Abstract

We propose a simple approach to performing simultaneous multi-channel data exchange using bidirectional degenerate four-wave mixing (FWM) in a single highly nonlinear fiber (HNLF) assisted by optical filtering. Data exchange between two-channel 100-Gbit/s return-to-zero differential quadrature phase-shift keying (RZ-DQPSK) signals with a variable channel spacing is implemented with a power penalty of less than 4.2 dB at a bit-error rate (BER) of 10−9. Moreover, simultaneous ITU-grid-compatible four-channel 100-Gbit/s RZ-DQPSK data exchange is demonstrated with a power penalty of less than 4.7 dB at a BER of 10−9.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. S. Hamza and J. S. Deogun, “Wavelength-exchanging cross connects (WEX) - A new class of photonic cross-connect architectures,” J. Lightwave Technol. 24(3), 1101–1111 (2006).
    [CrossRef]
  2. K. Mori, H. Takara, and M. Saruwatari, “Wavelength interchange with an optical parametric loop mirror,” Electron. Lett. 33(6), 520–522 (1997).
    [CrossRef]
  3. Y. Gao, Y. H. Dai, C. Shu, and S. L. He, “Wavelength interchange of phase-shift-keying signal,” IEEE Photon. Technol. Lett. 22(11), 838–840 (2010).
    [CrossRef]
  4. K. Uesaka, K. K.-Y. Wong, M. E. Marhic, and L. G. Kazovsky, “Wavelength exchange in a highly nonlinear dispersion-shifted fiber: Theory and experiments,” IEEE J. Sel. Top. Quantum Electron. 8(3), 560–568 (2002).
    [CrossRef]
  5. R. W. L. Fung, H. K. Y. Cheung, and K. K. Y. Wong, “Widely tunable wavelength exchange in anomalous-dispersion regime,” IEEE Photon. Technol. Lett. 19(22), 1846–1848 (2007).
    [CrossRef]
  6. M. Z. Shen, X. Xu, T. I. Yuk, and K. K. Y. Wong, “Byte-level parametric wavelength exchange for narrow pulsewidth return-to-zero signal,” IEEE Photon. Technol. Lett. 21(21), 1591–1593 (2009).
    [CrossRef]
  7. J. Wang, Z. Bakhtiari, S. R. Nuccio, O. F. Yilmaz, X. Wu, and A. E. Willner, “Phase-transparent optical data exchange of 40 Gbit/s differential phase-shift keying signals,” Opt. Lett. 35(17), 2979–2981 (2010).
    [CrossRef] [PubMed]
  8. J. Wang, S. R. Nuccio, H. Huang, X. Wang, J.-Y. Yang, and A. E. Willner, “Optical data exchange of 100-Gbit/s DQPSK signals,” Opt. Express 18(23), 23740–23745 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-23-23740 .
    [CrossRef] [PubMed]
  9. J. Wang, S. R. Nuccio, X. Wu, O. F. Yilmaz, L. Zhang, I. Fazal, J.-Y. Yang, Y. Yue, and A. E. Willner, “40 Gbit/s optical data exchange between wavelength-division-multiplexed channels using a periodically poled lithium niobate waveguide,” Opt. Lett. 35(7), 1067–1069 (2010).
    [CrossRef] [PubMed]
  10. J. Wang, H. Huang, X. Wang, J.-Y. Yang, and A. E. Willner, “Optical phase-transparent data grooming exchange of multi-channel 100-Gbit/s RZ-DQPSK signals,” Proc. IEEE 23rd Photonics Society Annual Meeting 2010, Denver, Colorado, USA, paper WN2, 2010.
  11. T. Tsuzaki, T. Miyamoto, T. Okuno, M. Kakui, M. Hirano, M. Onishi, and M. Shigematsu, “Impact of double Rayleigh backscattering in discrete fiber Raman amplifiers employing highly nonlinear fiber,” Proc. OSA/OAA 2002, Vancouver, Canada, paper OWA2, 2002.

2010 (4)

2009 (1)

M. Z. Shen, X. Xu, T. I. Yuk, and K. K. Y. Wong, “Byte-level parametric wavelength exchange for narrow pulsewidth return-to-zero signal,” IEEE Photon. Technol. Lett. 21(21), 1591–1593 (2009).
[CrossRef]

2007 (1)

R. W. L. Fung, H. K. Y. Cheung, and K. K. Y. Wong, “Widely tunable wavelength exchange in anomalous-dispersion regime,” IEEE Photon. Technol. Lett. 19(22), 1846–1848 (2007).
[CrossRef]

2006 (1)

2002 (1)

K. Uesaka, K. K.-Y. Wong, M. E. Marhic, and L. G. Kazovsky, “Wavelength exchange in a highly nonlinear dispersion-shifted fiber: Theory and experiments,” IEEE J. Sel. Top. Quantum Electron. 8(3), 560–568 (2002).
[CrossRef]

1997 (1)

K. Mori, H. Takara, and M. Saruwatari, “Wavelength interchange with an optical parametric loop mirror,” Electron. Lett. 33(6), 520–522 (1997).
[CrossRef]

Bakhtiari, Z.

Cheung, H. K. Y.

R. W. L. Fung, H. K. Y. Cheung, and K. K. Y. Wong, “Widely tunable wavelength exchange in anomalous-dispersion regime,” IEEE Photon. Technol. Lett. 19(22), 1846–1848 (2007).
[CrossRef]

Dai, Y. H.

Y. Gao, Y. H. Dai, C. Shu, and S. L. He, “Wavelength interchange of phase-shift-keying signal,” IEEE Photon. Technol. Lett. 22(11), 838–840 (2010).
[CrossRef]

Deogun, J. S.

Fazal, I.

Fung, R. W. L.

R. W. L. Fung, H. K. Y. Cheung, and K. K. Y. Wong, “Widely tunable wavelength exchange in anomalous-dispersion regime,” IEEE Photon. Technol. Lett. 19(22), 1846–1848 (2007).
[CrossRef]

Gao, Y.

Y. Gao, Y. H. Dai, C. Shu, and S. L. He, “Wavelength interchange of phase-shift-keying signal,” IEEE Photon. Technol. Lett. 22(11), 838–840 (2010).
[CrossRef]

Hamza, H. S.

He, S. L.

Y. Gao, Y. H. Dai, C. Shu, and S. L. He, “Wavelength interchange of phase-shift-keying signal,” IEEE Photon. Technol. Lett. 22(11), 838–840 (2010).
[CrossRef]

Huang, H.

Kazovsky, L. G.

K. Uesaka, K. K.-Y. Wong, M. E. Marhic, and L. G. Kazovsky, “Wavelength exchange in a highly nonlinear dispersion-shifted fiber: Theory and experiments,” IEEE J. Sel. Top. Quantum Electron. 8(3), 560–568 (2002).
[CrossRef]

Marhic, M. E.

K. Uesaka, K. K.-Y. Wong, M. E. Marhic, and L. G. Kazovsky, “Wavelength exchange in a highly nonlinear dispersion-shifted fiber: Theory and experiments,” IEEE J. Sel. Top. Quantum Electron. 8(3), 560–568 (2002).
[CrossRef]

Mori, K.

K. Mori, H. Takara, and M. Saruwatari, “Wavelength interchange with an optical parametric loop mirror,” Electron. Lett. 33(6), 520–522 (1997).
[CrossRef]

Nuccio, S. R.

Saruwatari, M.

K. Mori, H. Takara, and M. Saruwatari, “Wavelength interchange with an optical parametric loop mirror,” Electron. Lett. 33(6), 520–522 (1997).
[CrossRef]

Shen, M. Z.

M. Z. Shen, X. Xu, T. I. Yuk, and K. K. Y. Wong, “Byte-level parametric wavelength exchange for narrow pulsewidth return-to-zero signal,” IEEE Photon. Technol. Lett. 21(21), 1591–1593 (2009).
[CrossRef]

Shu, C.

Y. Gao, Y. H. Dai, C. Shu, and S. L. He, “Wavelength interchange of phase-shift-keying signal,” IEEE Photon. Technol. Lett. 22(11), 838–840 (2010).
[CrossRef]

Takara, H.

K. Mori, H. Takara, and M. Saruwatari, “Wavelength interchange with an optical parametric loop mirror,” Electron. Lett. 33(6), 520–522 (1997).
[CrossRef]

Uesaka, K.

K. Uesaka, K. K.-Y. Wong, M. E. Marhic, and L. G. Kazovsky, “Wavelength exchange in a highly nonlinear dispersion-shifted fiber: Theory and experiments,” IEEE J. Sel. Top. Quantum Electron. 8(3), 560–568 (2002).
[CrossRef]

Wang, J.

Wang, X.

Willner, A. E.

Wong, K. K. Y.

M. Z. Shen, X. Xu, T. I. Yuk, and K. K. Y. Wong, “Byte-level parametric wavelength exchange for narrow pulsewidth return-to-zero signal,” IEEE Photon. Technol. Lett. 21(21), 1591–1593 (2009).
[CrossRef]

R. W. L. Fung, H. K. Y. Cheung, and K. K. Y. Wong, “Widely tunable wavelength exchange in anomalous-dispersion regime,” IEEE Photon. Technol. Lett. 19(22), 1846–1848 (2007).
[CrossRef]

Wong, K. K.-Y.

K. Uesaka, K. K.-Y. Wong, M. E. Marhic, and L. G. Kazovsky, “Wavelength exchange in a highly nonlinear dispersion-shifted fiber: Theory and experiments,” IEEE J. Sel. Top. Quantum Electron. 8(3), 560–568 (2002).
[CrossRef]

Wu, X.

Xu, X.

M. Z. Shen, X. Xu, T. I. Yuk, and K. K. Y. Wong, “Byte-level parametric wavelength exchange for narrow pulsewidth return-to-zero signal,” IEEE Photon. Technol. Lett. 21(21), 1591–1593 (2009).
[CrossRef]

Yang, J.-Y.

Yilmaz, O. F.

Yue, Y.

Yuk, T. I.

M. Z. Shen, X. Xu, T. I. Yuk, and K. K. Y. Wong, “Byte-level parametric wavelength exchange for narrow pulsewidth return-to-zero signal,” IEEE Photon. Technol. Lett. 21(21), 1591–1593 (2009).
[CrossRef]

Zhang, L.

Electron. Lett. (1)

K. Mori, H. Takara, and M. Saruwatari, “Wavelength interchange with an optical parametric loop mirror,” Electron. Lett. 33(6), 520–522 (1997).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

K. Uesaka, K. K.-Y. Wong, M. E. Marhic, and L. G. Kazovsky, “Wavelength exchange in a highly nonlinear dispersion-shifted fiber: Theory and experiments,” IEEE J. Sel. Top. Quantum Electron. 8(3), 560–568 (2002).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

R. W. L. Fung, H. K. Y. Cheung, and K. K. Y. Wong, “Widely tunable wavelength exchange in anomalous-dispersion regime,” IEEE Photon. Technol. Lett. 19(22), 1846–1848 (2007).
[CrossRef]

M. Z. Shen, X. Xu, T. I. Yuk, and K. K. Y. Wong, “Byte-level parametric wavelength exchange for narrow pulsewidth return-to-zero signal,” IEEE Photon. Technol. Lett. 21(21), 1591–1593 (2009).
[CrossRef]

Y. Gao, Y. H. Dai, C. Shu, and S. L. He, “Wavelength interchange of phase-shift-keying signal,” IEEE Photon. Technol. Lett. 22(11), 838–840 (2010).
[CrossRef]

J. Lightwave Technol. (1)

Opt. Express (1)

Opt. Lett. (2)

Other (2)

J. Wang, H. Huang, X. Wang, J.-Y. Yang, and A. E. Willner, “Optical phase-transparent data grooming exchange of multi-channel 100-Gbit/s RZ-DQPSK signals,” Proc. IEEE 23rd Photonics Society Annual Meeting 2010, Denver, Colorado, USA, paper WN2, 2010.

T. Tsuzaki, T. Miyamoto, T. Okuno, M. Kakui, M. Hirano, M. Onishi, and M. Shigematsu, “Impact of double Rayleigh backscattering in discrete fiber Raman amplifiers employing highly nonlinear fiber,” Proc. OSA/OAA 2002, Vancouver, Canada, paper OWA2, 2002.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Concept and principle of simultaneous multi-channel DQPSK data exchange.

Fig. 2
Fig. 2

Experimental setup for multi-channel DQPSK data exchange. HNLF: highly nonlinear fiber; BPF: band-pass filter; PC: polarization controller; EDFA: erbium-doped fiber amplifier; ISO: isolator; OC: optical coupler; TDL: tunable delay line; MZM: Mach-Zehnder modulator; WSS: wavelength-selective switch; VOL: variable optical attenuator; DLI: delay line interferometer; Tx: transmitter; Rx: receiver.

Fig. 3
Fig. 3

Spectra for two-channel DQPSK data exchange with variable channel spacing of (a1)(b1) 9.67 nm (SA: 1550.12 nm, SB: 1559.79 nm), (a2)(b2) 4.84 nm (SA: 1552.52 nm, SB: 1557.36 nm), (a3)(b3) 14.51 nm (SA: 1547.72 nm, SB: 1562.23 nm). (a1)(a2)(a3) Input two-channel 100-Gbit/s RZ-DQPSK signals (point A in Fig. 2). (b1)(b2)(b3) Spectra measured at point B in Fig. 2 in the absence (dashed curve: Rayleigh scattering) / presence (solid curve: after data exchange) of CW pump.

Fig. 4
Fig. 4

Waveforms and balanced eyes of demodulated in-phase (Ch. I) and quadrature (Ch. Q) components for two-channel 100-Gbit/s DQPSK data exchange corresponding to Fig. 3(a1)(b1).

Fig. 5
Fig. 5

BER curves for two-channel 100-Gbit/s DQPSK data exchange. (a1)(b1), (a2)(b2), (a3)(b3) correspond to Fig. 3(b1), (b2) and (b3), respectively.

Fig. 6
Fig. 6

Spectra for four-channel DQPSK data exchange. (a) Input four-channel 100-Gbit/s RZ-DQPSK signals (point A in Fig. 2). (b) Spectra measured at point B in Fig. 2 in the absence (dashed curve: Rayleigh scattering)/presence (solid curve: after data exchange) of CW pump.

Fig. 7
Fig. 7

Waveforms and balanced eyes of demodulated in-phase (Ch. I) and quadrature (Ch. Q) components for four-channel 100-Gbit/s DQPSK data exchange.

Fig. 8
Fig. 8

BER curves for simultaneous four-channel 100-Gbit/s DQPSK data exchange.

Metrics