Abstract

A high-resolution optical trapping and manipulating scheme combining an optical fiber probe and an AFM metallic probe is proposed. This scheme is based on the combination of evanescent illumination and light scattering at the metallic probe apex, which shapes the optical field into a localized, three-dimensional optical trap. Detailed simulations of the electromagnetic fields in composite area and the resulting forces are described the methods of Maxwell stress tensor and three-dimensional FDTD. Calculations show that the scheme is able to overcome the disturbance of other forces to trap a polystyrene particle of up to 10nm in radius with lower laser intensity (~1040W/mm2) than that required by conventional optical tweezers (~105W/mm2). Based on the discussion of high manipulating efficiency dependent on system parameters and the implementing procedure, the scheme allowing for effective manipulation of nano-particles opens a way for research on single nano-particle area.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970).
    [CrossRef]
  2. J. Hwang, M. Pototschnig, R. Lettow, G. Zumofen, A. Renn, S. Götzinger, and V. Sandoghdar, “A single-molecule optical transistor,” Nature 460(7251), 76–80 (2009).
    [CrossRef] [PubMed]
  3. I. E. Sang, T. Yasuhiro, and H. Terutake, “Novel contact probing method using single fiber optical trapping probe,” Precis. Eng. 33(3), 235–242 (2009).
    [CrossRef]
  4. M. Gu, S. Kuriakose, and X. S. Gan, “A single beam near-field laser trap for optical stretching, folding and rotation of erythrocytes,” Opt. Exp. 15, 1369–1375 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-3-1369 .
  5. Z. L. Wang and J. P. Yin, “Atomic quantum motion and single-mode waveguiding in a hollow metallic waveguide,” J. Opt. Soc. Am. B 25(6), 1051–1058 (2008).
    [CrossRef]
  6. D. Ganic, X. S. Gan, and M. Gu, “Trapping force and optical lifting under focused evanescent wave illumination,” Opt. Exp. 12, 5533–5538 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-22-5533 .
  7. N. Yun and Y. J. Ping, “Theoretical analysis of evanescent-wave atomic (molecular) guide using a bundle of four single-mode optical fibers,” Chin. Phys. Soc. 55, 130–136 (2006).
  8. Y. B. Ovchinnikov, I. Manek, and R. Grimm, “Surface trap for Cs atoms based on evanescent-wave cooling,” Phys. Rev. Lett. 79(12), 2225–2228 (1997).
    [CrossRef]
  9. L. Novotny, X. B. Randy, and X. S. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett. 79(4), 645–648 (1997).
    [CrossRef]
  10. M. Tanaka, ““Boundary integral equations for computer aided design of near-field optics,” Electro,” Commun. Jpn. 79, 101–108 (1996).
  11. P. C. Chaumet, A. Rahmani, and M. Nieto-Vesperinas, “Selective nanomanipulation using optical forces,” Phys. Rev. B 66(19), 195405 (2002).
    [CrossRef]
  12. L. Novotny, D. W. Pohl, and B. Hecht, “Scanning near-field optical probe with ultrasmall spot size,” Opt. Lett. 20(9), 970–972 (1995).
    [CrossRef] [PubMed]
  13. A. Castiaux, C. Girard, M. Spajer, and S. Davy, “Near-field optical effects inside a photosensitive sample coupled with a SNOM tip,” Ultramicroscopy 71(1-4), 49–58 (1998).
    [CrossRef]
  14. K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75(9), 2787–2809 (2004).
    [CrossRef]
  15. I. Christov, “Maxwell-Lorentz electrodynamics as a manifestation of the dynamics of a viscoelastic metacontinuum,” Math. Comput. Simul. 74(2-3), 93–104 (2007).
    [CrossRef]
  16. B. H. Liu, L. J. Yang, Y. Wang, and J. L. Yuan, “The numerical simulation of the near-field properties of near-field optical tweezers probe,” presented at the Eighth China International Symposium on Nanoscience and Nanotechnology, Xiangtan, China, 23–27, Oct. 2009.
  17. B. H. Liu, L. J. Yang, Y. Wang, and J. L. Yuan, “Probe optimization for nano-manipulation in metal probe-based near-field optical tweezers based on FDTD simulation,” in Proceedings of IEEE Conference on Nano/Micro Engineered and Molecular Systems (Xiamen University, Xiamen, 2010), pp. 828–831.
  18. K. Y. Wang, Z. Jin, and W. H. Huang, “The possibility of trapping and manipulating a nanometer scale paticle by the SNOM tip,” Opt. Commun. 149, 41 (1998).
  19. M. Ohtsu, Near-field nano/atom optics and technology (Springer-Verlag, Tokyo, 1998).
  20. F. Arai, D. Ando, T. Fukuda, Y. Nonoda, and T. Oota, “Micro manipulation based on microphysics-strategy based on attractive force reduction and stress measurement,” in Proceedings of IEEE Conference on Intelligence Robots and systems (Pittsburgh, 1995), pp. 236–241.
  21. A. Feiler, I. Larson, P. Jenkins, and P. Attard, “A quantitative study of interaction forces and friction in aqueous colloidal systems,” Langmuir 16(26), 10269–10277 (2000).
    [CrossRef]
  22. B. Dragnea, C. Chen, E. S. Kwak, B. Stein, and C. C. Kao, “Gold nanoparticles as spectroscopic enhancers for in vitro studies on single viruses,” J. Am. Chem. Soc. 125(21), 6374–6375 (2003).
    [CrossRef] [PubMed]
  23. P. C. Chaumet, A. Rahmani, and M. Nieto-vesperinas, “Optical trapping and manipulation of nano-objects with an apertureless probe,” Phys. Rev. Lett. 88(12), 123601 (2002).
    [CrossRef] [PubMed]
  24. J. P. Barton, D. R. Alexander, and S. A. Schaub, “Internal fields of a spherical particle illuminated by a tightly focused laser beam: focal point positioning effects at resonance,” J. Appl. Phys. 65(8), 2900–2906 (1989).
    [CrossRef]

2009

J. Hwang, M. Pototschnig, R. Lettow, G. Zumofen, A. Renn, S. Götzinger, and V. Sandoghdar, “A single-molecule optical transistor,” Nature 460(7251), 76–80 (2009).
[CrossRef] [PubMed]

I. E. Sang, T. Yasuhiro, and H. Terutake, “Novel contact probing method using single fiber optical trapping probe,” Precis. Eng. 33(3), 235–242 (2009).
[CrossRef]

2008

2007

I. Christov, “Maxwell-Lorentz electrodynamics as a manifestation of the dynamics of a viscoelastic metacontinuum,” Math. Comput. Simul. 74(2-3), 93–104 (2007).
[CrossRef]

2006

N. Yun and Y. J. Ping, “Theoretical analysis of evanescent-wave atomic (molecular) guide using a bundle of four single-mode optical fibers,” Chin. Phys. Soc. 55, 130–136 (2006).

2004

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75(9), 2787–2809 (2004).
[CrossRef]

2003

B. Dragnea, C. Chen, E. S. Kwak, B. Stein, and C. C. Kao, “Gold nanoparticles as spectroscopic enhancers for in vitro studies on single viruses,” J. Am. Chem. Soc. 125(21), 6374–6375 (2003).
[CrossRef] [PubMed]

2002

P. C. Chaumet, A. Rahmani, and M. Nieto-vesperinas, “Optical trapping and manipulation of nano-objects with an apertureless probe,” Phys. Rev. Lett. 88(12), 123601 (2002).
[CrossRef] [PubMed]

P. C. Chaumet, A. Rahmani, and M. Nieto-Vesperinas, “Selective nanomanipulation using optical forces,” Phys. Rev. B 66(19), 195405 (2002).
[CrossRef]

2000

A. Feiler, I. Larson, P. Jenkins, and P. Attard, “A quantitative study of interaction forces and friction in aqueous colloidal systems,” Langmuir 16(26), 10269–10277 (2000).
[CrossRef]

1998

K. Y. Wang, Z. Jin, and W. H. Huang, “The possibility of trapping and manipulating a nanometer scale paticle by the SNOM tip,” Opt. Commun. 149, 41 (1998).

A. Castiaux, C. Girard, M. Spajer, and S. Davy, “Near-field optical effects inside a photosensitive sample coupled with a SNOM tip,” Ultramicroscopy 71(1-4), 49–58 (1998).
[CrossRef]

1997

Y. B. Ovchinnikov, I. Manek, and R. Grimm, “Surface trap for Cs atoms based on evanescent-wave cooling,” Phys. Rev. Lett. 79(12), 2225–2228 (1997).
[CrossRef]

L. Novotny, X. B. Randy, and X. S. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett. 79(4), 645–648 (1997).
[CrossRef]

1996

M. Tanaka, ““Boundary integral equations for computer aided design of near-field optics,” Electro,” Commun. Jpn. 79, 101–108 (1996).

1995

1989

J. P. Barton, D. R. Alexander, and S. A. Schaub, “Internal fields of a spherical particle illuminated by a tightly focused laser beam: focal point positioning effects at resonance,” J. Appl. Phys. 65(8), 2900–2906 (1989).
[CrossRef]

1970

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970).
[CrossRef]

Alexander, D. R.

J. P. Barton, D. R. Alexander, and S. A. Schaub, “Internal fields of a spherical particle illuminated by a tightly focused laser beam: focal point positioning effects at resonance,” J. Appl. Phys. 65(8), 2900–2906 (1989).
[CrossRef]

Ashkin, A.

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970).
[CrossRef]

Attard, P.

A. Feiler, I. Larson, P. Jenkins, and P. Attard, “A quantitative study of interaction forces and friction in aqueous colloidal systems,” Langmuir 16(26), 10269–10277 (2000).
[CrossRef]

Barton, J. P.

J. P. Barton, D. R. Alexander, and S. A. Schaub, “Internal fields of a spherical particle illuminated by a tightly focused laser beam: focal point positioning effects at resonance,” J. Appl. Phys. 65(8), 2900–2906 (1989).
[CrossRef]

Block, S. M.

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75(9), 2787–2809 (2004).
[CrossRef]

Castiaux, A.

A. Castiaux, C. Girard, M. Spajer, and S. Davy, “Near-field optical effects inside a photosensitive sample coupled with a SNOM tip,” Ultramicroscopy 71(1-4), 49–58 (1998).
[CrossRef]

Chaumet, P. C.

P. C. Chaumet, A. Rahmani, and M. Nieto-Vesperinas, “Selective nanomanipulation using optical forces,” Phys. Rev. B 66(19), 195405 (2002).
[CrossRef]

P. C. Chaumet, A. Rahmani, and M. Nieto-vesperinas, “Optical trapping and manipulation of nano-objects with an apertureless probe,” Phys. Rev. Lett. 88(12), 123601 (2002).
[CrossRef] [PubMed]

Chen, C.

B. Dragnea, C. Chen, E. S. Kwak, B. Stein, and C. C. Kao, “Gold nanoparticles as spectroscopic enhancers for in vitro studies on single viruses,” J. Am. Chem. Soc. 125(21), 6374–6375 (2003).
[CrossRef] [PubMed]

Christov, I.

I. Christov, “Maxwell-Lorentz electrodynamics as a manifestation of the dynamics of a viscoelastic metacontinuum,” Math. Comput. Simul. 74(2-3), 93–104 (2007).
[CrossRef]

Davy, S.

A. Castiaux, C. Girard, M. Spajer, and S. Davy, “Near-field optical effects inside a photosensitive sample coupled with a SNOM tip,” Ultramicroscopy 71(1-4), 49–58 (1998).
[CrossRef]

Dragnea, B.

B. Dragnea, C. Chen, E. S. Kwak, B. Stein, and C. C. Kao, “Gold nanoparticles as spectroscopic enhancers for in vitro studies on single viruses,” J. Am. Chem. Soc. 125(21), 6374–6375 (2003).
[CrossRef] [PubMed]

Feiler, A.

A. Feiler, I. Larson, P. Jenkins, and P. Attard, “A quantitative study of interaction forces and friction in aqueous colloidal systems,” Langmuir 16(26), 10269–10277 (2000).
[CrossRef]

Girard, C.

A. Castiaux, C. Girard, M. Spajer, and S. Davy, “Near-field optical effects inside a photosensitive sample coupled with a SNOM tip,” Ultramicroscopy 71(1-4), 49–58 (1998).
[CrossRef]

Götzinger, S.

J. Hwang, M. Pototschnig, R. Lettow, G. Zumofen, A. Renn, S. Götzinger, and V. Sandoghdar, “A single-molecule optical transistor,” Nature 460(7251), 76–80 (2009).
[CrossRef] [PubMed]

Grimm, R.

Y. B. Ovchinnikov, I. Manek, and R. Grimm, “Surface trap for Cs atoms based on evanescent-wave cooling,” Phys. Rev. Lett. 79(12), 2225–2228 (1997).
[CrossRef]

Hecht, B.

Huang, W. H.

K. Y. Wang, Z. Jin, and W. H. Huang, “The possibility of trapping and manipulating a nanometer scale paticle by the SNOM tip,” Opt. Commun. 149, 41 (1998).

Hwang, J.

J. Hwang, M. Pototschnig, R. Lettow, G. Zumofen, A. Renn, S. Götzinger, and V. Sandoghdar, “A single-molecule optical transistor,” Nature 460(7251), 76–80 (2009).
[CrossRef] [PubMed]

Jenkins, P.

A. Feiler, I. Larson, P. Jenkins, and P. Attard, “A quantitative study of interaction forces and friction in aqueous colloidal systems,” Langmuir 16(26), 10269–10277 (2000).
[CrossRef]

Jin, Z.

K. Y. Wang, Z. Jin, and W. H. Huang, “The possibility of trapping and manipulating a nanometer scale paticle by the SNOM tip,” Opt. Commun. 149, 41 (1998).

Kao, C. C.

B. Dragnea, C. Chen, E. S. Kwak, B. Stein, and C. C. Kao, “Gold nanoparticles as spectroscopic enhancers for in vitro studies on single viruses,” J. Am. Chem. Soc. 125(21), 6374–6375 (2003).
[CrossRef] [PubMed]

Kwak, E. S.

B. Dragnea, C. Chen, E. S. Kwak, B. Stein, and C. C. Kao, “Gold nanoparticles as spectroscopic enhancers for in vitro studies on single viruses,” J. Am. Chem. Soc. 125(21), 6374–6375 (2003).
[CrossRef] [PubMed]

Larson, I.

A. Feiler, I. Larson, P. Jenkins, and P. Attard, “A quantitative study of interaction forces and friction in aqueous colloidal systems,” Langmuir 16(26), 10269–10277 (2000).
[CrossRef]

Lettow, R.

J. Hwang, M. Pototschnig, R. Lettow, G. Zumofen, A. Renn, S. Götzinger, and V. Sandoghdar, “A single-molecule optical transistor,” Nature 460(7251), 76–80 (2009).
[CrossRef] [PubMed]

Manek, I.

Y. B. Ovchinnikov, I. Manek, and R. Grimm, “Surface trap for Cs atoms based on evanescent-wave cooling,” Phys. Rev. Lett. 79(12), 2225–2228 (1997).
[CrossRef]

Neuman, K. C.

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75(9), 2787–2809 (2004).
[CrossRef]

Nieto-Vesperinas, M.

P. C. Chaumet, A. Rahmani, and M. Nieto-Vesperinas, “Selective nanomanipulation using optical forces,” Phys. Rev. B 66(19), 195405 (2002).
[CrossRef]

P. C. Chaumet, A. Rahmani, and M. Nieto-vesperinas, “Optical trapping and manipulation of nano-objects with an apertureless probe,” Phys. Rev. Lett. 88(12), 123601 (2002).
[CrossRef] [PubMed]

Novotny, L.

L. Novotny, X. B. Randy, and X. S. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett. 79(4), 645–648 (1997).
[CrossRef]

L. Novotny, D. W. Pohl, and B. Hecht, “Scanning near-field optical probe with ultrasmall spot size,” Opt. Lett. 20(9), 970–972 (1995).
[CrossRef] [PubMed]

Ovchinnikov, Y. B.

Y. B. Ovchinnikov, I. Manek, and R. Grimm, “Surface trap for Cs atoms based on evanescent-wave cooling,” Phys. Rev. Lett. 79(12), 2225–2228 (1997).
[CrossRef]

Ping, Y. J.

N. Yun and Y. J. Ping, “Theoretical analysis of evanescent-wave atomic (molecular) guide using a bundle of four single-mode optical fibers,” Chin. Phys. Soc. 55, 130–136 (2006).

Pohl, D. W.

Pototschnig, M.

J. Hwang, M. Pototschnig, R. Lettow, G. Zumofen, A. Renn, S. Götzinger, and V. Sandoghdar, “A single-molecule optical transistor,” Nature 460(7251), 76–80 (2009).
[CrossRef] [PubMed]

Rahmani, A.

P. C. Chaumet, A. Rahmani, and M. Nieto-Vesperinas, “Selective nanomanipulation using optical forces,” Phys. Rev. B 66(19), 195405 (2002).
[CrossRef]

P. C. Chaumet, A. Rahmani, and M. Nieto-vesperinas, “Optical trapping and manipulation of nano-objects with an apertureless probe,” Phys. Rev. Lett. 88(12), 123601 (2002).
[CrossRef] [PubMed]

Randy, X. B.

L. Novotny, X. B. Randy, and X. S. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett. 79(4), 645–648 (1997).
[CrossRef]

Renn, A.

J. Hwang, M. Pototschnig, R. Lettow, G. Zumofen, A. Renn, S. Götzinger, and V. Sandoghdar, “A single-molecule optical transistor,” Nature 460(7251), 76–80 (2009).
[CrossRef] [PubMed]

Sandoghdar, V.

J. Hwang, M. Pototschnig, R. Lettow, G. Zumofen, A. Renn, S. Götzinger, and V. Sandoghdar, “A single-molecule optical transistor,” Nature 460(7251), 76–80 (2009).
[CrossRef] [PubMed]

Sang, I. E.

I. E. Sang, T. Yasuhiro, and H. Terutake, “Novel contact probing method using single fiber optical trapping probe,” Precis. Eng. 33(3), 235–242 (2009).
[CrossRef]

Schaub, S. A.

J. P. Barton, D. R. Alexander, and S. A. Schaub, “Internal fields of a spherical particle illuminated by a tightly focused laser beam: focal point positioning effects at resonance,” J. Appl. Phys. 65(8), 2900–2906 (1989).
[CrossRef]

Spajer, M.

A. Castiaux, C. Girard, M. Spajer, and S. Davy, “Near-field optical effects inside a photosensitive sample coupled with a SNOM tip,” Ultramicroscopy 71(1-4), 49–58 (1998).
[CrossRef]

Stein, B.

B. Dragnea, C. Chen, E. S. Kwak, B. Stein, and C. C. Kao, “Gold nanoparticles as spectroscopic enhancers for in vitro studies on single viruses,” J. Am. Chem. Soc. 125(21), 6374–6375 (2003).
[CrossRef] [PubMed]

Tanaka, M.

M. Tanaka, ““Boundary integral equations for computer aided design of near-field optics,” Electro,” Commun. Jpn. 79, 101–108 (1996).

Terutake, H.

I. E. Sang, T. Yasuhiro, and H. Terutake, “Novel contact probing method using single fiber optical trapping probe,” Precis. Eng. 33(3), 235–242 (2009).
[CrossRef]

Wang, K. Y.

K. Y. Wang, Z. Jin, and W. H. Huang, “The possibility of trapping and manipulating a nanometer scale paticle by the SNOM tip,” Opt. Commun. 149, 41 (1998).

Wang, Z. L.

Xie, X. S.

L. Novotny, X. B. Randy, and X. S. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett. 79(4), 645–648 (1997).
[CrossRef]

Yasuhiro, T.

I. E. Sang, T. Yasuhiro, and H. Terutake, “Novel contact probing method using single fiber optical trapping probe,” Precis. Eng. 33(3), 235–242 (2009).
[CrossRef]

Yin, J. P.

Yun, N.

N. Yun and Y. J. Ping, “Theoretical analysis of evanescent-wave atomic (molecular) guide using a bundle of four single-mode optical fibers,” Chin. Phys. Soc. 55, 130–136 (2006).

Zumofen, G.

J. Hwang, M. Pototschnig, R. Lettow, G. Zumofen, A. Renn, S. Götzinger, and V. Sandoghdar, “A single-molecule optical transistor,” Nature 460(7251), 76–80 (2009).
[CrossRef] [PubMed]

Chin. Phys. Soc.

N. Yun and Y. J. Ping, “Theoretical analysis of evanescent-wave atomic (molecular) guide using a bundle of four single-mode optical fibers,” Chin. Phys. Soc. 55, 130–136 (2006).

Commun. Jpn.

M. Tanaka, ““Boundary integral equations for computer aided design of near-field optics,” Electro,” Commun. Jpn. 79, 101–108 (1996).

J. Am. Chem. Soc.

B. Dragnea, C. Chen, E. S. Kwak, B. Stein, and C. C. Kao, “Gold nanoparticles as spectroscopic enhancers for in vitro studies on single viruses,” J. Am. Chem. Soc. 125(21), 6374–6375 (2003).
[CrossRef] [PubMed]

J. Appl. Phys.

J. P. Barton, D. R. Alexander, and S. A. Schaub, “Internal fields of a spherical particle illuminated by a tightly focused laser beam: focal point positioning effects at resonance,” J. Appl. Phys. 65(8), 2900–2906 (1989).
[CrossRef]

J. Opt. Soc. Am. B

Langmuir

A. Feiler, I. Larson, P. Jenkins, and P. Attard, “A quantitative study of interaction forces and friction in aqueous colloidal systems,” Langmuir 16(26), 10269–10277 (2000).
[CrossRef]

Math. Comput. Simul.

I. Christov, “Maxwell-Lorentz electrodynamics as a manifestation of the dynamics of a viscoelastic metacontinuum,” Math. Comput. Simul. 74(2-3), 93–104 (2007).
[CrossRef]

Nature

J. Hwang, M. Pototschnig, R. Lettow, G. Zumofen, A. Renn, S. Götzinger, and V. Sandoghdar, “A single-molecule optical transistor,” Nature 460(7251), 76–80 (2009).
[CrossRef] [PubMed]

Opt. Commun.

K. Y. Wang, Z. Jin, and W. H. Huang, “The possibility of trapping and manipulating a nanometer scale paticle by the SNOM tip,” Opt. Commun. 149, 41 (1998).

Opt. Lett.

Phys. Rev. B

P. C. Chaumet, A. Rahmani, and M. Nieto-Vesperinas, “Selective nanomanipulation using optical forces,” Phys. Rev. B 66(19), 195405 (2002).
[CrossRef]

Phys. Rev. Lett.

Y. B. Ovchinnikov, I. Manek, and R. Grimm, “Surface trap for Cs atoms based on evanescent-wave cooling,” Phys. Rev. Lett. 79(12), 2225–2228 (1997).
[CrossRef]

L. Novotny, X. B. Randy, and X. S. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett. 79(4), 645–648 (1997).
[CrossRef]

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970).
[CrossRef]

P. C. Chaumet, A. Rahmani, and M. Nieto-vesperinas, “Optical trapping and manipulation of nano-objects with an apertureless probe,” Phys. Rev. Lett. 88(12), 123601 (2002).
[CrossRef] [PubMed]

Precis. Eng.

I. E. Sang, T. Yasuhiro, and H. Terutake, “Novel contact probing method using single fiber optical trapping probe,” Precis. Eng. 33(3), 235–242 (2009).
[CrossRef]

Rev. Sci. Instrum.

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75(9), 2787–2809 (2004).
[CrossRef]

Ultramicroscopy

A. Castiaux, C. Girard, M. Spajer, and S. Davy, “Near-field optical effects inside a photosensitive sample coupled with a SNOM tip,” Ultramicroscopy 71(1-4), 49–58 (1998).
[CrossRef]

Other

M. Ohtsu, Near-field nano/atom optics and technology (Springer-Verlag, Tokyo, 1998).

F. Arai, D. Ando, T. Fukuda, Y. Nonoda, and T. Oota, “Micro manipulation based on microphysics-strategy based on attractive force reduction and stress measurement,” in Proceedings of IEEE Conference on Intelligence Robots and systems (Pittsburgh, 1995), pp. 236–241.

B. H. Liu, L. J. Yang, Y. Wang, and J. L. Yuan, “The numerical simulation of the near-field properties of near-field optical tweezers probe,” presented at the Eighth China International Symposium on Nanoscience and Nanotechnology, Xiangtan, China, 23–27, Oct. 2009.

B. H. Liu, L. J. Yang, Y. Wang, and J. L. Yuan, “Probe optimization for nano-manipulation in metal probe-based near-field optical tweezers based on FDTD simulation,” in Proceedings of IEEE Conference on Nano/Micro Engineered and Molecular Systems (Xiamen University, Xiamen, 2010), pp. 828–831.

M. Gu, S. Kuriakose, and X. S. Gan, “A single beam near-field laser trap for optical stretching, folding and rotation of erythrocytes,” Opt. Exp. 15, 1369–1375 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-3-1369 .

D. Ganic, X. S. Gan, and M. Gu, “Trapping force and optical lifting under focused evanescent wave illumination,” Opt. Exp. 12, 5533–5538 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-22-5533 .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

The three-dimensional model for the near-field manipulating simulation combining two near-field probes. The calculated fiber probe consists of an Al-coated waveguide that extends infinitely to the left and has a nano-wavelength aperture at the right cutting-off end. The metallic cone probe with finite height is illuminated by the emitting evanescent wave of the optical fiber probe.

Fig. 2
Fig. 2

FDTD simulated instantaneous field distributions in (a) y=0 plane, (b) x=0 plane. In the metal-coated fiber probe, few photons travel through the waveguide with a diameter less than a half wavelength because there is no waveguide propagation mode travelling through such a narrow waveguide, while the apertureless metallic probe with a scattering point at the tip does not need any narrow waveguide for photon transmission. A large optical enhancement can be gained comparing the metal-coated fiber probe near the tip where the diameter of the probe is much shorter than the wavelength.

Fig. 3
Fig. 3

Trapping force acting on the particle in z-axis direction. The small dielectric particle with the radius of a=10nm, the density of ρ=2.4×103kg/m3 and the refractive index of n 3=1.8 is placed near the probe in a medium with refractive index n l=1.3, it tends to be trapped to the tip of the fiber probe or stay nearby the metallic probe.

Fig. 4
Fig. 4

Lateral trapping forces acting on the particle (a) in y-axis direction in x=0 plane and (b) in x-axis direction in y=0 plane at height 10nm and 150 nm above the aperture plane. The physical properties of the trapping forces in x-axis direction and in y-axis direction are shown.

Fig. 5
Fig. 5

Distributions of force in vector form acting on particle (a) in y=0 plane and (b) in x=0 plane. The origin of each arrow represents the center of the particle and vectors represent the direction and the magnitude of forces. Due to the magnitude of the force varies significantly, only the forces with large magnitude are apparent in the force distribution.

Fig. 6
Fig. 6

z component of the force experienced by the particle at the apex of the metallic tip as a function of (a) the distance between the optical fiber probe and the metallic tip with incident angle θ 1=115°, giving wavelength λ=632.8nm and polarization direction φ=0°, (b) the angle of incidence with the distance h 1=150nm, giving wavelength λ=632.8nm and polarization direction φ=0°, (c) the polarization direction with the distance h 1=150nm, giving wavelength λ=632.8nm and incident angle θ 1=90°. (d) z component of the force experienced by the particle with different laser wavelengths. Solid line: λ=543.5nm. Dashed line: λ=632.8nm. Dash dot line: λ=1523nm.

Fig. 7
Fig. 7

The schematic diagram of experimental setup using the combination of an optical fiber probe and an AFM metallic probe. The AFM metallic probe attaches to a piezoelectric tube (PZT) controlled by a computer and the fiber probe is fixed on the turntable. The composite probes are inserted synchronously into a sample chamber moved by a nano-positioning stage, which includes three piezoelectric tubes.

Tables (2)

Tables Icon

Table 1 Comparison of other forces versus optical trapping force.

Tables Icon

Table 2 Trapping force on the particle for different combined distance.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

F = V f d τ = S T n d S .
F x = m = a 1 b 1 n = c 1 d 1 ( ε 0 ε r E m n 2 + μ 0 μ r H m n 2 2 + ε 0 ε r E x m n 2 + μ 0 μ r H x m n 2 ) Δ y Δ z ,
F y = m = a 2 b 2 n = c 2 d 2 ( ε 0 ε r E m n 2 + μ 0 μ r H m n 2 2 + ε 0 ε r E y m n 2 + μ 0 μ r H y m n 2 ) Δ x Δ z ,
F z = m = a 3 b 3 n = c 3 d 3 ( ε 0 ε r E m n 2 + μ 0 μ r H m n 2 2 + ε 0 ε r E z m n 2 + μ 0 μ r H z m n 2 ) Δ x Δ y .
U ( r 0 ) = r 0 F ( r ) d r .

Metrics