Abstract

Silicon colloids based microcavities, with sphere size between 1 and 3 micrometers, have been synthesized and optically characterized. Due to both the small cavity volume and the high refractive index of silicon we are able to tune resonances with extremely low mode index, whose electric field distribution resembles those of electronic orbitals. The value of some parameters such as quality factor Q, effective mode volume, and evanescent field have been calculated for several modes. This calculation indicates silicon colloids can be a serious strategy for developing optical microcavities where may coexist both optical modes with large evanescent fields useful for sensing applications, as well as modes with high Q/V ratio values, of the order of 109(λ/n)−3.

© 2011 OSA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. A. Muller, “A sound barrier for silicon?” Nat. Mater. 4(9), 645–647 (2005).
    [CrossRef] [PubMed]
  2. B.-S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005).
    [CrossRef]
  3. A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel;, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405(6785), 437–440 (2000).
    [CrossRef] [PubMed]
  4. B.-S. Song, S. Noda, and T. Asano, “Photonic devices based on in-plane hetero photonic crystals,” Science 300(5625), 1537–1537 (2003).
    [CrossRef] [PubMed]
  5. A. Ashkin and M. Dziedzic, “Observation of Resonances in the Radiation Pressure of Dielectric Spheres,” Phys. Rev. Lett. 38(23), 1351–1354 (1977).
    [CrossRef]
  6. A. Ashkin and J. M. Dziedzic, “Observation of optical resonances of dielectric spheres by light scattering,” Appl. Opt. 20(10), 1803–1814 (1981).
    [CrossRef] [PubMed]
  7. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-Gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
    [CrossRef] [PubMed]
  8. D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
    [CrossRef] [PubMed]
  9. K. Inoue, H. Sasaki, K. Ishida, Y. Sugimoto, N. Ikeda, Y. Tanaka, S. Ohkouchi, Y. Nakamura, and K. Asakawa, “InAs quantum-dot laser utilizing GaAs photonic-crystal line-defect waveguide,” Opt. Express 12(22), 5502–5509 (2004).
    [CrossRef] [PubMed]
  10. R. Fenollosa, F. Meseguer, and M. Tymczenko, “Silicon Colloids: From Microcavities to Photonic Sponges,” Adv. Mater. 20(1), 95–98 (2008).
    [CrossRef]
  11. R. Fenollosa, F. Meseguer, and M. Tymczenko, Spain Patent P200701681, 2007.
  12. W. Stöber, A. Fink, and E. Bohn, “Controlled growth of monodisperse silica spheres in the micron size range,” J. Colloid Interface Sci. 26(1), 62–69 (1968).
    [CrossRef]
  13. P. R. Conwell, P. W. Barber, and C. K. Rushforth, “Resonant spectra of dielectric spheres,” J. Opt. Soc. Am. A 1(1), 62–67 (1984).
    [CrossRef]
  14. C. F. Bohren, and D. R. Huffman, Absorption and Scattering of Light by Small Particles (JohnWiley & Sons, New York, NY 1998).
  15. P. W. Barber, and S. C. Hill, Light Scattering by Particles: Computational Methods (World Scientific, Singapore, 1990).
  16. E. Palik, Handbook of Optical Constants of Solids, Vol. 1 (Academic Press, New York, NY 1985).
  17. J. Ng, C. T. Chan, P. Sheng, and Z. Lin, “Strong optical force induced by morphology-dependent resonances,” Opt. Lett. 30(15), 1956–1958 (2005).
    [CrossRef] [PubMed]
  18. K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
    [CrossRef] [PubMed]
  19. F. J. García de Abajo, “Interaction of Radiation and Fast Electrons with Clusters of Dielectrics: A Multiple Scattering Approach,” Phys. Rev. Lett. 82(13), 2776–2779 (1999).
    [CrossRef]
  20. E. Xifré-Pérez, F. J. García de Abajo, R. Fenollosa, and F. Meseguer, “Photonic binding in silicon-colloid microcavities,” Phys. Rev. Lett. 103(10), 103902 (2009).
    [CrossRef] [PubMed]
  21. Y. Tanaka, T. Asano, and S. Noda, “Design of Photonic Crystal Nanocavity with Q-Factor of ~109,” J. Lightwave Technol. 26(11), 1532–1539 (2008).
    [CrossRef]
  22. Y. Takahashi, Y. Tanaka, H. Hagino, T. Sugiya, Y. Sato, T. Asano, and S. Noda, “Design and demonstration of high-Q photonic heterostructure nanocavities suitable for integration,” Opt. Express 17(20), 18093–18102 (2009).
    [CrossRef] [PubMed]
  23. T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Demonstration of Ultra-high-Q Small Volume Toroid Microcavities on a chip,” Appl. Phys. Lett. 85(25), 6113–6115 (2004).
    [CrossRef]
  24. V. B. Braginsky, M. L. Gorodetsky, and S. Ilchenko, “Quality-factor and nonlinear properties of optical whispering-gallery modes,” Phys. Lett. A 137(7-8), 393–397 (1989).
    [CrossRef]

2009 (2)

2008 (2)

Y. Tanaka, T. Asano, and S. Noda, “Design of Photonic Crystal Nanocavity with Q-Factor of ~109,” J. Lightwave Technol. 26(11), 1532–1539 (2008).
[CrossRef]

R. Fenollosa, F. Meseguer, and M. Tymczenko, “Silicon Colloids: From Microcavities to Photonic Sponges,” Adv. Mater. 20(1), 95–98 (2008).
[CrossRef]

2005 (3)

D. A. Muller, “A sound barrier for silicon?” Nat. Mater. 4(9), 645–647 (2005).
[CrossRef] [PubMed]

B.-S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005).
[CrossRef]

J. Ng, C. T. Chan, P. Sheng, and Z. Lin, “Strong optical force induced by morphology-dependent resonances,” Opt. Lett. 30(15), 1956–1958 (2005).
[CrossRef] [PubMed]

2004 (2)

K. Inoue, H. Sasaki, K. Ishida, Y. Sugimoto, N. Ikeda, Y. Tanaka, S. Ohkouchi, Y. Nakamura, and K. Asakawa, “InAs quantum-dot laser utilizing GaAs photonic-crystal line-defect waveguide,” Opt. Express 12(22), 5502–5509 (2004).
[CrossRef] [PubMed]

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Demonstration of Ultra-high-Q Small Volume Toroid Microcavities on a chip,” Appl. Phys. Lett. 85(25), 6113–6115 (2004).
[CrossRef]

2003 (3)

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
[CrossRef] [PubMed]

B.-S. Song, S. Noda, and T. Asano, “Photonic devices based on in-plane hetero photonic crystals,” Science 300(5625), 1537–1537 (2003).
[CrossRef] [PubMed]

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[CrossRef] [PubMed]

2000 (1)

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel;, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405(6785), 437–440 (2000).
[CrossRef] [PubMed]

1999 (2)

F. J. García de Abajo, “Interaction of Radiation and Fast Electrons with Clusters of Dielectrics: A Multiple Scattering Approach,” Phys. Rev. Lett. 82(13), 2776–2779 (1999).
[CrossRef]

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-Gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[CrossRef] [PubMed]

1989 (1)

V. B. Braginsky, M. L. Gorodetsky, and S. Ilchenko, “Quality-factor and nonlinear properties of optical whispering-gallery modes,” Phys. Lett. A 137(7-8), 393–397 (1989).
[CrossRef]

1984 (1)

1981 (1)

1977 (1)

A. Ashkin and M. Dziedzic, “Observation of Resonances in the Radiation Pressure of Dielectric Spheres,” Phys. Rev. Lett. 38(23), 1351–1354 (1977).
[CrossRef]

1968 (1)

W. Stöber, A. Fink, and E. Bohn, “Controlled growth of monodisperse silica spheres in the micron size range,” J. Colloid Interface Sci. 26(1), 62–69 (1968).
[CrossRef]

Akahane, Y.

B.-S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005).
[CrossRef]

Armani, D. K.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
[CrossRef] [PubMed]

Asakawa, K.

Asano, T.

Ashkin, A.

A. Ashkin and J. M. Dziedzic, “Observation of optical resonances of dielectric spheres by light scattering,” Appl. Opt. 20(10), 1803–1814 (1981).
[CrossRef] [PubMed]

A. Ashkin and M. Dziedzic, “Observation of Resonances in the Radiation Pressure of Dielectric Spheres,” Phys. Rev. Lett. 38(23), 1351–1354 (1977).
[CrossRef]

Barber, P. W.

Blanco, A.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel;, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405(6785), 437–440 (2000).
[CrossRef] [PubMed]

Bohn, E.

W. Stöber, A. Fink, and E. Bohn, “Controlled growth of monodisperse silica spheres in the micron size range,” J. Colloid Interface Sci. 26(1), 62–69 (1968).
[CrossRef]

Braginsky, V. B.

V. B. Braginsky, M. L. Gorodetsky, and S. Ilchenko, “Quality-factor and nonlinear properties of optical whispering-gallery modes,” Phys. Lett. A 137(7-8), 393–397 (1989).
[CrossRef]

Chan, C. T.

Chomski, E.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel;, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405(6785), 437–440 (2000).
[CrossRef] [PubMed]

Conwell, P. R.

Dapkus, P. D.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-Gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[CrossRef] [PubMed]

Dziedzic, J. M.

Dziedzic, M.

A. Ashkin and M. Dziedzic, “Observation of Resonances in the Radiation Pressure of Dielectric Spheres,” Phys. Rev. Lett. 38(23), 1351–1354 (1977).
[CrossRef]

Fenollosa, R.

E. Xifré-Pérez, F. J. García de Abajo, R. Fenollosa, and F. Meseguer, “Photonic binding in silicon-colloid microcavities,” Phys. Rev. Lett. 103(10), 103902 (2009).
[CrossRef] [PubMed]

R. Fenollosa, F. Meseguer, and M. Tymczenko, “Silicon Colloids: From Microcavities to Photonic Sponges,” Adv. Mater. 20(1), 95–98 (2008).
[CrossRef]

Fink, A.

W. Stöber, A. Fink, and E. Bohn, “Controlled growth of monodisperse silica spheres in the micron size range,” J. Colloid Interface Sci. 26(1), 62–69 (1968).
[CrossRef]

García de Abajo, F. J.

E. Xifré-Pérez, F. J. García de Abajo, R. Fenollosa, and F. Meseguer, “Photonic binding in silicon-colloid microcavities,” Phys. Rev. Lett. 103(10), 103902 (2009).
[CrossRef] [PubMed]

F. J. García de Abajo, “Interaction of Radiation and Fast Electrons with Clusters of Dielectrics: A Multiple Scattering Approach,” Phys. Rev. Lett. 82(13), 2776–2779 (1999).
[CrossRef]

Gorodetsky, M. L.

V. B. Braginsky, M. L. Gorodetsky, and S. Ilchenko, “Quality-factor and nonlinear properties of optical whispering-gallery modes,” Phys. Lett. A 137(7-8), 393–397 (1989).
[CrossRef]

Grabtchak, S.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel;, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405(6785), 437–440 (2000).
[CrossRef] [PubMed]

Hagino, H.

Ibisate, M.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel;, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405(6785), 437–440 (2000).
[CrossRef] [PubMed]

Ikeda, N.

Ilchenko, S.

V. B. Braginsky, M. L. Gorodetsky, and S. Ilchenko, “Quality-factor and nonlinear properties of optical whispering-gallery modes,” Phys. Lett. A 137(7-8), 393–397 (1989).
[CrossRef]

Inoue, K.

Ishida, K.

John, S.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel;, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405(6785), 437–440 (2000).
[CrossRef] [PubMed]

Kim, I.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-Gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[CrossRef] [PubMed]

Kippenberg, T. J.

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Demonstration of Ultra-high-Q Small Volume Toroid Microcavities on a chip,” Appl. Phys. Lett. 85(25), 6113–6115 (2004).
[CrossRef]

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
[CrossRef] [PubMed]

Lee, R. K.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-Gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[CrossRef] [PubMed]

Leonard, S. W.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel;, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405(6785), 437–440 (2000).
[CrossRef] [PubMed]

Lin, Z.

Lopez, C.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel;, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405(6785), 437–440 (2000).
[CrossRef] [PubMed]

Meseguer, F.

E. Xifré-Pérez, F. J. García de Abajo, R. Fenollosa, and F. Meseguer, “Photonic binding in silicon-colloid microcavities,” Phys. Rev. Lett. 103(10), 103902 (2009).
[CrossRef] [PubMed]

R. Fenollosa, F. Meseguer, and M. Tymczenko, “Silicon Colloids: From Microcavities to Photonic Sponges,” Adv. Mater. 20(1), 95–98 (2008).
[CrossRef]

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel;, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405(6785), 437–440 (2000).
[CrossRef] [PubMed]

Miguez, H.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel;, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405(6785), 437–440 (2000).
[CrossRef] [PubMed]

Mondia, J. P.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel;, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405(6785), 437–440 (2000).
[CrossRef] [PubMed]

Muller, D. A.

D. A. Muller, “A sound barrier for silicon?” Nat. Mater. 4(9), 645–647 (2005).
[CrossRef] [PubMed]

Nakamura, Y.

Ng, J.

Noda, S.

O’Brien, J. D.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-Gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[CrossRef] [PubMed]

Ohkouchi, S.

Ozin, G. A.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel;, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405(6785), 437–440 (2000).
[CrossRef] [PubMed]

Painter, O.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-Gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[CrossRef] [PubMed]

Rushforth, C. K.

Sasaki, H.

Sato, Y.

Scherer, A.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-Gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[CrossRef] [PubMed]

Sheng, P.

Song, B.-S.

B.-S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005).
[CrossRef]

B.-S. Song, S. Noda, and T. Asano, “Photonic devices based on in-plane hetero photonic crystals,” Science 300(5625), 1537–1537 (2003).
[CrossRef] [PubMed]

Spillane, S. M.

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Demonstration of Ultra-high-Q Small Volume Toroid Microcavities on a chip,” Appl. Phys. Lett. 85(25), 6113–6115 (2004).
[CrossRef]

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
[CrossRef] [PubMed]

Stöber, W.

W. Stöber, A. Fink, and E. Bohn, “Controlled growth of monodisperse silica spheres in the micron size range,” J. Colloid Interface Sci. 26(1), 62–69 (1968).
[CrossRef]

Sugimoto, Y.

Sugiya, T.

Takahashi, Y.

Tanaka, Y.

Toader, O.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel;, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405(6785), 437–440 (2000).
[CrossRef] [PubMed]

Tymczenko, M.

R. Fenollosa, F. Meseguer, and M. Tymczenko, “Silicon Colloids: From Microcavities to Photonic Sponges,” Adv. Mater. 20(1), 95–98 (2008).
[CrossRef]

Vahala, K. J.

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Demonstration of Ultra-high-Q Small Volume Toroid Microcavities on a chip,” Appl. Phys. Lett. 85(25), 6113–6115 (2004).
[CrossRef]

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
[CrossRef] [PubMed]

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[CrossRef] [PubMed]

van Driel, H. M.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel;, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405(6785), 437–440 (2000).
[CrossRef] [PubMed]

Xifré-Pérez, E.

E. Xifré-Pérez, F. J. García de Abajo, R. Fenollosa, and F. Meseguer, “Photonic binding in silicon-colloid microcavities,” Phys. Rev. Lett. 103(10), 103902 (2009).
[CrossRef] [PubMed]

Yariv, A.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-Gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[CrossRef] [PubMed]

Adv. Mater. (1)

R. Fenollosa, F. Meseguer, and M. Tymczenko, “Silicon Colloids: From Microcavities to Photonic Sponges,” Adv. Mater. 20(1), 95–98 (2008).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Demonstration of Ultra-high-Q Small Volume Toroid Microcavities on a chip,” Appl. Phys. Lett. 85(25), 6113–6115 (2004).
[CrossRef]

J. Colloid Interface Sci. (1)

W. Stöber, A. Fink, and E. Bohn, “Controlled growth of monodisperse silica spheres in the micron size range,” J. Colloid Interface Sci. 26(1), 62–69 (1968).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. A (1)

Nat. Mater. (2)

D. A. Muller, “A sound barrier for silicon?” Nat. Mater. 4(9), 645–647 (2005).
[CrossRef] [PubMed]

B.-S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005).
[CrossRef]

Nature (3)

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel;, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405(6785), 437–440 (2000).
[CrossRef] [PubMed]

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
[CrossRef] [PubMed]

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Lett. (1)

Phys. Lett. A (1)

V. B. Braginsky, M. L. Gorodetsky, and S. Ilchenko, “Quality-factor and nonlinear properties of optical whispering-gallery modes,” Phys. Lett. A 137(7-8), 393–397 (1989).
[CrossRef]

Phys. Rev. Lett. (3)

F. J. García de Abajo, “Interaction of Radiation and Fast Electrons with Clusters of Dielectrics: A Multiple Scattering Approach,” Phys. Rev. Lett. 82(13), 2776–2779 (1999).
[CrossRef]

E. Xifré-Pérez, F. J. García de Abajo, R. Fenollosa, and F. Meseguer, “Photonic binding in silicon-colloid microcavities,” Phys. Rev. Lett. 103(10), 103902 (2009).
[CrossRef] [PubMed]

A. Ashkin and M. Dziedzic, “Observation of Resonances in the Radiation Pressure of Dielectric Spheres,” Phys. Rev. Lett. 38(23), 1351–1354 (1977).
[CrossRef]

Science (2)

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-Gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[CrossRef] [PubMed]

B.-S. Song, S. Noda, and T. Asano, “Photonic devices based on in-plane hetero photonic crystals,” Science 300(5625), 1537–1537 (2003).
[CrossRef] [PubMed]

Other (4)

R. Fenollosa, F. Meseguer, and M. Tymczenko, Spain Patent P200701681, 2007.

C. F. Bohren, and D. R. Huffman, Absorption and Scattering of Light by Small Particles (JohnWiley & Sons, New York, NY 1998).

P. W. Barber, and S. C. Hill, Light Scattering by Particles: Computational Methods (World Scientific, Singapore, 1990).

E. Palik, Handbook of Optical Constants of Solids, Vol. 1 (Academic Press, New York, NY 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics