Abstract

We report a mode-locked dissipative soliton laser based on large-mode-area chirally-coupled-core Yb-doped fiber. This demonstrates scaling of a fiber oscillator to large mode area in a format that directly holds the lowest-order mode and that is also compatible with standard fiber integration. With an all-normal-dispersion cavity design, chirped pulse energies above 40 nJ are obtained with dechirped durations below 200 fs. Using a shorter fiber, dechirped durations close to 100 fs are achieved at pump-limited energies. The achievement of correct energy scaling is evidence of single-transverse-mode operation, which is confirmed by beam-quality and spectral-interference measurements.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Kafka, M. Watts, and J. Pieterse, "Picosecond and femtosecond pulse generation in a regeneratively mode-locked Ti-Sapphire laser," IEEE J. Quantum Electron. 28, 2151-2162 (1992).
    [CrossRef]
  2. F. Ilday, J. Buckley, W. Clark, and F. Wise, "Self-similar evolution of parabolic pulses in a laser," Phys. Rev. Lett. 92, 213902 (2004).
    [CrossRef] [PubMed]
  3. A. Chong, J. Buckley, W. Renninger, and F. Wise, "All-normal-dispersion femtosecond fiber laser," Opt. Express 14, 10095-10100 (2006).
    [CrossRef] [PubMed]
  4. A. Chong, W. H. Renninger, and F. W. Wise, "Properties of normal-dispersion femtosecond fiber lasers," J. Opt. Soc. Am. B 25, 140-148 (2008).
    [CrossRef]
  5. W. H. Renninger, A. Chong, and F. W. Wise, "Dissipative solitons in normal-dispersion fiber lasers," Phys. Rev. A 77, 023814 (2008).
    [CrossRef]
  6. N. G. R. Broderick, H. L. Offerhaus, D. J. Richardson, and R. A. Sammut, "Power Scaling in Passively Mode-Locked Large-Mode Area Fiber Lasers," IEEE Photon. Technol. Lett. 10, 1718-1720 (1998).
    [CrossRef]
  7. A. Tünnermann, T. Schreiber, and J. Limpert, "Fiber lasers and amplifiers: an ultrafast performance evolution," Appl. Opt. 49, F71-F78 (2010).
    [CrossRef] [PubMed]
  8. S. Lefrancois, K. Kieu, Y. Deng, J. D. Kafka, and F. W. Wise, "Scaling of dissipative soliton fiber lasers to megawatt peak powers by use of large area photonic crystal fiber," Opt. Lett. 35, 1569-1571 (2010).
    [CrossRef] [PubMed]
  9. C. Lecaplain, B. Ortaç, G. Machinet, J. Boullet, M. Baumgartl, T. Schreiber, E. Cormier, and A. Hideur, "High-energy femtosecond photonic crystal fiber laser," Opt. Lett. 35, 3156-3158 (2010).
    [CrossRef] [PubMed]
  10. J. Koplow, D. Kliner, and L. Goldberg, "Single-mode operation of a coiled multimode fiber amplifier," Opt. Lett. 25, 442-444 (2000).
    [CrossRef]
  11. M. Fermann, A. Galvanauskas, and M. Hofer, "Ultrafast pulse sources based on multi-mode optical fibers," Appl. Phys. B 70, S13-S23 (2000).
  12. E. Ding, J. N. Kutz, S. Lefrancois, and F. W. Wise, "Passive mode-locking using multi-mode fiber," Proc. SPIE (to be published).
  13. L. Dong, H. A. McKay, L. Fu, M. Ohta, A. Marcinkevicius, S. Suzuki, and M. E. Fermann, "Ytterbium-doped all glass leakage channel fibers with highly fluorine-doped silica pump cladding," Opt. Express 17, 8962-8969 (2009).
    [CrossRef] [PubMed]
  14. C. Lecaplain, A. Hideur, S. Fevrier, and P. Roy, "Mode-locked Yb-doped Bragg fiber laser," Opt. Lett. 34, 2879-2881 (2009).
    [CrossRef] [PubMed]
  15. C. H. Liu, G. Chang, N. Litchinitser, A. Galvanauskas, D. Guertin, N. Jacobson, and K. Tankala, "Effectively Single-Mode Chirally-Coupled Core Fiber," in Advanced Solid-State Photonics, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper ME2.
  16. S. Huang, C. Zhu, C. H. Liu, X. Ma, C. Swan, and A. Galvanauskas, "Power scaling of CCC fiber based lasers," in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper CThGG1.
  17. N. B. Chichkov, K. Hausmann, D. Wandt, U. Morgner, J. Neumann, and D. Kracht, "50 fs pulses from an allnormal dispersion erbium fiber oscillator," Opt. Lett. 35, 3081-3083 (2010).
    [CrossRef] [PubMed]
  18. A. Chong, W. H. Renninger, and F. W. Wise, "All-normal-dispersion femtosecond fiber laser with pulse energy above 20 nJ," Opt. Lett. 32, 2408-2410 (2007).
    [CrossRef] [PubMed]
  19. H. W. Chen, T. Sosnowski, C. H. Liu, L. J. Chen, J. R. Birge, A. Galvanauskas, F. X. Kärtner, and G. Chang, "Chirally-coupled-core Yb-fiber laser delivering 80-fs pulses with diffraction-limited beam quality warranted by a high-dispersion mirror based compressor," Opt. Express 18, 24699-24705 (2010).
    [CrossRef] [PubMed]

2010 (5)

2009 (2)

2008 (2)

A. Chong, W. H. Renninger, and F. W. Wise, "Properties of normal-dispersion femtosecond fiber lasers," J. Opt. Soc. Am. B 25, 140-148 (2008).
[CrossRef]

W. H. Renninger, A. Chong, and F. W. Wise, "Dissipative solitons in normal-dispersion fiber lasers," Phys. Rev. A 77, 023814 (2008).
[CrossRef]

2007 (1)

2006 (1)

2004 (1)

F. Ilday, J. Buckley, W. Clark, and F. Wise, "Self-similar evolution of parabolic pulses in a laser," Phys. Rev. Lett. 92, 213902 (2004).
[CrossRef] [PubMed]

2000 (2)

M. Fermann, A. Galvanauskas, and M. Hofer, "Ultrafast pulse sources based on multi-mode optical fibers," Appl. Phys. B 70, S13-S23 (2000).

J. Koplow, D. Kliner, and L. Goldberg, "Single-mode operation of a coiled multimode fiber amplifier," Opt. Lett. 25, 442-444 (2000).
[CrossRef]

1998 (1)

N. G. R. Broderick, H. L. Offerhaus, D. J. Richardson, and R. A. Sammut, "Power Scaling in Passively Mode-Locked Large-Mode Area Fiber Lasers," IEEE Photon. Technol. Lett. 10, 1718-1720 (1998).
[CrossRef]

1992 (1)

J. Kafka, M. Watts, and J. Pieterse, "Picosecond and femtosecond pulse generation in a regeneratively mode-locked Ti-Sapphire laser," IEEE J. Quantum Electron. 28, 2151-2162 (1992).
[CrossRef]

Baumgartl, M.

Birge, J. R.

Boullet, J.

Broderick, N. G. R.

N. G. R. Broderick, H. L. Offerhaus, D. J. Richardson, and R. A. Sammut, "Power Scaling in Passively Mode-Locked Large-Mode Area Fiber Lasers," IEEE Photon. Technol. Lett. 10, 1718-1720 (1998).
[CrossRef]

Buckley, J.

A. Chong, J. Buckley, W. Renninger, and F. Wise, "All-normal-dispersion femtosecond fiber laser," Opt. Express 14, 10095-10100 (2006).
[CrossRef] [PubMed]

F. Ilday, J. Buckley, W. Clark, and F. Wise, "Self-similar evolution of parabolic pulses in a laser," Phys. Rev. Lett. 92, 213902 (2004).
[CrossRef] [PubMed]

Chang, G.

Chen, H. W.

Chen, L. J.

Chichkov, N. B.

Chong, A.

Clark, W.

F. Ilday, J. Buckley, W. Clark, and F. Wise, "Self-similar evolution of parabolic pulses in a laser," Phys. Rev. Lett. 92, 213902 (2004).
[CrossRef] [PubMed]

Cormier, E.

Deng, Y.

Ding, E.

E. Ding, J. N. Kutz, S. Lefrancois, and F. W. Wise, "Passive mode-locking using multi-mode fiber," Proc. SPIE (to be published).

Dong, L.

Fermann, M.

M. Fermann, A. Galvanauskas, and M. Hofer, "Ultrafast pulse sources based on multi-mode optical fibers," Appl. Phys. B 70, S13-S23 (2000).

Fermann, M. E.

Fevrier, S.

Fu, L.

Galvanauskas, A.

Goldberg, L.

Hausmann, K.

Hideur, A.

Hofer, M.

M. Fermann, A. Galvanauskas, and M. Hofer, "Ultrafast pulse sources based on multi-mode optical fibers," Appl. Phys. B 70, S13-S23 (2000).

Ilday, F.

F. Ilday, J. Buckley, W. Clark, and F. Wise, "Self-similar evolution of parabolic pulses in a laser," Phys. Rev. Lett. 92, 213902 (2004).
[CrossRef] [PubMed]

Kafka, J.

J. Kafka, M. Watts, and J. Pieterse, "Picosecond and femtosecond pulse generation in a regeneratively mode-locked Ti-Sapphire laser," IEEE J. Quantum Electron. 28, 2151-2162 (1992).
[CrossRef]

Kafka, J. D.

Kärtner, F. X.

Kieu, K.

Kliner, D.

Koplow, J.

Kracht, D.

Kutz, J. N.

E. Ding, J. N. Kutz, S. Lefrancois, and F. W. Wise, "Passive mode-locking using multi-mode fiber," Proc. SPIE (to be published).

Lecaplain, C.

Lefrancois, S.

Limpert, J.

Liu, C. H.

Machinet, G.

Marcinkevicius, A.

McKay, H. A.

Morgner, U.

Neumann, J.

Offerhaus, H. L.

N. G. R. Broderick, H. L. Offerhaus, D. J. Richardson, and R. A. Sammut, "Power Scaling in Passively Mode-Locked Large-Mode Area Fiber Lasers," IEEE Photon. Technol. Lett. 10, 1718-1720 (1998).
[CrossRef]

Ohta, M.

Ortaç, B.

Pieterse, J.

J. Kafka, M. Watts, and J. Pieterse, "Picosecond and femtosecond pulse generation in a regeneratively mode-locked Ti-Sapphire laser," IEEE J. Quantum Electron. 28, 2151-2162 (1992).
[CrossRef]

Renninger, W.

Renninger, W. H.

Richardson, D. J.

N. G. R. Broderick, H. L. Offerhaus, D. J. Richardson, and R. A. Sammut, "Power Scaling in Passively Mode-Locked Large-Mode Area Fiber Lasers," IEEE Photon. Technol. Lett. 10, 1718-1720 (1998).
[CrossRef]

Roy, P.

Sammut, R. A.

N. G. R. Broderick, H. L. Offerhaus, D. J. Richardson, and R. A. Sammut, "Power Scaling in Passively Mode-Locked Large-Mode Area Fiber Lasers," IEEE Photon. Technol. Lett. 10, 1718-1720 (1998).
[CrossRef]

Schreiber, T.

Sosnowski, T.

Suzuki, S.

Tünnermann, A.

Wandt, D.

Watts, M.

J. Kafka, M. Watts, and J. Pieterse, "Picosecond and femtosecond pulse generation in a regeneratively mode-locked Ti-Sapphire laser," IEEE J. Quantum Electron. 28, 2151-2162 (1992).
[CrossRef]

Wise, F.

A. Chong, J. Buckley, W. Renninger, and F. Wise, "All-normal-dispersion femtosecond fiber laser," Opt. Express 14, 10095-10100 (2006).
[CrossRef] [PubMed]

F. Ilday, J. Buckley, W. Clark, and F. Wise, "Self-similar evolution of parabolic pulses in a laser," Phys. Rev. Lett. 92, 213902 (2004).
[CrossRef] [PubMed]

Wise, F. W.

Appl. Opt. (1)

Appl. Phys. B (1)

M. Fermann, A. Galvanauskas, and M. Hofer, "Ultrafast pulse sources based on multi-mode optical fibers," Appl. Phys. B 70, S13-S23 (2000).

IEEE J. Quantum Electron. (1)

J. Kafka, M. Watts, and J. Pieterse, "Picosecond and femtosecond pulse generation in a regeneratively mode-locked Ti-Sapphire laser," IEEE J. Quantum Electron. 28, 2151-2162 (1992).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

N. G. R. Broderick, H. L. Offerhaus, D. J. Richardson, and R. A. Sammut, "Power Scaling in Passively Mode-Locked Large-Mode Area Fiber Lasers," IEEE Photon. Technol. Lett. 10, 1718-1720 (1998).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Express (3)

Opt. Lett. (6)

Phys. Rev. A (1)

W. H. Renninger, A. Chong, and F. W. Wise, "Dissipative solitons in normal-dispersion fiber lasers," Phys. Rev. A 77, 023814 (2008).
[CrossRef]

Phys. Rev. Lett. (1)

F. Ilday, J. Buckley, W. Clark, and F. Wise, "Self-similar evolution of parabolic pulses in a laser," Phys. Rev. Lett. 92, 213902 (2004).
[CrossRef] [PubMed]

Proc. SPIE (1)

E. Ding, J. N. Kutz, S. Lefrancois, and F. W. Wise, "Passive mode-locking using multi-mode fiber," Proc. SPIE (to be published).

Other (2)

C. H. Liu, G. Chang, N. Litchinitser, A. Galvanauskas, D. Guertin, N. Jacobson, and K. Tankala, "Effectively Single-Mode Chirally-Coupled Core Fiber," in Advanced Solid-State Photonics, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper ME2.

S. Huang, C. Zhu, C. H. Liu, X. Ma, C. Swan, and A. Galvanauskas, "Power scaling of CCC fiber based lasers," in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper CThGG1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Side view of angle-cleaved CCC fiber. (b) CCC fiber oscillator design: DM, dichroic mirror; PBS, polarizing beamsplitter; DDL, dispersive delay line; BRP, birefringent plate; QWP and HWP, quarter- and half-waveplate; HR, dielectric mirror.

Fig. 2
Fig. 2

(a) Simulated pulse evolution: SA, saturable absorber; SF, spectral filter. Output pulse (b) spectrum and (c) chirped time profile.

Fig. 3
Fig. 3

Mode-locked beam characteristics around 2 W output power: (a) beam profile, (b) M2 measurement and (c) long-range AC.

Fig. 4
Fig. 4

Experimental mode-locked pulse from 3.9 m cavity at 2.3 W output power: (a) spectrum (0.1 nm res.), (b) chirped AC, (c) dechirped interferometric AC. (d) Spectrum after propagation trough 1 m of SMF (solid) compared to simulation (dashed).

Fig. 5
Fig. 5

Experimental pulse from 1.8 m cavity: (a) spectrum, (b) chirped and (c) dechirped interferometric AC (solid grey) compared to calculated transform limited AC (dashed).

Metrics