Abstract

Fluorescence microscopy using single molecule imaging and localization (PALM, STORM, and similar approaches) has quickly been adopted as a convenient method for obtaining multicolor, 3D superresolution images of biological samples. Using an approach based on extensive Monte Carlo simulations, we examined the performance of various noise reducing filters required for the detection of candidate molecules. We determined a suitable noise reduction method and derived an optimal, nonlinear threshold which minimizes detection errors introduced by conventional algorithms. We also present a new technique for visualization of single molecule localization microscopy data based on adaptively jittered 2D histograms. We have used our new methods to image both Atto565-phalloidin labeled actin in fibroblast cells, and mCitrine-erbB3 expressed in A431 cells. The enhanced methods developed here were crucial in processing the data we obtained from these samples, as the overall signal to noise ratio was quite low.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Huang, M. Bates, and X. Zhuang, “Super-resolution fluorescence microscopy,” Annu. Rev. Biochem. 78(1), 993–1016 (2009).
    [CrossRef] [PubMed]
  2. D. Baddeley, I. D. Jayasinghe, C. Cremer, M. B. Cannell, and C. Soeller, “Light-induced dark states of organic fluochromes enable 30 nm resolution imaging in standard media,” Biophys. J. 96(2), L22–L24 (2009).
    [CrossRef] [PubMed]
  3. P. Lemmer, M. Gunkel, D. Baddeley, R. Kaufmann, A. Urich, Y. Weiland, J. Reymann, P. Müller, M. Hausmann, and C. Cremer, “SPDM: light microscopy with single-molecule resolution at the nanoscale,” Appl. Phys B 93(1), 1–12 (2008).
    [CrossRef]
  4. P. Lemmer, M. Gunkel, Y. Weiland, P. Müller, D. Baddeley, R. Kaufmann, A. Urich, H. Eipel, R. Amberger, M. Hausmann, and C. Cremer, “Using conventional fluorescent markers for far-field fluorescence localization nanoscopy allows resolution in the 10-nm range,” J. Microsc. 235(2), 163–171 (2009).
    [CrossRef] [PubMed]
  5. A. Egner, C. Geisler, C. von Middendorff, H. Bock, D. Wenzel, R. Medda, M. Andresen, A. C. Stiel, S. Jakobs, C. Eggeling, A. Schönle, and S. W. Hell, “Fluorescence nanoscopy in whole cells by asynchronous localization of photoswitching emitters,” Biophys. J. 93(9), 3285–3290 (2007).
    [CrossRef] [PubMed]
  6. M. Bates, B. Huang, G. T. Dempsey, and X. Zhuang, “Multicolor super-resolution imaging with photo-switchable fluorescent probes,” Science 317(5845), 1749–1753 (2007).
    [CrossRef] [PubMed]
  7. E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
    [CrossRef] [PubMed]
  8. S. T. Hess, T. P. K. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J. 91(11), 4258–4272 (2006).
    [CrossRef] [PubMed]
  9. M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006).
    [CrossRef] [PubMed]
  10. M. Heilemann, S. van de Linde, A. Mukherjee, and M. Sauer, “Super-resolution imaging with small organic fluorophores,” Angew. Chem. Int. Ed. Engl. 48(37), 6903–6908 (2009).
    [CrossRef] [PubMed]
  11. S. Manley, J. M. Gillette, G. H. Patterson, H. Shroff, H. F. Hess, E. Betzig, and J. Lippincott-Schwartz, “High-density mapping of single-molecule trajectories with photoactivated localization microscopy,” Nat. Methods 5(2), 155–157 (2008).
    [CrossRef] [PubMed]
  12. H. Shroff, C. G. Galbraith, J. A. Galbraith, and E. Betzig, “Live-cell photoactivated localization microscopy of nanoscale adhesion dynamics,” Nat. Methods 5(5), 417–423 (2008).
    [CrossRef] [PubMed]
  13. M. H. Kraus, W. Issing, T. Miki, N. C. Popescu, and S. A. Aaronson, “Isolation and characterization of ERBB3, a third member of the ERBB/epidermal growth factor receptor family: evidence for overexpression in a subset of human mammary tumors,” Proc. Natl. Acad. Sci. U.S.A. 86(23), 9193–9197 (1989).
    [CrossRef] [PubMed]
  14. P. Nagy, D. J. Arndt-Jovin, and T. M. Jovin, “Small interfering RNAs suppress the expression of endogenous and GFP-fused epidermal growth factor receptor (erbB1) and induce apoptosis in erbB1-overexpressing cells,” Exp. Cell Res. 285(1), 39–49 (2003).
    [CrossRef] [PubMed]
  15. S. Wolter, M. Schüttpelz, M. Tscherepanow, S. Van de Linde, M. Heilemann, and M. Sauer, “Real-time computation of subdiffraction-resolution fluorescence images,” J. Microsc. 237(1), 12–22 (2010).
    [CrossRef] [PubMed]
  16. A. Matsuda, L. Shao, J. Boulanger, C. Kervrann, P. M. Carlton, P. Kner, D. Agard, and J. W. Sedat, “Condensed mitotic chromosome structure at nanometer resolution using PALM and EGFP- histones,” PLoS ONE 5(9), e12768 (2010).
    [CrossRef] [PubMed]
  17. M. Gunkel, F. Erdel, K. Rippe, P. Lemmer, R. Kaufmann, C. Hörmann, R. Amberger, and C. Cremer, “Dual color localization microscopy of cellular nanostructures,” Biotechnol. J. 4(6), 927–938 (2009).
    [CrossRef] [PubMed]
  18. R. E. Thompson, D. R. Larson, and W. W. Webb, “Precise nanometer localization analysis for individual fluorescent probes,” Biophys. J. 82(5), 2775–2783 (2002).
    [CrossRef] [PubMed]
  19. D. Baddeley, M. B. Cannell, and C. Soeller, “Visualization of localization microscopy data,” Microsc. Microanal. 16(01), 64–72 (2010).
    [CrossRef] [PubMed]
  20. R. R. Korfhage, Information Storage and Retrieval (Wiley, New York, 1997), p. 368.
  21. P. Soille, Morphological Image Analysis (Springer-Verlag, Berlin, 2004), p. 391.

2010

S. Wolter, M. Schüttpelz, M. Tscherepanow, S. Van de Linde, M. Heilemann, and M. Sauer, “Real-time computation of subdiffraction-resolution fluorescence images,” J. Microsc. 237(1), 12–22 (2010).
[CrossRef] [PubMed]

A. Matsuda, L. Shao, J. Boulanger, C. Kervrann, P. M. Carlton, P. Kner, D. Agard, and J. W. Sedat, “Condensed mitotic chromosome structure at nanometer resolution using PALM and EGFP- histones,” PLoS ONE 5(9), e12768 (2010).
[CrossRef] [PubMed]

D. Baddeley, M. B. Cannell, and C. Soeller, “Visualization of localization microscopy data,” Microsc. Microanal. 16(01), 64–72 (2010).
[CrossRef] [PubMed]

2009

B. Huang, M. Bates, and X. Zhuang, “Super-resolution fluorescence microscopy,” Annu. Rev. Biochem. 78(1), 993–1016 (2009).
[CrossRef] [PubMed]

D. Baddeley, I. D. Jayasinghe, C. Cremer, M. B. Cannell, and C. Soeller, “Light-induced dark states of organic fluochromes enable 30 nm resolution imaging in standard media,” Biophys. J. 96(2), L22–L24 (2009).
[CrossRef] [PubMed]

M. Gunkel, F. Erdel, K. Rippe, P. Lemmer, R. Kaufmann, C. Hörmann, R. Amberger, and C. Cremer, “Dual color localization microscopy of cellular nanostructures,” Biotechnol. J. 4(6), 927–938 (2009).
[CrossRef] [PubMed]

P. Lemmer, M. Gunkel, Y. Weiland, P. Müller, D. Baddeley, R. Kaufmann, A. Urich, H. Eipel, R. Amberger, M. Hausmann, and C. Cremer, “Using conventional fluorescent markers for far-field fluorescence localization nanoscopy allows resolution in the 10-nm range,” J. Microsc. 235(2), 163–171 (2009).
[CrossRef] [PubMed]

M. Heilemann, S. van de Linde, A. Mukherjee, and M. Sauer, “Super-resolution imaging with small organic fluorophores,” Angew. Chem. Int. Ed. Engl. 48(37), 6903–6908 (2009).
[CrossRef] [PubMed]

2008

S. Manley, J. M. Gillette, G. H. Patterson, H. Shroff, H. F. Hess, E. Betzig, and J. Lippincott-Schwartz, “High-density mapping of single-molecule trajectories with photoactivated localization microscopy,” Nat. Methods 5(2), 155–157 (2008).
[CrossRef] [PubMed]

H. Shroff, C. G. Galbraith, J. A. Galbraith, and E. Betzig, “Live-cell photoactivated localization microscopy of nanoscale adhesion dynamics,” Nat. Methods 5(5), 417–423 (2008).
[CrossRef] [PubMed]

P. Lemmer, M. Gunkel, D. Baddeley, R. Kaufmann, A. Urich, Y. Weiland, J. Reymann, P. Müller, M. Hausmann, and C. Cremer, “SPDM: light microscopy with single-molecule resolution at the nanoscale,” Appl. Phys B 93(1), 1–12 (2008).
[CrossRef]

2007

A. Egner, C. Geisler, C. von Middendorff, H. Bock, D. Wenzel, R. Medda, M. Andresen, A. C. Stiel, S. Jakobs, C. Eggeling, A. Schönle, and S. W. Hell, “Fluorescence nanoscopy in whole cells by asynchronous localization of photoswitching emitters,” Biophys. J. 93(9), 3285–3290 (2007).
[CrossRef] [PubMed]

M. Bates, B. Huang, G. T. Dempsey, and X. Zhuang, “Multicolor super-resolution imaging with photo-switchable fluorescent probes,” Science 317(5845), 1749–1753 (2007).
[CrossRef] [PubMed]

2006

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[CrossRef] [PubMed]

S. T. Hess, T. P. K. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J. 91(11), 4258–4272 (2006).
[CrossRef] [PubMed]

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006).
[CrossRef] [PubMed]

2003

P. Nagy, D. J. Arndt-Jovin, and T. M. Jovin, “Small interfering RNAs suppress the expression of endogenous and GFP-fused epidermal growth factor receptor (erbB1) and induce apoptosis in erbB1-overexpressing cells,” Exp. Cell Res. 285(1), 39–49 (2003).
[CrossRef] [PubMed]

2002

R. E. Thompson, D. R. Larson, and W. W. Webb, “Precise nanometer localization analysis for individual fluorescent probes,” Biophys. J. 82(5), 2775–2783 (2002).
[CrossRef] [PubMed]

1989

M. H. Kraus, W. Issing, T. Miki, N. C. Popescu, and S. A. Aaronson, “Isolation and characterization of ERBB3, a third member of the ERBB/epidermal growth factor receptor family: evidence for overexpression in a subset of human mammary tumors,” Proc. Natl. Acad. Sci. U.S.A. 86(23), 9193–9197 (1989).
[CrossRef] [PubMed]

Aaronson, S. A.

M. H. Kraus, W. Issing, T. Miki, N. C. Popescu, and S. A. Aaronson, “Isolation and characterization of ERBB3, a third member of the ERBB/epidermal growth factor receptor family: evidence for overexpression in a subset of human mammary tumors,” Proc. Natl. Acad. Sci. U.S.A. 86(23), 9193–9197 (1989).
[CrossRef] [PubMed]

Agard, D.

A. Matsuda, L. Shao, J. Boulanger, C. Kervrann, P. M. Carlton, P. Kner, D. Agard, and J. W. Sedat, “Condensed mitotic chromosome structure at nanometer resolution using PALM and EGFP- histones,” PLoS ONE 5(9), e12768 (2010).
[CrossRef] [PubMed]

Amberger, R.

M. Gunkel, F. Erdel, K. Rippe, P. Lemmer, R. Kaufmann, C. Hörmann, R. Amberger, and C. Cremer, “Dual color localization microscopy of cellular nanostructures,” Biotechnol. J. 4(6), 927–938 (2009).
[CrossRef] [PubMed]

P. Lemmer, M. Gunkel, Y. Weiland, P. Müller, D. Baddeley, R. Kaufmann, A. Urich, H. Eipel, R. Amberger, M. Hausmann, and C. Cremer, “Using conventional fluorescent markers for far-field fluorescence localization nanoscopy allows resolution in the 10-nm range,” J. Microsc. 235(2), 163–171 (2009).
[CrossRef] [PubMed]

Andresen, M.

A. Egner, C. Geisler, C. von Middendorff, H. Bock, D. Wenzel, R. Medda, M. Andresen, A. C. Stiel, S. Jakobs, C. Eggeling, A. Schönle, and S. W. Hell, “Fluorescence nanoscopy in whole cells by asynchronous localization of photoswitching emitters,” Biophys. J. 93(9), 3285–3290 (2007).
[CrossRef] [PubMed]

Arndt-Jovin, D. J.

P. Nagy, D. J. Arndt-Jovin, and T. M. Jovin, “Small interfering RNAs suppress the expression of endogenous and GFP-fused epidermal growth factor receptor (erbB1) and induce apoptosis in erbB1-overexpressing cells,” Exp. Cell Res. 285(1), 39–49 (2003).
[CrossRef] [PubMed]

Baddeley, D.

D. Baddeley, M. B. Cannell, and C. Soeller, “Visualization of localization microscopy data,” Microsc. Microanal. 16(01), 64–72 (2010).
[CrossRef] [PubMed]

P. Lemmer, M. Gunkel, Y. Weiland, P. Müller, D. Baddeley, R. Kaufmann, A. Urich, H. Eipel, R. Amberger, M. Hausmann, and C. Cremer, “Using conventional fluorescent markers for far-field fluorescence localization nanoscopy allows resolution in the 10-nm range,” J. Microsc. 235(2), 163–171 (2009).
[CrossRef] [PubMed]

D. Baddeley, I. D. Jayasinghe, C. Cremer, M. B. Cannell, and C. Soeller, “Light-induced dark states of organic fluochromes enable 30 nm resolution imaging in standard media,” Biophys. J. 96(2), L22–L24 (2009).
[CrossRef] [PubMed]

P. Lemmer, M. Gunkel, D. Baddeley, R. Kaufmann, A. Urich, Y. Weiland, J. Reymann, P. Müller, M. Hausmann, and C. Cremer, “SPDM: light microscopy with single-molecule resolution at the nanoscale,” Appl. Phys B 93(1), 1–12 (2008).
[CrossRef]

Bates, M.

B. Huang, M. Bates, and X. Zhuang, “Super-resolution fluorescence microscopy,” Annu. Rev. Biochem. 78(1), 993–1016 (2009).
[CrossRef] [PubMed]

M. Bates, B. Huang, G. T. Dempsey, and X. Zhuang, “Multicolor super-resolution imaging with photo-switchable fluorescent probes,” Science 317(5845), 1749–1753 (2007).
[CrossRef] [PubMed]

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006).
[CrossRef] [PubMed]

Betzig, E.

H. Shroff, C. G. Galbraith, J. A. Galbraith, and E. Betzig, “Live-cell photoactivated localization microscopy of nanoscale adhesion dynamics,” Nat. Methods 5(5), 417–423 (2008).
[CrossRef] [PubMed]

S. Manley, J. M. Gillette, G. H. Patterson, H. Shroff, H. F. Hess, E. Betzig, and J. Lippincott-Schwartz, “High-density mapping of single-molecule trajectories with photoactivated localization microscopy,” Nat. Methods 5(2), 155–157 (2008).
[CrossRef] [PubMed]

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[CrossRef] [PubMed]

Bock, H.

A. Egner, C. Geisler, C. von Middendorff, H. Bock, D. Wenzel, R. Medda, M. Andresen, A. C. Stiel, S. Jakobs, C. Eggeling, A. Schönle, and S. W. Hell, “Fluorescence nanoscopy in whole cells by asynchronous localization of photoswitching emitters,” Biophys. J. 93(9), 3285–3290 (2007).
[CrossRef] [PubMed]

Bonifacino, J. S.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[CrossRef] [PubMed]

Boulanger, J.

A. Matsuda, L. Shao, J. Boulanger, C. Kervrann, P. M. Carlton, P. Kner, D. Agard, and J. W. Sedat, “Condensed mitotic chromosome structure at nanometer resolution using PALM and EGFP- histones,” PLoS ONE 5(9), e12768 (2010).
[CrossRef] [PubMed]

Cannell, M. B.

D. Baddeley, M. B. Cannell, and C. Soeller, “Visualization of localization microscopy data,” Microsc. Microanal. 16(01), 64–72 (2010).
[CrossRef] [PubMed]

D. Baddeley, I. D. Jayasinghe, C. Cremer, M. B. Cannell, and C. Soeller, “Light-induced dark states of organic fluochromes enable 30 nm resolution imaging in standard media,” Biophys. J. 96(2), L22–L24 (2009).
[CrossRef] [PubMed]

Carlton, P. M.

A. Matsuda, L. Shao, J. Boulanger, C. Kervrann, P. M. Carlton, P. Kner, D. Agard, and J. W. Sedat, “Condensed mitotic chromosome structure at nanometer resolution using PALM and EGFP- histones,” PLoS ONE 5(9), e12768 (2010).
[CrossRef] [PubMed]

Cremer, C.

D. Baddeley, I. D. Jayasinghe, C. Cremer, M. B. Cannell, and C. Soeller, “Light-induced dark states of organic fluochromes enable 30 nm resolution imaging in standard media,” Biophys. J. 96(2), L22–L24 (2009).
[CrossRef] [PubMed]

M. Gunkel, F. Erdel, K. Rippe, P. Lemmer, R. Kaufmann, C. Hörmann, R. Amberger, and C. Cremer, “Dual color localization microscopy of cellular nanostructures,” Biotechnol. J. 4(6), 927–938 (2009).
[CrossRef] [PubMed]

P. Lemmer, M. Gunkel, Y. Weiland, P. Müller, D. Baddeley, R. Kaufmann, A. Urich, H. Eipel, R. Amberger, M. Hausmann, and C. Cremer, “Using conventional fluorescent markers for far-field fluorescence localization nanoscopy allows resolution in the 10-nm range,” J. Microsc. 235(2), 163–171 (2009).
[CrossRef] [PubMed]

P. Lemmer, M. Gunkel, D. Baddeley, R. Kaufmann, A. Urich, Y. Weiland, J. Reymann, P. Müller, M. Hausmann, and C. Cremer, “SPDM: light microscopy with single-molecule resolution at the nanoscale,” Appl. Phys B 93(1), 1–12 (2008).
[CrossRef]

Davidson, M. W.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[CrossRef] [PubMed]

Dempsey, G. T.

M. Bates, B. Huang, G. T. Dempsey, and X. Zhuang, “Multicolor super-resolution imaging with photo-switchable fluorescent probes,” Science 317(5845), 1749–1753 (2007).
[CrossRef] [PubMed]

Eggeling, C.

A. Egner, C. Geisler, C. von Middendorff, H. Bock, D. Wenzel, R. Medda, M. Andresen, A. C. Stiel, S. Jakobs, C. Eggeling, A. Schönle, and S. W. Hell, “Fluorescence nanoscopy in whole cells by asynchronous localization of photoswitching emitters,” Biophys. J. 93(9), 3285–3290 (2007).
[CrossRef] [PubMed]

Egner, A.

A. Egner, C. Geisler, C. von Middendorff, H. Bock, D. Wenzel, R. Medda, M. Andresen, A. C. Stiel, S. Jakobs, C. Eggeling, A. Schönle, and S. W. Hell, “Fluorescence nanoscopy in whole cells by asynchronous localization of photoswitching emitters,” Biophys. J. 93(9), 3285–3290 (2007).
[CrossRef] [PubMed]

Eipel, H.

P. Lemmer, M. Gunkel, Y. Weiland, P. Müller, D. Baddeley, R. Kaufmann, A. Urich, H. Eipel, R. Amberger, M. Hausmann, and C. Cremer, “Using conventional fluorescent markers for far-field fluorescence localization nanoscopy allows resolution in the 10-nm range,” J. Microsc. 235(2), 163–171 (2009).
[CrossRef] [PubMed]

Erdel, F.

M. Gunkel, F. Erdel, K. Rippe, P. Lemmer, R. Kaufmann, C. Hörmann, R. Amberger, and C. Cremer, “Dual color localization microscopy of cellular nanostructures,” Biotechnol. J. 4(6), 927–938 (2009).
[CrossRef] [PubMed]

Galbraith, C. G.

H. Shroff, C. G. Galbraith, J. A. Galbraith, and E. Betzig, “Live-cell photoactivated localization microscopy of nanoscale adhesion dynamics,” Nat. Methods 5(5), 417–423 (2008).
[CrossRef] [PubMed]

Galbraith, J. A.

H. Shroff, C. G. Galbraith, J. A. Galbraith, and E. Betzig, “Live-cell photoactivated localization microscopy of nanoscale adhesion dynamics,” Nat. Methods 5(5), 417–423 (2008).
[CrossRef] [PubMed]

Geisler, C.

A. Egner, C. Geisler, C. von Middendorff, H. Bock, D. Wenzel, R. Medda, M. Andresen, A. C. Stiel, S. Jakobs, C. Eggeling, A. Schönle, and S. W. Hell, “Fluorescence nanoscopy in whole cells by asynchronous localization of photoswitching emitters,” Biophys. J. 93(9), 3285–3290 (2007).
[CrossRef] [PubMed]

Gillette, J. M.

S. Manley, J. M. Gillette, G. H. Patterson, H. Shroff, H. F. Hess, E. Betzig, and J. Lippincott-Schwartz, “High-density mapping of single-molecule trajectories with photoactivated localization microscopy,” Nat. Methods 5(2), 155–157 (2008).
[CrossRef] [PubMed]

Girirajan, T. P. K.

S. T. Hess, T. P. K. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J. 91(11), 4258–4272 (2006).
[CrossRef] [PubMed]

Gunkel, M.

M. Gunkel, F. Erdel, K. Rippe, P. Lemmer, R. Kaufmann, C. Hörmann, R. Amberger, and C. Cremer, “Dual color localization microscopy of cellular nanostructures,” Biotechnol. J. 4(6), 927–938 (2009).
[CrossRef] [PubMed]

P. Lemmer, M. Gunkel, Y. Weiland, P. Müller, D. Baddeley, R. Kaufmann, A. Urich, H. Eipel, R. Amberger, M. Hausmann, and C. Cremer, “Using conventional fluorescent markers for far-field fluorescence localization nanoscopy allows resolution in the 10-nm range,” J. Microsc. 235(2), 163–171 (2009).
[CrossRef] [PubMed]

P. Lemmer, M. Gunkel, D. Baddeley, R. Kaufmann, A. Urich, Y. Weiland, J. Reymann, P. Müller, M. Hausmann, and C. Cremer, “SPDM: light microscopy with single-molecule resolution at the nanoscale,” Appl. Phys B 93(1), 1–12 (2008).
[CrossRef]

Hausmann, M.

P. Lemmer, M. Gunkel, Y. Weiland, P. Müller, D. Baddeley, R. Kaufmann, A. Urich, H. Eipel, R. Amberger, M. Hausmann, and C. Cremer, “Using conventional fluorescent markers for far-field fluorescence localization nanoscopy allows resolution in the 10-nm range,” J. Microsc. 235(2), 163–171 (2009).
[CrossRef] [PubMed]

P. Lemmer, M. Gunkel, D. Baddeley, R. Kaufmann, A. Urich, Y. Weiland, J. Reymann, P. Müller, M. Hausmann, and C. Cremer, “SPDM: light microscopy with single-molecule resolution at the nanoscale,” Appl. Phys B 93(1), 1–12 (2008).
[CrossRef]

Heilemann, M.

S. Wolter, M. Schüttpelz, M. Tscherepanow, S. Van de Linde, M. Heilemann, and M. Sauer, “Real-time computation of subdiffraction-resolution fluorescence images,” J. Microsc. 237(1), 12–22 (2010).
[CrossRef] [PubMed]

M. Heilemann, S. van de Linde, A. Mukherjee, and M. Sauer, “Super-resolution imaging with small organic fluorophores,” Angew. Chem. Int. Ed. Engl. 48(37), 6903–6908 (2009).
[CrossRef] [PubMed]

Hell, S. W.

A. Egner, C. Geisler, C. von Middendorff, H. Bock, D. Wenzel, R. Medda, M. Andresen, A. C. Stiel, S. Jakobs, C. Eggeling, A. Schönle, and S. W. Hell, “Fluorescence nanoscopy in whole cells by asynchronous localization of photoswitching emitters,” Biophys. J. 93(9), 3285–3290 (2007).
[CrossRef] [PubMed]

Hess, H. F.

S. Manley, J. M. Gillette, G. H. Patterson, H. Shroff, H. F. Hess, E. Betzig, and J. Lippincott-Schwartz, “High-density mapping of single-molecule trajectories with photoactivated localization microscopy,” Nat. Methods 5(2), 155–157 (2008).
[CrossRef] [PubMed]

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[CrossRef] [PubMed]

Hess, S. T.

S. T. Hess, T. P. K. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J. 91(11), 4258–4272 (2006).
[CrossRef] [PubMed]

Hörmann, C.

M. Gunkel, F. Erdel, K. Rippe, P. Lemmer, R. Kaufmann, C. Hörmann, R. Amberger, and C. Cremer, “Dual color localization microscopy of cellular nanostructures,” Biotechnol. J. 4(6), 927–938 (2009).
[CrossRef] [PubMed]

Huang, B.

B. Huang, M. Bates, and X. Zhuang, “Super-resolution fluorescence microscopy,” Annu. Rev. Biochem. 78(1), 993–1016 (2009).
[CrossRef] [PubMed]

M. Bates, B. Huang, G. T. Dempsey, and X. Zhuang, “Multicolor super-resolution imaging with photo-switchable fluorescent probes,” Science 317(5845), 1749–1753 (2007).
[CrossRef] [PubMed]

Issing, W.

M. H. Kraus, W. Issing, T. Miki, N. C. Popescu, and S. A. Aaronson, “Isolation and characterization of ERBB3, a third member of the ERBB/epidermal growth factor receptor family: evidence for overexpression in a subset of human mammary tumors,” Proc. Natl. Acad. Sci. U.S.A. 86(23), 9193–9197 (1989).
[CrossRef] [PubMed]

Jakobs, S.

A. Egner, C. Geisler, C. von Middendorff, H. Bock, D. Wenzel, R. Medda, M. Andresen, A. C. Stiel, S. Jakobs, C. Eggeling, A. Schönle, and S. W. Hell, “Fluorescence nanoscopy in whole cells by asynchronous localization of photoswitching emitters,” Biophys. J. 93(9), 3285–3290 (2007).
[CrossRef] [PubMed]

Jayasinghe, I. D.

D. Baddeley, I. D. Jayasinghe, C. Cremer, M. B. Cannell, and C. Soeller, “Light-induced dark states of organic fluochromes enable 30 nm resolution imaging in standard media,” Biophys. J. 96(2), L22–L24 (2009).
[CrossRef] [PubMed]

Jovin, T. M.

P. Nagy, D. J. Arndt-Jovin, and T. M. Jovin, “Small interfering RNAs suppress the expression of endogenous and GFP-fused epidermal growth factor receptor (erbB1) and induce apoptosis in erbB1-overexpressing cells,” Exp. Cell Res. 285(1), 39–49 (2003).
[CrossRef] [PubMed]

Kaufmann, R.

M. Gunkel, F. Erdel, K. Rippe, P. Lemmer, R. Kaufmann, C. Hörmann, R. Amberger, and C. Cremer, “Dual color localization microscopy of cellular nanostructures,” Biotechnol. J. 4(6), 927–938 (2009).
[CrossRef] [PubMed]

P. Lemmer, M. Gunkel, Y. Weiland, P. Müller, D. Baddeley, R. Kaufmann, A. Urich, H. Eipel, R. Amberger, M. Hausmann, and C. Cremer, “Using conventional fluorescent markers for far-field fluorescence localization nanoscopy allows resolution in the 10-nm range,” J. Microsc. 235(2), 163–171 (2009).
[CrossRef] [PubMed]

P. Lemmer, M. Gunkel, D. Baddeley, R. Kaufmann, A. Urich, Y. Weiland, J. Reymann, P. Müller, M. Hausmann, and C. Cremer, “SPDM: light microscopy with single-molecule resolution at the nanoscale,” Appl. Phys B 93(1), 1–12 (2008).
[CrossRef]

Kervrann, C.

A. Matsuda, L. Shao, J. Boulanger, C. Kervrann, P. M. Carlton, P. Kner, D. Agard, and J. W. Sedat, “Condensed mitotic chromosome structure at nanometer resolution using PALM and EGFP- histones,” PLoS ONE 5(9), e12768 (2010).
[CrossRef] [PubMed]

Kner, P.

A. Matsuda, L. Shao, J. Boulanger, C. Kervrann, P. M. Carlton, P. Kner, D. Agard, and J. W. Sedat, “Condensed mitotic chromosome structure at nanometer resolution using PALM and EGFP- histones,” PLoS ONE 5(9), e12768 (2010).
[CrossRef] [PubMed]

Kraus, M. H.

M. H. Kraus, W. Issing, T. Miki, N. C. Popescu, and S. A. Aaronson, “Isolation and characterization of ERBB3, a third member of the ERBB/epidermal growth factor receptor family: evidence for overexpression in a subset of human mammary tumors,” Proc. Natl. Acad. Sci. U.S.A. 86(23), 9193–9197 (1989).
[CrossRef] [PubMed]

Larson, D. R.

R. E. Thompson, D. R. Larson, and W. W. Webb, “Precise nanometer localization analysis for individual fluorescent probes,” Biophys. J. 82(5), 2775–2783 (2002).
[CrossRef] [PubMed]

Lemmer, P.

P. Lemmer, M. Gunkel, Y. Weiland, P. Müller, D. Baddeley, R. Kaufmann, A. Urich, H. Eipel, R. Amberger, M. Hausmann, and C. Cremer, “Using conventional fluorescent markers for far-field fluorescence localization nanoscopy allows resolution in the 10-nm range,” J. Microsc. 235(2), 163–171 (2009).
[CrossRef] [PubMed]

M. Gunkel, F. Erdel, K. Rippe, P. Lemmer, R. Kaufmann, C. Hörmann, R. Amberger, and C. Cremer, “Dual color localization microscopy of cellular nanostructures,” Biotechnol. J. 4(6), 927–938 (2009).
[CrossRef] [PubMed]

P. Lemmer, M. Gunkel, D. Baddeley, R. Kaufmann, A. Urich, Y. Weiland, J. Reymann, P. Müller, M. Hausmann, and C. Cremer, “SPDM: light microscopy with single-molecule resolution at the nanoscale,” Appl. Phys B 93(1), 1–12 (2008).
[CrossRef]

Lindwasser, O. W.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[CrossRef] [PubMed]

Lippincott-Schwartz, J.

S. Manley, J. M. Gillette, G. H. Patterson, H. Shroff, H. F. Hess, E. Betzig, and J. Lippincott-Schwartz, “High-density mapping of single-molecule trajectories with photoactivated localization microscopy,” Nat. Methods 5(2), 155–157 (2008).
[CrossRef] [PubMed]

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[CrossRef] [PubMed]

Manley, S.

S. Manley, J. M. Gillette, G. H. Patterson, H. Shroff, H. F. Hess, E. Betzig, and J. Lippincott-Schwartz, “High-density mapping of single-molecule trajectories with photoactivated localization microscopy,” Nat. Methods 5(2), 155–157 (2008).
[CrossRef] [PubMed]

Mason, M. D.

S. T. Hess, T. P. K. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J. 91(11), 4258–4272 (2006).
[CrossRef] [PubMed]

Matsuda, A.

A. Matsuda, L. Shao, J. Boulanger, C. Kervrann, P. M. Carlton, P. Kner, D. Agard, and J. W. Sedat, “Condensed mitotic chromosome structure at nanometer resolution using PALM and EGFP- histones,” PLoS ONE 5(9), e12768 (2010).
[CrossRef] [PubMed]

Medda, R.

A. Egner, C. Geisler, C. von Middendorff, H. Bock, D. Wenzel, R. Medda, M. Andresen, A. C. Stiel, S. Jakobs, C. Eggeling, A. Schönle, and S. W. Hell, “Fluorescence nanoscopy in whole cells by asynchronous localization of photoswitching emitters,” Biophys. J. 93(9), 3285–3290 (2007).
[CrossRef] [PubMed]

Miki, T.

M. H. Kraus, W. Issing, T. Miki, N. C. Popescu, and S. A. Aaronson, “Isolation and characterization of ERBB3, a third member of the ERBB/epidermal growth factor receptor family: evidence for overexpression in a subset of human mammary tumors,” Proc. Natl. Acad. Sci. U.S.A. 86(23), 9193–9197 (1989).
[CrossRef] [PubMed]

Mukherjee, A.

M. Heilemann, S. van de Linde, A. Mukherjee, and M. Sauer, “Super-resolution imaging with small organic fluorophores,” Angew. Chem. Int. Ed. Engl. 48(37), 6903–6908 (2009).
[CrossRef] [PubMed]

Müller, P.

P. Lemmer, M. Gunkel, Y. Weiland, P. Müller, D. Baddeley, R. Kaufmann, A. Urich, H. Eipel, R. Amberger, M. Hausmann, and C. Cremer, “Using conventional fluorescent markers for far-field fluorescence localization nanoscopy allows resolution in the 10-nm range,” J. Microsc. 235(2), 163–171 (2009).
[CrossRef] [PubMed]

P. Lemmer, M. Gunkel, D. Baddeley, R. Kaufmann, A. Urich, Y. Weiland, J. Reymann, P. Müller, M. Hausmann, and C. Cremer, “SPDM: light microscopy with single-molecule resolution at the nanoscale,” Appl. Phys B 93(1), 1–12 (2008).
[CrossRef]

Nagy, P.

P. Nagy, D. J. Arndt-Jovin, and T. M. Jovin, “Small interfering RNAs suppress the expression of endogenous and GFP-fused epidermal growth factor receptor (erbB1) and induce apoptosis in erbB1-overexpressing cells,” Exp. Cell Res. 285(1), 39–49 (2003).
[CrossRef] [PubMed]

Olenych, S.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[CrossRef] [PubMed]

Patterson, G. H.

S. Manley, J. M. Gillette, G. H. Patterson, H. Shroff, H. F. Hess, E. Betzig, and J. Lippincott-Schwartz, “High-density mapping of single-molecule trajectories with photoactivated localization microscopy,” Nat. Methods 5(2), 155–157 (2008).
[CrossRef] [PubMed]

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[CrossRef] [PubMed]

Popescu, N. C.

M. H. Kraus, W. Issing, T. Miki, N. C. Popescu, and S. A. Aaronson, “Isolation and characterization of ERBB3, a third member of the ERBB/epidermal growth factor receptor family: evidence for overexpression in a subset of human mammary tumors,” Proc. Natl. Acad. Sci. U.S.A. 86(23), 9193–9197 (1989).
[CrossRef] [PubMed]

Reymann, J.

P. Lemmer, M. Gunkel, D. Baddeley, R. Kaufmann, A. Urich, Y. Weiland, J. Reymann, P. Müller, M. Hausmann, and C. Cremer, “SPDM: light microscopy with single-molecule resolution at the nanoscale,” Appl. Phys B 93(1), 1–12 (2008).
[CrossRef]

Rippe, K.

M. Gunkel, F. Erdel, K. Rippe, P. Lemmer, R. Kaufmann, C. Hörmann, R. Amberger, and C. Cremer, “Dual color localization microscopy of cellular nanostructures,” Biotechnol. J. 4(6), 927–938 (2009).
[CrossRef] [PubMed]

Rust, M. J.

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006).
[CrossRef] [PubMed]

Sauer, M.

S. Wolter, M. Schüttpelz, M. Tscherepanow, S. Van de Linde, M. Heilemann, and M. Sauer, “Real-time computation of subdiffraction-resolution fluorescence images,” J. Microsc. 237(1), 12–22 (2010).
[CrossRef] [PubMed]

M. Heilemann, S. van de Linde, A. Mukherjee, and M. Sauer, “Super-resolution imaging with small organic fluorophores,” Angew. Chem. Int. Ed. Engl. 48(37), 6903–6908 (2009).
[CrossRef] [PubMed]

Schönle, A.

A. Egner, C. Geisler, C. von Middendorff, H. Bock, D. Wenzel, R. Medda, M. Andresen, A. C. Stiel, S. Jakobs, C. Eggeling, A. Schönle, and S. W. Hell, “Fluorescence nanoscopy in whole cells by asynchronous localization of photoswitching emitters,” Biophys. J. 93(9), 3285–3290 (2007).
[CrossRef] [PubMed]

Schüttpelz, M.

S. Wolter, M. Schüttpelz, M. Tscherepanow, S. Van de Linde, M. Heilemann, and M. Sauer, “Real-time computation of subdiffraction-resolution fluorescence images,” J. Microsc. 237(1), 12–22 (2010).
[CrossRef] [PubMed]

Sedat, J. W.

A. Matsuda, L. Shao, J. Boulanger, C. Kervrann, P. M. Carlton, P. Kner, D. Agard, and J. W. Sedat, “Condensed mitotic chromosome structure at nanometer resolution using PALM and EGFP- histones,” PLoS ONE 5(9), e12768 (2010).
[CrossRef] [PubMed]

Shao, L.

A. Matsuda, L. Shao, J. Boulanger, C. Kervrann, P. M. Carlton, P. Kner, D. Agard, and J. W. Sedat, “Condensed mitotic chromosome structure at nanometer resolution using PALM and EGFP- histones,” PLoS ONE 5(9), e12768 (2010).
[CrossRef] [PubMed]

Shroff, H.

H. Shroff, C. G. Galbraith, J. A. Galbraith, and E. Betzig, “Live-cell photoactivated localization microscopy of nanoscale adhesion dynamics,” Nat. Methods 5(5), 417–423 (2008).
[CrossRef] [PubMed]

S. Manley, J. M. Gillette, G. H. Patterson, H. Shroff, H. F. Hess, E. Betzig, and J. Lippincott-Schwartz, “High-density mapping of single-molecule trajectories with photoactivated localization microscopy,” Nat. Methods 5(2), 155–157 (2008).
[CrossRef] [PubMed]

Soeller, C.

D. Baddeley, M. B. Cannell, and C. Soeller, “Visualization of localization microscopy data,” Microsc. Microanal. 16(01), 64–72 (2010).
[CrossRef] [PubMed]

D. Baddeley, I. D. Jayasinghe, C. Cremer, M. B. Cannell, and C. Soeller, “Light-induced dark states of organic fluochromes enable 30 nm resolution imaging in standard media,” Biophys. J. 96(2), L22–L24 (2009).
[CrossRef] [PubMed]

Sougrat, R.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[CrossRef] [PubMed]

Stiel, A. C.

A. Egner, C. Geisler, C. von Middendorff, H. Bock, D. Wenzel, R. Medda, M. Andresen, A. C. Stiel, S. Jakobs, C. Eggeling, A. Schönle, and S. W. Hell, “Fluorescence nanoscopy in whole cells by asynchronous localization of photoswitching emitters,” Biophys. J. 93(9), 3285–3290 (2007).
[CrossRef] [PubMed]

Thompson, R. E.

R. E. Thompson, D. R. Larson, and W. W. Webb, “Precise nanometer localization analysis for individual fluorescent probes,” Biophys. J. 82(5), 2775–2783 (2002).
[CrossRef] [PubMed]

Tscherepanow, M.

S. Wolter, M. Schüttpelz, M. Tscherepanow, S. Van de Linde, M. Heilemann, and M. Sauer, “Real-time computation of subdiffraction-resolution fluorescence images,” J. Microsc. 237(1), 12–22 (2010).
[CrossRef] [PubMed]

Urich, A.

P. Lemmer, M. Gunkel, Y. Weiland, P. Müller, D. Baddeley, R. Kaufmann, A. Urich, H. Eipel, R. Amberger, M. Hausmann, and C. Cremer, “Using conventional fluorescent markers for far-field fluorescence localization nanoscopy allows resolution in the 10-nm range,” J. Microsc. 235(2), 163–171 (2009).
[CrossRef] [PubMed]

P. Lemmer, M. Gunkel, D. Baddeley, R. Kaufmann, A. Urich, Y. Weiland, J. Reymann, P. Müller, M. Hausmann, and C. Cremer, “SPDM: light microscopy with single-molecule resolution at the nanoscale,” Appl. Phys B 93(1), 1–12 (2008).
[CrossRef]

Van de Linde, S.

S. Wolter, M. Schüttpelz, M. Tscherepanow, S. Van de Linde, M. Heilemann, and M. Sauer, “Real-time computation of subdiffraction-resolution fluorescence images,” J. Microsc. 237(1), 12–22 (2010).
[CrossRef] [PubMed]

M. Heilemann, S. van de Linde, A. Mukherjee, and M. Sauer, “Super-resolution imaging with small organic fluorophores,” Angew. Chem. Int. Ed. Engl. 48(37), 6903–6908 (2009).
[CrossRef] [PubMed]

von Middendorff, C.

A. Egner, C. Geisler, C. von Middendorff, H. Bock, D. Wenzel, R. Medda, M. Andresen, A. C. Stiel, S. Jakobs, C. Eggeling, A. Schönle, and S. W. Hell, “Fluorescence nanoscopy in whole cells by asynchronous localization of photoswitching emitters,” Biophys. J. 93(9), 3285–3290 (2007).
[CrossRef] [PubMed]

Webb, W. W.

R. E. Thompson, D. R. Larson, and W. W. Webb, “Precise nanometer localization analysis for individual fluorescent probes,” Biophys. J. 82(5), 2775–2783 (2002).
[CrossRef] [PubMed]

Weiland, Y.

P. Lemmer, M. Gunkel, Y. Weiland, P. Müller, D. Baddeley, R. Kaufmann, A. Urich, H. Eipel, R. Amberger, M. Hausmann, and C. Cremer, “Using conventional fluorescent markers for far-field fluorescence localization nanoscopy allows resolution in the 10-nm range,” J. Microsc. 235(2), 163–171 (2009).
[CrossRef] [PubMed]

P. Lemmer, M. Gunkel, D. Baddeley, R. Kaufmann, A. Urich, Y. Weiland, J. Reymann, P. Müller, M. Hausmann, and C. Cremer, “SPDM: light microscopy with single-molecule resolution at the nanoscale,” Appl. Phys B 93(1), 1–12 (2008).
[CrossRef]

Wenzel, D.

A. Egner, C. Geisler, C. von Middendorff, H. Bock, D. Wenzel, R. Medda, M. Andresen, A. C. Stiel, S. Jakobs, C. Eggeling, A. Schönle, and S. W. Hell, “Fluorescence nanoscopy in whole cells by asynchronous localization of photoswitching emitters,” Biophys. J. 93(9), 3285–3290 (2007).
[CrossRef] [PubMed]

Wolter, S.

S. Wolter, M. Schüttpelz, M. Tscherepanow, S. Van de Linde, M. Heilemann, and M. Sauer, “Real-time computation of subdiffraction-resolution fluorescence images,” J. Microsc. 237(1), 12–22 (2010).
[CrossRef] [PubMed]

Zhuang, X.

B. Huang, M. Bates, and X. Zhuang, “Super-resolution fluorescence microscopy,” Annu. Rev. Biochem. 78(1), 993–1016 (2009).
[CrossRef] [PubMed]

M. Bates, B. Huang, G. T. Dempsey, and X. Zhuang, “Multicolor super-resolution imaging with photo-switchable fluorescent probes,” Science 317(5845), 1749–1753 (2007).
[CrossRef] [PubMed]

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006).
[CrossRef] [PubMed]

Angew. Chem. Int. Ed. Engl.

M. Heilemann, S. van de Linde, A. Mukherjee, and M. Sauer, “Super-resolution imaging with small organic fluorophores,” Angew. Chem. Int. Ed. Engl. 48(37), 6903–6908 (2009).
[CrossRef] [PubMed]

Annu. Rev. Biochem.

B. Huang, M. Bates, and X. Zhuang, “Super-resolution fluorescence microscopy,” Annu. Rev. Biochem. 78(1), 993–1016 (2009).
[CrossRef] [PubMed]

Appl. Phys B

P. Lemmer, M. Gunkel, D. Baddeley, R. Kaufmann, A. Urich, Y. Weiland, J. Reymann, P. Müller, M. Hausmann, and C. Cremer, “SPDM: light microscopy with single-molecule resolution at the nanoscale,” Appl. Phys B 93(1), 1–12 (2008).
[CrossRef]

Biophys. J.

D. Baddeley, I. D. Jayasinghe, C. Cremer, M. B. Cannell, and C. Soeller, “Light-induced dark states of organic fluochromes enable 30 nm resolution imaging in standard media,” Biophys. J. 96(2), L22–L24 (2009).
[CrossRef] [PubMed]

A. Egner, C. Geisler, C. von Middendorff, H. Bock, D. Wenzel, R. Medda, M. Andresen, A. C. Stiel, S. Jakobs, C. Eggeling, A. Schönle, and S. W. Hell, “Fluorescence nanoscopy in whole cells by asynchronous localization of photoswitching emitters,” Biophys. J. 93(9), 3285–3290 (2007).
[CrossRef] [PubMed]

S. T. Hess, T. P. K. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J. 91(11), 4258–4272 (2006).
[CrossRef] [PubMed]

R. E. Thompson, D. R. Larson, and W. W. Webb, “Precise nanometer localization analysis for individual fluorescent probes,” Biophys. J. 82(5), 2775–2783 (2002).
[CrossRef] [PubMed]

Biotechnol. J.

M. Gunkel, F. Erdel, K. Rippe, P. Lemmer, R. Kaufmann, C. Hörmann, R. Amberger, and C. Cremer, “Dual color localization microscopy of cellular nanostructures,” Biotechnol. J. 4(6), 927–938 (2009).
[CrossRef] [PubMed]

Exp. Cell Res.

P. Nagy, D. J. Arndt-Jovin, and T. M. Jovin, “Small interfering RNAs suppress the expression of endogenous and GFP-fused epidermal growth factor receptor (erbB1) and induce apoptosis in erbB1-overexpressing cells,” Exp. Cell Res. 285(1), 39–49 (2003).
[CrossRef] [PubMed]

J. Microsc.

S. Wolter, M. Schüttpelz, M. Tscherepanow, S. Van de Linde, M. Heilemann, and M. Sauer, “Real-time computation of subdiffraction-resolution fluorescence images,” J. Microsc. 237(1), 12–22 (2010).
[CrossRef] [PubMed]

P. Lemmer, M. Gunkel, Y. Weiland, P. Müller, D. Baddeley, R. Kaufmann, A. Urich, H. Eipel, R. Amberger, M. Hausmann, and C. Cremer, “Using conventional fluorescent markers for far-field fluorescence localization nanoscopy allows resolution in the 10-nm range,” J. Microsc. 235(2), 163–171 (2009).
[CrossRef] [PubMed]

Microsc. Microanal.

D. Baddeley, M. B. Cannell, and C. Soeller, “Visualization of localization microscopy data,” Microsc. Microanal. 16(01), 64–72 (2010).
[CrossRef] [PubMed]

Nat. Methods

S. Manley, J. M. Gillette, G. H. Patterson, H. Shroff, H. F. Hess, E. Betzig, and J. Lippincott-Schwartz, “High-density mapping of single-molecule trajectories with photoactivated localization microscopy,” Nat. Methods 5(2), 155–157 (2008).
[CrossRef] [PubMed]

H. Shroff, C. G. Galbraith, J. A. Galbraith, and E. Betzig, “Live-cell photoactivated localization microscopy of nanoscale adhesion dynamics,” Nat. Methods 5(5), 417–423 (2008).
[CrossRef] [PubMed]

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006).
[CrossRef] [PubMed]

PLoS ONE

A. Matsuda, L. Shao, J. Boulanger, C. Kervrann, P. M. Carlton, P. Kner, D. Agard, and J. W. Sedat, “Condensed mitotic chromosome structure at nanometer resolution using PALM and EGFP- histones,” PLoS ONE 5(9), e12768 (2010).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A.

M. H. Kraus, W. Issing, T. Miki, N. C. Popescu, and S. A. Aaronson, “Isolation and characterization of ERBB3, a third member of the ERBB/epidermal growth factor receptor family: evidence for overexpression in a subset of human mammary tumors,” Proc. Natl. Acad. Sci. U.S.A. 86(23), 9193–9197 (1989).
[CrossRef] [PubMed]

Science

M. Bates, B. Huang, G. T. Dempsey, and X. Zhuang, “Multicolor super-resolution imaging with photo-switchable fluorescent probes,” Science 317(5845), 1749–1753 (2007).
[CrossRef] [PubMed]

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[CrossRef] [PubMed]

Other

R. R. Korfhage, Information Storage and Retrieval (Wiley, New York, 1997), p. 368.

P. Soille, Morphological Image Analysis (Springer-Verlag, Berlin, 2004), p. 391.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Counting correctly detected molecules and type I and II errors (there are 3 correct, 4 false positive, and 2 false negative localizations) in Monte-Carlo simulations; red dot – generated molecule within a jittered grid, blue cross – detected candidate molecule, dashed circle – localization radius.

Fig. 2
Fig. 2

Monte Carlo simulation using the F-measure to compare the performance and accuracy of the algorithm for detection of candidate molecules with respect to SNR and imaged size of the detected objects. Noise reduction methods used: a) no noise reduction b) median filter of size 3 × 3 pixels, c) morphological erosion with a diamond structuring element of size 3 × 3 pixels, d–f) average filter of size 2 × 2 / 3 × 3 / 4 × 4 pixels, g–i) convolution with Gaussian kernel with σ = 0.7 / 2.6 / 3.5 pixels. The number in the top right corner of each graph reports the percentage of the displayed area where F = 1 and the solid curve indicates an approximate boundary of this area. Dashed lines in h) indicate possible bounds for traditional thresholding.

Fig. 3
Fig. 3

Histograms comparing distributions of the imaged sizes of localized molecules for all detected points, when constrained by Eq. (6), and when traditional thresholding is used for a) Atto565-phalloidin labeled Actin and b) mCitrine-erbB3.

Fig. 4
Fig. 4

Histograms of the measured SNR versus the imaged sizes of all localized molecules for a) Atto565-phalloidin labeled Actin and b) mCitrine-erbB3. The solid curves indicate the proposed threshold boundary according to Eq. (6), dashed lines show bounds for traditional thresholding, and color codes percentage of localized molecules in each bin of the histograms. Here SNR = N 0 / b; N 0 is the fitted amplitude corresponding to the number of photons detected for each molecule, b is the standard deviation of the pixel intensities in the fitting region after subtraction of the fitted PSF, cf. Eqs. (1), (2).

Fig. 5
Fig. 5

Atto565-Phalloidin labeled Actin; a) widefield image with SMLM imaging area indicated, and an overlay with SMLM image indicating b) all detected molecules, c) traditional thresholding, d) false positive molecules (red) introduced by traditional thresholding, and molecules missed (green) by traditional thresholding (compared to panel e), and e) the proposed nonlinear threshold, cf. Eq. (6). The resolution achieved was ~15 nm, cf. Eq. (2).

Fig. 6
Fig. 6

mCitrine-erbB3; a) widefield image with SMLM imaging area indicated, and an overlay with SMLM image indicating b) all detected molecules, c) traditional thresholding, d) false positive molecules (red) introduced by traditional thresholding, and molecules missed (green) by traditional thresholding (compared to panel e), and e) the proposed nonlinear threshold, cf. Eq. (6). The resolution achieved was ~15 nm, cf. Eq. (2).

Tables (1)

Tables Icon

Table 1 The number of molecules visualized in the regions indicated in Figs. 5 and 6.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

f ( x 0 , y 0 , σ 0 , N 0 , z 0 ) = z 0 + N 0 2 π σ 0 2 exp ( x x 0 ) 2 + ( y y 0 ) 2 2 σ 0 2 .
( Δ x ) 2 = σ 0 2 + a 2 / 12 N 0 + 8 π σ 0 4 b 2 a 2 N 0 2 ,
recall = TP / ( TP + FN )   ,
precision = TP / ( TP + FP )   .
F = 2 × precision × recall / ( precision + recall )   .
a + b σ 0 + c σ 0 2 < SNR

Metrics