneously, these pulses are spectrally broadened and chirped by self-phase modulation in the fiber amplifier. After the pass through the double-bounce compressor, the compressed pulses are measured by a non-collinear autocorrelator.

Fig. 3
Fig. 3

Spectra broadened by self-phase modulation in the fiber amplifier and the corresponding autocorrelation traces of compressed output pulses. (a) SPM-broadened spectra of the pulses from Fig. 1e and Fig. 1d after the amplifier. The signal is amplified to a pulse energy of 17µJ (z-axis) at a pulse repetition rate of 200kHz with absence of other nonlinear optical effects e.g. stimulated Raman scattering or four-wave mixing. (b) corresponding autocorrelation traces of the compressed pulses (z-axis shows the pulse energy after the compressor, in parenthesis - before the compressor). The more SPM-broadening generated, the shorter optical pulses can be observed after the compression leading to the shortest duration at 0.68nm spectral width.

Fig. 4
Fig. 4

Comparison of experimentally observed and numerically simulated results of the nonlinear compression of Q-switched pulses. (a) illustrates compression of pulses for the SPM-broadened spectrum of 0.68nm, EP=17µJ in Figs. 3a and 3b, measured autocorrelation trace (red curve) of the compressed Q-Switched pulse and simulated autocorrelation trace (blue) of a spectrally SMP-broadened Gaussian pulse in the direct comparison. (b) illustrates corresponding pulse shape of the blue AC-trace in (a). The computation of the pulse shape and AC-trace yields the de-convolution factor of 0.735 and therewith calculated pulse duration of 6ps in the experiment. The comparison of experiment and the simulation reveals that the pulse compression performed in the experiment deviates slightly from the simulation, however, the theoretical and the experimental results are at close quarters.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

t P 3.52 T R Δ R

Metrics