Abstract

We describe measurement results of silicon photonic circuits at cryogenic temperatures. The interplay between optically induced heating and free carrier dynamics in nano-photonic ring resonators is investigated at temperatures down to 1.8K. We find that the life-time of free carriers generated by two-photon absorption in silicon waveguides is reduced from 1.9ns at room temperature to less than 100ps below 10K. At the same time the thermal relaxation time is significantly elongated. Our work provides the first cryogenic measurement of ultra-short free-carrier lifetimes in silicon waveguides. The results further indicate that integrated optical chips can be easily thermo-optically stabilized at low temperatures.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. A. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1678–1687 (2006).
    [CrossRef]
  2. R. A. Soref, S. J. Emelett, and W. R. Buchwald, “Silicon waveguided components for the long-wave infrared region,” J. Opt. A, Pure Appl. Opt. 8(10), 840–848 (2006).
    [CrossRef]
  3. V. R. Almeida and M. Lipson, “Optical bistability on a silicon chip,” Opt. Lett. 29(20), 2387–2389 (2004).
    [CrossRef] [PubMed]
  4. T. Baehr-Jones and M. Hochberg, “Silicon photonics: slot machine,” Nat. Photonics 3(4), 193–194 (2009).
    [CrossRef]
  5. P. Barclay, K. Srinivasan, and O. Painter, “Nonlinear response of silicon photonic crystal microresonators excited via an integrated waveguide and fiber taper,” Opt. Express 13(3), 801–820 (2005).
    [CrossRef] [PubMed]
  6. D. Dimitropoulos, R. Jhaveri, R. Claps, J. Woo, and B. Jalali, “Lifetime of photogenerated carriers in silicon-on insulator rib waveguides,” Appl. Phys. Lett. 86(7), 071115 (2005).
    [CrossRef]
  7. Q. Lin, O. J. Painter, and G. P. Agrawal, “Nonlinear optical phenomena in silicon waveguides: modeling and applications,” Opt. Express 15(25), 16604–16644 (2007).
    [CrossRef] [PubMed]
  8. R. Claps, V. Raghunathan, D. Dimitropoulos, and B. Jalali, “Influence of nonlinear absorption on Raman amplification in Silicon waveguides,” Opt. Express 12(12), 2774–2780 (2004).
    [CrossRef] [PubMed]
  9. M. Li, W. H. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456(7221), 480–484 (2008).
    [CrossRef] [PubMed]
  10. H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433(7023), 292–294 (2005).
    [CrossRef] [PubMed]
  11. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
    [CrossRef] [PubMed]
  12. Y.-H. Kuo, H. Rong, V. Sih, S. Xu, M. Paniccia, and O. Cohen, “Demonstration of wavelength conversion at 40 Gb/s data rate in silicon waveguides,” Opt. Express 14(24), 11721–11726 (2006).
    [CrossRef] [PubMed]
  13. M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441(7096), 960–963 (2006).
    [CrossRef] [PubMed]
  14. A. C. Turner-Foster, M. A. Foster, J. S. Levy, C. B. Poitras, R. Salem, A. L. Gaeta, and M. Lipson, “Ultrashort free-carrier lifetime in low-loss silicon nanowaveguides,” Opt. Express 18(4), 3582–3591 (2010).
    [CrossRef] [PubMed]
  15. M. Waldow, T. Plötzing, M. Gottheil, M. Först, J. Bolten, T. Wahlbrink, and H. Kurz, “25ps all-optical switching in oxygen implanted silicon-on-insulator microring resonator,” Opt. Express 16(11), 7693–7702 (2008).
    [CrossRef] [PubMed]
  16. T. J. Johnson and O. J. Painter, “Passive modification of free carrier lifetime in high-Q silicon-on-insulator optics,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper CFF4.
  17. W. H. P. Pernice, M. Li, and H. X. Tang, “Time-domain measurement of optical transport in silicon micro-ring resonators,” Opt. Express 18(17), 18438–18452 (2010).
    [CrossRef] [PubMed]
  18. M. Fox, Optical Properties of Solids, 2nd ed. (Oxford University Press, 2010).
  19. J. Batista, A. Mandelis, and D. Shaughnessy, “Temperature dependence of carrier mobility in Si wafers measured by infrared photocarrier radiometry,” Appl. Phys. Lett. 82(23), 4077–4079 (2003).
    [CrossRef]
  20. A. Salnick, C. Jean, and A. Mandelis, “Noncontacting photothermal radiometry of SiO2/Si MOS capacitor structures,” Solid-State Electron. 41(4), 591–597 (1997).
    [CrossRef]
  21. W. H. P. Pernice, “Mo Li, and H.X. Tang, “Photothermal actuation in nanomechanical waveguide devices,” J. Appl. Phys. 105, 014508 (2009).
    [CrossRef]

2010 (2)

2009 (2)

W. H. P. Pernice, “Mo Li, and H.X. Tang, “Photothermal actuation in nanomechanical waveguide devices,” J. Appl. Phys. 105, 014508 (2009).
[CrossRef]

T. Baehr-Jones and M. Hochberg, “Silicon photonics: slot machine,” Nat. Photonics 3(4), 193–194 (2009).
[CrossRef]

2008 (2)

M. Li, W. H. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456(7221), 480–484 (2008).
[CrossRef] [PubMed]

M. Waldow, T. Plötzing, M. Gottheil, M. Först, J. Bolten, T. Wahlbrink, and H. Kurz, “25ps all-optical switching in oxygen implanted silicon-on-insulator microring resonator,” Opt. Express 16(11), 7693–7702 (2008).
[CrossRef] [PubMed]

2007 (1)

2006 (4)

R. A. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1678–1687 (2006).
[CrossRef]

R. A. Soref, S. J. Emelett, and W. R. Buchwald, “Silicon waveguided components for the long-wave infrared region,” J. Opt. A, Pure Appl. Opt. 8(10), 840–848 (2006).
[CrossRef]

Y.-H. Kuo, H. Rong, V. Sih, S. Xu, M. Paniccia, and O. Cohen, “Demonstration of wavelength conversion at 40 Gb/s data rate in silicon waveguides,” Opt. Express 14(24), 11721–11726 (2006).
[CrossRef] [PubMed]

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441(7096), 960–963 (2006).
[CrossRef] [PubMed]

2005 (4)

P. Barclay, K. Srinivasan, and O. Painter, “Nonlinear response of silicon photonic crystal microresonators excited via an integrated waveguide and fiber taper,” Opt. Express 13(3), 801–820 (2005).
[CrossRef] [PubMed]

D. Dimitropoulos, R. Jhaveri, R. Claps, J. Woo, and B. Jalali, “Lifetime of photogenerated carriers in silicon-on insulator rib waveguides,” Appl. Phys. Lett. 86(7), 071115 (2005).
[CrossRef]

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433(7023), 292–294 (2005).
[CrossRef] [PubMed]

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[CrossRef] [PubMed]

2004 (2)

2003 (1)

J. Batista, A. Mandelis, and D. Shaughnessy, “Temperature dependence of carrier mobility in Si wafers measured by infrared photocarrier radiometry,” Appl. Phys. Lett. 82(23), 4077–4079 (2003).
[CrossRef]

1997 (1)

A. Salnick, C. Jean, and A. Mandelis, “Noncontacting photothermal radiometry of SiO2/Si MOS capacitor structures,” Solid-State Electron. 41(4), 591–597 (1997).
[CrossRef]

Agrawal, G. P.

Almeida, V. R.

Baehr-Jones, T.

T. Baehr-Jones and M. Hochberg, “Silicon photonics: slot machine,” Nat. Photonics 3(4), 193–194 (2009).
[CrossRef]

M. Li, W. H. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456(7221), 480–484 (2008).
[CrossRef] [PubMed]

Barclay, P.

Batista, J.

J. Batista, A. Mandelis, and D. Shaughnessy, “Temperature dependence of carrier mobility in Si wafers measured by infrared photocarrier radiometry,” Appl. Phys. Lett. 82(23), 4077–4079 (2003).
[CrossRef]

Bolten, J.

Buchwald, W. R.

R. A. Soref, S. J. Emelett, and W. R. Buchwald, “Silicon waveguided components for the long-wave infrared region,” J. Opt. A, Pure Appl. Opt. 8(10), 840–848 (2006).
[CrossRef]

Claps, R.

D. Dimitropoulos, R. Jhaveri, R. Claps, J. Woo, and B. Jalali, “Lifetime of photogenerated carriers in silicon-on insulator rib waveguides,” Appl. Phys. Lett. 86(7), 071115 (2005).
[CrossRef]

R. Claps, V. Raghunathan, D. Dimitropoulos, and B. Jalali, “Influence of nonlinear absorption on Raman amplification in Silicon waveguides,” Opt. Express 12(12), 2774–2780 (2004).
[CrossRef] [PubMed]

Cohen, O.

Y.-H. Kuo, H. Rong, V. Sih, S. Xu, M. Paniccia, and O. Cohen, “Demonstration of wavelength conversion at 40 Gb/s data rate in silicon waveguides,” Opt. Express 14(24), 11721–11726 (2006).
[CrossRef] [PubMed]

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433(7023), 292–294 (2005).
[CrossRef] [PubMed]

Dimitropoulos, D.

D. Dimitropoulos, R. Jhaveri, R. Claps, J. Woo, and B. Jalali, “Lifetime of photogenerated carriers in silicon-on insulator rib waveguides,” Appl. Phys. Lett. 86(7), 071115 (2005).
[CrossRef]

R. Claps, V. Raghunathan, D. Dimitropoulos, and B. Jalali, “Influence of nonlinear absorption on Raman amplification in Silicon waveguides,” Opt. Express 12(12), 2774–2780 (2004).
[CrossRef] [PubMed]

Emelett, S. J.

R. A. Soref, S. J. Emelett, and W. R. Buchwald, “Silicon waveguided components for the long-wave infrared region,” J. Opt. A, Pure Appl. Opt. 8(10), 840–848 (2006).
[CrossRef]

Fang, A.

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433(7023), 292–294 (2005).
[CrossRef] [PubMed]

Först, M.

Foster, M. A.

A. C. Turner-Foster, M. A. Foster, J. S. Levy, C. B. Poitras, R. Salem, A. L. Gaeta, and M. Lipson, “Ultrashort free-carrier lifetime in low-loss silicon nanowaveguides,” Opt. Express 18(4), 3582–3591 (2010).
[CrossRef] [PubMed]

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441(7096), 960–963 (2006).
[CrossRef] [PubMed]

Gaeta, A. L.

A. C. Turner-Foster, M. A. Foster, J. S. Levy, C. B. Poitras, R. Salem, A. L. Gaeta, and M. Lipson, “Ultrashort free-carrier lifetime in low-loss silicon nanowaveguides,” Opt. Express 18(4), 3582–3591 (2010).
[CrossRef] [PubMed]

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441(7096), 960–963 (2006).
[CrossRef] [PubMed]

Gottheil, M.

Hak, D.

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433(7023), 292–294 (2005).
[CrossRef] [PubMed]

Hochberg, M.

T. Baehr-Jones and M. Hochberg, “Silicon photonics: slot machine,” Nat. Photonics 3(4), 193–194 (2009).
[CrossRef]

M. Li, W. H. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456(7221), 480–484 (2008).
[CrossRef] [PubMed]

Jalali, B.

D. Dimitropoulos, R. Jhaveri, R. Claps, J. Woo, and B. Jalali, “Lifetime of photogenerated carriers in silicon-on insulator rib waveguides,” Appl. Phys. Lett. 86(7), 071115 (2005).
[CrossRef]

R. Claps, V. Raghunathan, D. Dimitropoulos, and B. Jalali, “Influence of nonlinear absorption on Raman amplification in Silicon waveguides,” Opt. Express 12(12), 2774–2780 (2004).
[CrossRef] [PubMed]

Jean, C.

A. Salnick, C. Jean, and A. Mandelis, “Noncontacting photothermal radiometry of SiO2/Si MOS capacitor structures,” Solid-State Electron. 41(4), 591–597 (1997).
[CrossRef]

Jhaveri, R.

D. Dimitropoulos, R. Jhaveri, R. Claps, J. Woo, and B. Jalali, “Lifetime of photogenerated carriers in silicon-on insulator rib waveguides,” Appl. Phys. Lett. 86(7), 071115 (2005).
[CrossRef]

Jones, R.

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433(7023), 292–294 (2005).
[CrossRef] [PubMed]

Kuo, Y.-H.

Kurz, H.

Levy, J. S.

Li, M.

W. H. P. Pernice, M. Li, and H. X. Tang, “Time-domain measurement of optical transport in silicon micro-ring resonators,” Opt. Express 18(17), 18438–18452 (2010).
[CrossRef] [PubMed]

M. Li, W. H. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456(7221), 480–484 (2008).
[CrossRef] [PubMed]

Lin, Q.

Lipson, M.

A. C. Turner-Foster, M. A. Foster, J. S. Levy, C. B. Poitras, R. Salem, A. L. Gaeta, and M. Lipson, “Ultrashort free-carrier lifetime in low-loss silicon nanowaveguides,” Opt. Express 18(4), 3582–3591 (2010).
[CrossRef] [PubMed]

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441(7096), 960–963 (2006).
[CrossRef] [PubMed]

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[CrossRef] [PubMed]

V. R. Almeida and M. Lipson, “Optical bistability on a silicon chip,” Opt. Lett. 29(20), 2387–2389 (2004).
[CrossRef] [PubMed]

Liu, A.

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433(7023), 292–294 (2005).
[CrossRef] [PubMed]

Mandelis, A.

J. Batista, A. Mandelis, and D. Shaughnessy, “Temperature dependence of carrier mobility in Si wafers measured by infrared photocarrier radiometry,” Appl. Phys. Lett. 82(23), 4077–4079 (2003).
[CrossRef]

A. Salnick, C. Jean, and A. Mandelis, “Noncontacting photothermal radiometry of SiO2/Si MOS capacitor structures,” Solid-State Electron. 41(4), 591–597 (1997).
[CrossRef]

Nicolaescu, R.

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433(7023), 292–294 (2005).
[CrossRef] [PubMed]

Painter, O.

Painter, O. J.

Paniccia, M.

Y.-H. Kuo, H. Rong, V. Sih, S. Xu, M. Paniccia, and O. Cohen, “Demonstration of wavelength conversion at 40 Gb/s data rate in silicon waveguides,” Opt. Express 14(24), 11721–11726 (2006).
[CrossRef] [PubMed]

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433(7023), 292–294 (2005).
[CrossRef] [PubMed]

Pernice, W. H.

M. Li, W. H. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456(7221), 480–484 (2008).
[CrossRef] [PubMed]

Pernice, W. H. P.

W. H. P. Pernice, M. Li, and H. X. Tang, “Time-domain measurement of optical transport in silicon micro-ring resonators,” Opt. Express 18(17), 18438–18452 (2010).
[CrossRef] [PubMed]

W. H. P. Pernice, “Mo Li, and H.X. Tang, “Photothermal actuation in nanomechanical waveguide devices,” J. Appl. Phys. 105, 014508 (2009).
[CrossRef]

Plötzing, T.

Poitras, C. B.

Pradhan, S.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[CrossRef] [PubMed]

Raghunathan, V.

Rong, H.

Y.-H. Kuo, H. Rong, V. Sih, S. Xu, M. Paniccia, and O. Cohen, “Demonstration of wavelength conversion at 40 Gb/s data rate in silicon waveguides,” Opt. Express 14(24), 11721–11726 (2006).
[CrossRef] [PubMed]

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433(7023), 292–294 (2005).
[CrossRef] [PubMed]

Salem, R.

Salnick, A.

A. Salnick, C. Jean, and A. Mandelis, “Noncontacting photothermal radiometry of SiO2/Si MOS capacitor structures,” Solid-State Electron. 41(4), 591–597 (1997).
[CrossRef]

Schmidt, B.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[CrossRef] [PubMed]

Schmidt, B. S.

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441(7096), 960–963 (2006).
[CrossRef] [PubMed]

Sharping, J. E.

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441(7096), 960–963 (2006).
[CrossRef] [PubMed]

Shaughnessy, D.

J. Batista, A. Mandelis, and D. Shaughnessy, “Temperature dependence of carrier mobility in Si wafers measured by infrared photocarrier radiometry,” Appl. Phys. Lett. 82(23), 4077–4079 (2003).
[CrossRef]

Sih, V.

Soref, R. A.

R. A. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1678–1687 (2006).
[CrossRef]

R. A. Soref, S. J. Emelett, and W. R. Buchwald, “Silicon waveguided components for the long-wave infrared region,” J. Opt. A, Pure Appl. Opt. 8(10), 840–848 (2006).
[CrossRef]

Srinivasan, K.

Tang, H. X.

W. H. P. Pernice, M. Li, and H. X. Tang, “Time-domain measurement of optical transport in silicon micro-ring resonators,” Opt. Express 18(17), 18438–18452 (2010).
[CrossRef] [PubMed]

M. Li, W. H. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456(7221), 480–484 (2008).
[CrossRef] [PubMed]

Turner, A. C.

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441(7096), 960–963 (2006).
[CrossRef] [PubMed]

Turner-Foster, A. C.

Wahlbrink, T.

Waldow, M.

Woo, J.

D. Dimitropoulos, R. Jhaveri, R. Claps, J. Woo, and B. Jalali, “Lifetime of photogenerated carriers in silicon-on insulator rib waveguides,” Appl. Phys. Lett. 86(7), 071115 (2005).
[CrossRef]

Xiong, C.

M. Li, W. H. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456(7221), 480–484 (2008).
[CrossRef] [PubMed]

Xu, Q.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[CrossRef] [PubMed]

Xu, S.

Appl. Phys. Lett. (2)

D. Dimitropoulos, R. Jhaveri, R. Claps, J. Woo, and B. Jalali, “Lifetime of photogenerated carriers in silicon-on insulator rib waveguides,” Appl. Phys. Lett. 86(7), 071115 (2005).
[CrossRef]

J. Batista, A. Mandelis, and D. Shaughnessy, “Temperature dependence of carrier mobility in Si wafers measured by infrared photocarrier radiometry,” Appl. Phys. Lett. 82(23), 4077–4079 (2003).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

R. A. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1678–1687 (2006).
[CrossRef]

J. Appl. Phys. (1)

W. H. P. Pernice, “Mo Li, and H.X. Tang, “Photothermal actuation in nanomechanical waveguide devices,” J. Appl. Phys. 105, 014508 (2009).
[CrossRef]

J. Opt. A, Pure Appl. Opt. (1)

R. A. Soref, S. J. Emelett, and W. R. Buchwald, “Silicon waveguided components for the long-wave infrared region,” J. Opt. A, Pure Appl. Opt. 8(10), 840–848 (2006).
[CrossRef]

Nat. Photonics (1)

T. Baehr-Jones and M. Hochberg, “Silicon photonics: slot machine,” Nat. Photonics 3(4), 193–194 (2009).
[CrossRef]

Nature (4)

M. Li, W. H. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456(7221), 480–484 (2008).
[CrossRef] [PubMed]

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433(7023), 292–294 (2005).
[CrossRef] [PubMed]

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[CrossRef] [PubMed]

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441(7096), 960–963 (2006).
[CrossRef] [PubMed]

Opt. Express (7)

Opt. Lett. (1)

Solid-State Electron. (1)

A. Salnick, C. Jean, and A. Mandelis, “Noncontacting photothermal radiometry of SiO2/Si MOS capacitor structures,” Solid-State Electron. 41(4), 591–597 (1997).
[CrossRef]

Other (2)

M. Fox, Optical Properties of Solids, 2nd ed. (Oxford University Press, 2010).

T. J. Johnson and O. J. Painter, “Passive modification of free carrier lifetime in high-Q silicon-on-insulator optics,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper CFF4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

a) The cryogenic time-domain measurement setup. The device under test (DUT) is mounted inside a liquid helium cryostat, temperature controllable through a heater stage. Light from a tunable laser source is guided to the sample through optical fibers. Using an optical modulator combined with a pulse generator, the DUT can be read out in the time domain in a wavelength tunable fashion. Two cascaded fiber amplifiers are used to boost the pulse power up by 54dB. b) The measured transmission spectrum for a fabricated sample at room temperature. The best extinction ratio is approaching 30dB at an optical quality factor of 26,000. Inset: An optical micrograph of a typical fabricated device.

Fig. 2
Fig. 2

a) The resonance dynamics of the ring resonator at liquid nitrogen temperature. Shown is the pulse profile of a slightly blue detuned pump wavelength in dependence of input power (amplifier current ranging from 650mA to 900mA, bottom to top). When the output power is increased, the thermo-optical effect is increases leading to a pronounced thermal shift of the ring resonance during the pulse. The spike at the initial position of the pulse is due to carrier generated absorption and FCD. b) The influence of thermal heating on device transmission in the temperature range from 5K to 293K, taken at 700mA amplifier current. When the temperature is decreased, the thermal heating effect slows down, leading to a slower shift of the resonance during the pulse duration. c) The measured thermo-optical rise time shifting the resonance out of the pulse wavelength.

Fig. 3
Fig. 3

a) Zoom into the carrier induced spike during the initial stage of a 40ns pulse. Shown are traces taken at temperatures from 5K to 45K. With increasing temperature the decay time of the pulse increases which is the signature of increased carrier life-times. b) The measured dependence of the free carrier lifetime on temperature. Between 10K and room temperature the lifetime increases almost linearly from 55ps to 1.9ns, while the low temperature lifetime saturates at 43ps.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δ ω ( t ) = Δ ω i ω 0 n ( g t o T ( t ) + g F C N ( t ) )

Metrics