Abstract

We propose and demonstrate a simple dual port tunable from the C- to the L-band multi-wavelength fiber laser based on a SOA designed for C-band operation and fiber loop mirrors. The laser incorporates a polarization maintaining fiber in one of the fiber loop mirrors and delivers multi-wavelength operation at 9 laser lines with a wavelength separation of ~2.8 nm at room temperature. We show that the number of lasing wavelengths increases with the increase of the bias current of the SOA. Wavelength tunability from the C to L-band is achieved by exploiting the gain compression of a SOA. Stable multi-wavelength operation is achieved at room temperature without temperature compensation techniques, with measured power and the wavelength stability within < ±0.5 dB and ±0.1 nm, respectively.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Park, J. W. Dawson, and K. J. Vahala, “Multiple wavelength operation of an Erbium-doped fiber laser,” IEEE Photon. Technol. Lett. 4(6), 540–541 (1992).
    [CrossRef]
  2. K. K. Qureshi, H. Y. Tam, W. H. Chung, and P. K. A. Wai, “Multiwavelength Laser Source Using Linear Optical Amplifier,” IEEE Photon. Technol. Lett. 17(8), 1611–1613 (2005).
    [CrossRef]
  3. Z. G. Lu, F. G. Sun, G. Z. Xiao, and C. P. Grover, “A Tunable Multiwavelength Fiber Ring Laser for Measuring Polarization-Mode Dispersion in Optical Fibers,” IEEE Photon. Technol. Lett. 16(5), 1280–1282 (2004).
    [CrossRef]
  4. T. Zhu, T. Ke, Y. Rao, and K. Chiang, “Fabry–Perot optical fiber tip sensor for high temperature measurement,” Opt. Commun. 283(19), 3683–3685 (2010).
    [CrossRef]
  5. A. Vilcot, B. Cabon, and J. Chazelas, eds., “Microwave Photonics from Components to Applications,” Kluwer Academic Publishers, May 2003.
  6. C. H. Cox III, Analog Optical Links: Theory and Practice (Cambridge University Press, 2004).
  7. M. A. Ummy, N. Madamopoulos, P. Lama, and R. Dorsinville, “Dual Sagnac loop mirror SOA-based widely tunable dual-output port fiber laser,” Opt. Express 17(17), 14495–14501 (2009).
    [CrossRef] [PubMed]
  8. H. Chen, “Multiwavelength fiber ring lasing by use of a semiconductor optical amplifier,” Opt. Lett. 30(6), 619–621 (2005).
    [CrossRef] [PubMed]
  9. S. Roh, S. Chung, Y. W. Lee, I. Yoon, and B. Lee, “Channel-spacing and wavelength-tunable multiwavelength fiber ring using semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 18(21), 2302–2304 (2006).
    [CrossRef]
  10. J. Zhang and J. W. Y. Lit, “Compound fiber ring resonator: theory,” J. Opt. Soc. Am. A 11(6), 1867–1873 (1994).
    [CrossRef]
  11. P. Barnsley, P. Urquhart, C. Millar, and M. Brierley, “Fiber Fox-Smith resonators: application to singlelongitudinal- mode operation of fiber lasers,” J. Opt. Soc. Am. A 5(8), 1339–1346 (1988).
    [CrossRef]
  12. F. Xiao, K. Alameh, and Y. T. Lee, “Tunable multi-wavelength fiber lasers based on an Opto-VLSI processor and optical amplifiers,” Opt. Express 17(25), 23123–23129 (2009).
    [CrossRef]
  13. K. Vlachos, K. Zoiros, T. Houbavlis, and H. Avramopoulos, “10×30 GHz pulse train generation from semiconductor amplifier fiber ring laser,” IEEE Photon. Technol. Lett. 12(1), 25–27 (2000).
    [CrossRef]
  14. J. Chow, G. Town, B. Eggleton, M. Ibsen, K. Sugden, and I. Bennion, “Multiwavelength generation in an erbium-fiber laser using in-fiber comb filters,” IEEE Photon. Technol. Lett. 8(1), 60–62 (1996).
    [CrossRef]
  15. S. Calvez, X. Rejeaunier, P. Mollier, J.-P. Goedgebuer, and W. T. Rhodes, “Erbium-doped fiber laser tuning using two cascaded unbalanced Mach Zehnder interferometers as intracavity filter: numerical analysis and experimental confirmation,” J. Lightwave Technol. 19(6), 893–898 (2001).
    [CrossRef]
  16. Y. Han, J. H. Lee, S. B. Lee, L. Potì, and A. Bogoni, “Novel multiwavelength erbium-doped fiber and Raman fiber ring lasers with continuous wavelength spacing tunability at room temperature,” J. Lightwave Technol 25(8), 2219–2225 (2007).
    [CrossRef]
  17. R. M. Sova, C.-S. Kim, and J. U. Kang, “Tunable Dual-Wavelength All-PM Fiber Ring Laser,” IEEE Photon. Technol. Lett. 14(3), 287–289 (2002).
    [CrossRef]
  18. C. L. Zhao, X. Yang, C. Lu, J. H. Ng, X. Guo, P. R. Chaudhuri, X. Wang, X. Zhou, and X. Dong, “Switchable multiwavelength SOA fiber ring laser based on a slanted multimode fiber Bragg grating,” Opt. Commun. 230, 313 (2004).
  19. G. Brochu, R. Slavík, and S. LaRochelle, “Ultra-compact 52mW 50-GHz spaced 16 channels narrow-line and single-polarization fiber laser,” Optical Fiber Communication Conf., Washington, DC 2, 1522–1524 (2004).
  20. M. R. Shirazi, S. W. Harun, M. Biglary, and H. Ahmad, “Linear cavity Brillouin fiber laser with improved characteristics,” Opt. Lett. 33(8), 770–772 (2008).
    [CrossRef] [PubMed]
  21. M. H. Al-Mansoori, M. K. Abdullah, and S. J. Iqbal, “Threshold features of L-band linear cavity multiwavelength Brillouin-erbium fiber laser,” in Proceedings of IEEE TENCON Region 10 Annual International Conference (Institute of Electrical and Electronics Engineers, pp.1–4, Nov. 2005.
  22. S. Yamashita and K. Hotate, “Multiwavelength erbium-doped fibre laser using intracavity etalon and cooled by liquid nitrogen,” Electron. Lett. 32(14), 1298–1299 (1996).
    [CrossRef]
  23. S. YamaShita and T. Baba, “Spacing-tunable multiwavelength fibre laser,” Electron. Lett. 37(16), 1015–1017 (2007).
    [CrossRef]
  24. J. Marana, S. LaRochellea, and P. Besnard, “C-band multi-wavelength frequency-shifted erbium-doped fiber laser,” Opt. Commun. 218(1-3), 81–86 (2003).
    [CrossRef]
  25. D. Zhou, P. R. Prucnal, and I. Glesh, “A widely tunable narrow linewidth semiconductor figer ring laser,” IEEE Photon. Technol. Lett. 10(6), 781–783 (1998).
    [CrossRef]
  26. Z. Hu, F. Li, Z. Pan, and W. Tan, “Wavelength-tunable narrow linewidth semiconductor fiber-ring laser,” IEEE Photon. Technol. Lett. 12(8), 977–979 (2000).
    [CrossRef]
  27. N. Pleros, C. Bintjas, M. Kalyvas, G. Theophilopoulos, K. Yiannopoulos, S. Sygletos, and H. Avramopoulos, “K, Yiannopoulos, S. Sygletos, and H. Avramopoulos, “Multiwavelength and power equalized SOA laser sources,” IEEE Photon. Technol. Lett. 14(5), 693–695 (2002).
    [CrossRef]
  28. B. A. Yu, D. H. Kim, and B. Lee, “Multiwavelength pulse generation in semiconductor-fiber ring laser using a sampled fiber grating,” Opt. Commun. 2, 343–347 (2000).
  29. K. Vlachos, K. Zoiros, T. Houbavlis, and J. Avramopoulos, “10x30 GHz pulse train generation from semiconductor amplifier fiber ring laser,” IEEE Photon. Technol. Lett. 12(1), 25–27 (2000).
    [CrossRef]
  30. D. H. Kim, S. H. Kim, Y. M. Jhon, S. Y. Ko, J. C. Jo, and S. S. Choi, “Relaxation-free harmonically mode-locked semiconductor- fiber ring laser,” IEEE Photon. Technol. Lett. 11(5), 521–523 (1999).
    [CrossRef]
  31. D. M. Patrick and R. J. Manning, “20 Gbit/s all-optical clock recovery using semiconductor nonlinearity,” Electron. Lett. 30(2), 151–152 (1994).
    [CrossRef]
  32. K. Vlachos, G. Theophilopoulos, A. Hatziefremidis, and H. Avramopoulos, “30 Gb/s all-optical clock recovery circuit,” IEEE Photon. Technol. Lett. 12(6), 705–707 (2000).
    [CrossRef]
  33. Z. Chen, S. Ma, and N. K. Dutta, “Multiwavelength fiber ring laser based on a semiconductor and fiber gain media,” Opt. Express 17(3), 1234–1239 (2009).
    [CrossRef] [PubMed]
  34. C.-S. Kim, Y.-G. Han, and R. M. Sova, “Optical Fiber Modal Birefringence Measurement Based on Lyot-Sagnac Interferometer,” IEEE Photon. Technol. Lett. 15(2), 269-271 (2003).
    [CrossRef]
  35. M. J. Connelly, “Wideband Semiconductor Optical Amplifier Steady-State Numerical Model,” IEEE J. Quantum Electron. 37(3), 439–447 (2001).
    [CrossRef]

2010

T. Zhu, T. Ke, Y. Rao, and K. Chiang, “Fabry–Perot optical fiber tip sensor for high temperature measurement,” Opt. Commun. 283(19), 3683–3685 (2010).
[CrossRef]

2009

2008

2007

Y. Han, J. H. Lee, S. B. Lee, L. Potì, and A. Bogoni, “Novel multiwavelength erbium-doped fiber and Raman fiber ring lasers with continuous wavelength spacing tunability at room temperature,” J. Lightwave Technol 25(8), 2219–2225 (2007).
[CrossRef]

S. YamaShita and T. Baba, “Spacing-tunable multiwavelength fibre laser,” Electron. Lett. 37(16), 1015–1017 (2007).
[CrossRef]

2006

S. Roh, S. Chung, Y. W. Lee, I. Yoon, and B. Lee, “Channel-spacing and wavelength-tunable multiwavelength fiber ring using semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 18(21), 2302–2304 (2006).
[CrossRef]

2005

K. K. Qureshi, H. Y. Tam, W. H. Chung, and P. K. A. Wai, “Multiwavelength Laser Source Using Linear Optical Amplifier,” IEEE Photon. Technol. Lett. 17(8), 1611–1613 (2005).
[CrossRef]

H. Chen, “Multiwavelength fiber ring lasing by use of a semiconductor optical amplifier,” Opt. Lett. 30(6), 619–621 (2005).
[CrossRef] [PubMed]

2004

Z. G. Lu, F. G. Sun, G. Z. Xiao, and C. P. Grover, “A Tunable Multiwavelength Fiber Ring Laser for Measuring Polarization-Mode Dispersion in Optical Fibers,” IEEE Photon. Technol. Lett. 16(5), 1280–1282 (2004).
[CrossRef]

C. L. Zhao, X. Yang, C. Lu, J. H. Ng, X. Guo, P. R. Chaudhuri, X. Wang, X. Zhou, and X. Dong, “Switchable multiwavelength SOA fiber ring laser based on a slanted multimode fiber Bragg grating,” Opt. Commun. 230, 313 (2004).

G. Brochu, R. Slavík, and S. LaRochelle, “Ultra-compact 52mW 50-GHz spaced 16 channels narrow-line and single-polarization fiber laser,” Optical Fiber Communication Conf., Washington, DC 2, 1522–1524 (2004).

2003

J. Marana, S. LaRochellea, and P. Besnard, “C-band multi-wavelength frequency-shifted erbium-doped fiber laser,” Opt. Commun. 218(1-3), 81–86 (2003).
[CrossRef]

C.-S. Kim, Y.-G. Han, and R. M. Sova, “Optical Fiber Modal Birefringence Measurement Based on Lyot-Sagnac Interferometer,” IEEE Photon. Technol. Lett. 15(2), 269-271 (2003).
[CrossRef]

2002

R. M. Sova, C.-S. Kim, and J. U. Kang, “Tunable Dual-Wavelength All-PM Fiber Ring Laser,” IEEE Photon. Technol. Lett. 14(3), 287–289 (2002).
[CrossRef]

N. Pleros, C. Bintjas, M. Kalyvas, G. Theophilopoulos, K. Yiannopoulos, S. Sygletos, and H. Avramopoulos, “K, Yiannopoulos, S. Sygletos, and H. Avramopoulos, “Multiwavelength and power equalized SOA laser sources,” IEEE Photon. Technol. Lett. 14(5), 693–695 (2002).
[CrossRef]

2001

2000

K. Vlachos, G. Theophilopoulos, A. Hatziefremidis, and H. Avramopoulos, “30 Gb/s all-optical clock recovery circuit,” IEEE Photon. Technol. Lett. 12(6), 705–707 (2000).
[CrossRef]

B. A. Yu, D. H. Kim, and B. Lee, “Multiwavelength pulse generation in semiconductor-fiber ring laser using a sampled fiber grating,” Opt. Commun. 2, 343–347 (2000).

K. Vlachos, K. Zoiros, T. Houbavlis, and J. Avramopoulos, “10x30 GHz pulse train generation from semiconductor amplifier fiber ring laser,” IEEE Photon. Technol. Lett. 12(1), 25–27 (2000).
[CrossRef]

K. Vlachos, K. Zoiros, T. Houbavlis, and H. Avramopoulos, “10×30 GHz pulse train generation from semiconductor amplifier fiber ring laser,” IEEE Photon. Technol. Lett. 12(1), 25–27 (2000).
[CrossRef]

Z. Hu, F. Li, Z. Pan, and W. Tan, “Wavelength-tunable narrow linewidth semiconductor fiber-ring laser,” IEEE Photon. Technol. Lett. 12(8), 977–979 (2000).
[CrossRef]

1999

D. H. Kim, S. H. Kim, Y. M. Jhon, S. Y. Ko, J. C. Jo, and S. S. Choi, “Relaxation-free harmonically mode-locked semiconductor- fiber ring laser,” IEEE Photon. Technol. Lett. 11(5), 521–523 (1999).
[CrossRef]

1998

D. Zhou, P. R. Prucnal, and I. Glesh, “A widely tunable narrow linewidth semiconductor figer ring laser,” IEEE Photon. Technol. Lett. 10(6), 781–783 (1998).
[CrossRef]

1996

S. Yamashita and K. Hotate, “Multiwavelength erbium-doped fibre laser using intracavity etalon and cooled by liquid nitrogen,” Electron. Lett. 32(14), 1298–1299 (1996).
[CrossRef]

J. Chow, G. Town, B. Eggleton, M. Ibsen, K. Sugden, and I. Bennion, “Multiwavelength generation in an erbium-fiber laser using in-fiber comb filters,” IEEE Photon. Technol. Lett. 8(1), 60–62 (1996).
[CrossRef]

1994

D. M. Patrick and R. J. Manning, “20 Gbit/s all-optical clock recovery using semiconductor nonlinearity,” Electron. Lett. 30(2), 151–152 (1994).
[CrossRef]

J. Zhang and J. W. Y. Lit, “Compound fiber ring resonator: theory,” J. Opt. Soc. Am. A 11(6), 1867–1873 (1994).
[CrossRef]

1992

N. Park, J. W. Dawson, and K. J. Vahala, “Multiple wavelength operation of an Erbium-doped fiber laser,” IEEE Photon. Technol. Lett. 4(6), 540–541 (1992).
[CrossRef]

1988

Ahmad, H.

Alameh, K.

Avramopoulos, H.

N. Pleros, C. Bintjas, M. Kalyvas, G. Theophilopoulos, K. Yiannopoulos, S. Sygletos, and H. Avramopoulos, “K, Yiannopoulos, S. Sygletos, and H. Avramopoulos, “Multiwavelength and power equalized SOA laser sources,” IEEE Photon. Technol. Lett. 14(5), 693–695 (2002).
[CrossRef]

K. Vlachos, K. Zoiros, T. Houbavlis, and H. Avramopoulos, “10×30 GHz pulse train generation from semiconductor amplifier fiber ring laser,” IEEE Photon. Technol. Lett. 12(1), 25–27 (2000).
[CrossRef]

K. Vlachos, G. Theophilopoulos, A. Hatziefremidis, and H. Avramopoulos, “30 Gb/s all-optical clock recovery circuit,” IEEE Photon. Technol. Lett. 12(6), 705–707 (2000).
[CrossRef]

Avramopoulos, J.

K. Vlachos, K. Zoiros, T. Houbavlis, and J. Avramopoulos, “10x30 GHz pulse train generation from semiconductor amplifier fiber ring laser,” IEEE Photon. Technol. Lett. 12(1), 25–27 (2000).
[CrossRef]

Baba, T.

S. YamaShita and T. Baba, “Spacing-tunable multiwavelength fibre laser,” Electron. Lett. 37(16), 1015–1017 (2007).
[CrossRef]

Barnsley, P.

Bennion, I.

J. Chow, G. Town, B. Eggleton, M. Ibsen, K. Sugden, and I. Bennion, “Multiwavelength generation in an erbium-fiber laser using in-fiber comb filters,” IEEE Photon. Technol. Lett. 8(1), 60–62 (1996).
[CrossRef]

Besnard, P.

J. Marana, S. LaRochellea, and P. Besnard, “C-band multi-wavelength frequency-shifted erbium-doped fiber laser,” Opt. Commun. 218(1-3), 81–86 (2003).
[CrossRef]

Biglary, M.

Bintjas, C.

N. Pleros, C. Bintjas, M. Kalyvas, G. Theophilopoulos, K. Yiannopoulos, S. Sygletos, and H. Avramopoulos, “K, Yiannopoulos, S. Sygletos, and H. Avramopoulos, “Multiwavelength and power equalized SOA laser sources,” IEEE Photon. Technol. Lett. 14(5), 693–695 (2002).
[CrossRef]

Bogoni, A.

Y. Han, J. H. Lee, S. B. Lee, L. Potì, and A. Bogoni, “Novel multiwavelength erbium-doped fiber and Raman fiber ring lasers with continuous wavelength spacing tunability at room temperature,” J. Lightwave Technol 25(8), 2219–2225 (2007).
[CrossRef]

Brierley, M.

Brochu, G.

G. Brochu, R. Slavík, and S. LaRochelle, “Ultra-compact 52mW 50-GHz spaced 16 channels narrow-line and single-polarization fiber laser,” Optical Fiber Communication Conf., Washington, DC 2, 1522–1524 (2004).

Calvez, S.

Chaudhuri, P. R.

C. L. Zhao, X. Yang, C. Lu, J. H. Ng, X. Guo, P. R. Chaudhuri, X. Wang, X. Zhou, and X. Dong, “Switchable multiwavelength SOA fiber ring laser based on a slanted multimode fiber Bragg grating,” Opt. Commun. 230, 313 (2004).

Chen, H.

Chen, Z.

Chiang, K.

T. Zhu, T. Ke, Y. Rao, and K. Chiang, “Fabry–Perot optical fiber tip sensor for high temperature measurement,” Opt. Commun. 283(19), 3683–3685 (2010).
[CrossRef]

Choi, S. S.

D. H. Kim, S. H. Kim, Y. M. Jhon, S. Y. Ko, J. C. Jo, and S. S. Choi, “Relaxation-free harmonically mode-locked semiconductor- fiber ring laser,” IEEE Photon. Technol. Lett. 11(5), 521–523 (1999).
[CrossRef]

Chow, J.

J. Chow, G. Town, B. Eggleton, M. Ibsen, K. Sugden, and I. Bennion, “Multiwavelength generation in an erbium-fiber laser using in-fiber comb filters,” IEEE Photon. Technol. Lett. 8(1), 60–62 (1996).
[CrossRef]

Chung, S.

S. Roh, S. Chung, Y. W. Lee, I. Yoon, and B. Lee, “Channel-spacing and wavelength-tunable multiwavelength fiber ring using semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 18(21), 2302–2304 (2006).
[CrossRef]

Chung, W. H.

K. K. Qureshi, H. Y. Tam, W. H. Chung, and P. K. A. Wai, “Multiwavelength Laser Source Using Linear Optical Amplifier,” IEEE Photon. Technol. Lett. 17(8), 1611–1613 (2005).
[CrossRef]

Connelly, M. J.

M. J. Connelly, “Wideband Semiconductor Optical Amplifier Steady-State Numerical Model,” IEEE J. Quantum Electron. 37(3), 439–447 (2001).
[CrossRef]

Dawson, J. W.

N. Park, J. W. Dawson, and K. J. Vahala, “Multiple wavelength operation of an Erbium-doped fiber laser,” IEEE Photon. Technol. Lett. 4(6), 540–541 (1992).
[CrossRef]

Dong, X.

C. L. Zhao, X. Yang, C. Lu, J. H. Ng, X. Guo, P. R. Chaudhuri, X. Wang, X. Zhou, and X. Dong, “Switchable multiwavelength SOA fiber ring laser based on a slanted multimode fiber Bragg grating,” Opt. Commun. 230, 313 (2004).

Dorsinville, R.

Dutta, N. K.

Eggleton, B.

J. Chow, G. Town, B. Eggleton, M. Ibsen, K. Sugden, and I. Bennion, “Multiwavelength generation in an erbium-fiber laser using in-fiber comb filters,” IEEE Photon. Technol. Lett. 8(1), 60–62 (1996).
[CrossRef]

Glesh, I.

D. Zhou, P. R. Prucnal, and I. Glesh, “A widely tunable narrow linewidth semiconductor figer ring laser,” IEEE Photon. Technol. Lett. 10(6), 781–783 (1998).
[CrossRef]

Goedgebuer, J.-P.

Grover, C. P.

Z. G. Lu, F. G. Sun, G. Z. Xiao, and C. P. Grover, “A Tunable Multiwavelength Fiber Ring Laser for Measuring Polarization-Mode Dispersion in Optical Fibers,” IEEE Photon. Technol. Lett. 16(5), 1280–1282 (2004).
[CrossRef]

Guo, X.

C. L. Zhao, X. Yang, C. Lu, J. H. Ng, X. Guo, P. R. Chaudhuri, X. Wang, X. Zhou, and X. Dong, “Switchable multiwavelength SOA fiber ring laser based on a slanted multimode fiber Bragg grating,” Opt. Commun. 230, 313 (2004).

Han, Y.

Y. Han, J. H. Lee, S. B. Lee, L. Potì, and A. Bogoni, “Novel multiwavelength erbium-doped fiber and Raman fiber ring lasers with continuous wavelength spacing tunability at room temperature,” J. Lightwave Technol 25(8), 2219–2225 (2007).
[CrossRef]

Han, Y.-G.

C.-S. Kim, Y.-G. Han, and R. M. Sova, “Optical Fiber Modal Birefringence Measurement Based on Lyot-Sagnac Interferometer,” IEEE Photon. Technol. Lett. 15(2), 269-271 (2003).
[CrossRef]

Harun, S. W.

Hatziefremidis, A.

K. Vlachos, G. Theophilopoulos, A. Hatziefremidis, and H. Avramopoulos, “30 Gb/s all-optical clock recovery circuit,” IEEE Photon. Technol. Lett. 12(6), 705–707 (2000).
[CrossRef]

Hotate, K.

S. Yamashita and K. Hotate, “Multiwavelength erbium-doped fibre laser using intracavity etalon and cooled by liquid nitrogen,” Electron. Lett. 32(14), 1298–1299 (1996).
[CrossRef]

Houbavlis, T.

K. Vlachos, K. Zoiros, T. Houbavlis, and J. Avramopoulos, “10x30 GHz pulse train generation from semiconductor amplifier fiber ring laser,” IEEE Photon. Technol. Lett. 12(1), 25–27 (2000).
[CrossRef]

K. Vlachos, K. Zoiros, T. Houbavlis, and H. Avramopoulos, “10×30 GHz pulse train generation from semiconductor amplifier fiber ring laser,” IEEE Photon. Technol. Lett. 12(1), 25–27 (2000).
[CrossRef]

Hu, Z.

Z. Hu, F. Li, Z. Pan, and W. Tan, “Wavelength-tunable narrow linewidth semiconductor fiber-ring laser,” IEEE Photon. Technol. Lett. 12(8), 977–979 (2000).
[CrossRef]

Ibsen, M.

J. Chow, G. Town, B. Eggleton, M. Ibsen, K. Sugden, and I. Bennion, “Multiwavelength generation in an erbium-fiber laser using in-fiber comb filters,” IEEE Photon. Technol. Lett. 8(1), 60–62 (1996).
[CrossRef]

Jhon, Y. M.

D. H. Kim, S. H. Kim, Y. M. Jhon, S. Y. Ko, J. C. Jo, and S. S. Choi, “Relaxation-free harmonically mode-locked semiconductor- fiber ring laser,” IEEE Photon. Technol. Lett. 11(5), 521–523 (1999).
[CrossRef]

Jo, J. C.

D. H. Kim, S. H. Kim, Y. M. Jhon, S. Y. Ko, J. C. Jo, and S. S. Choi, “Relaxation-free harmonically mode-locked semiconductor- fiber ring laser,” IEEE Photon. Technol. Lett. 11(5), 521–523 (1999).
[CrossRef]

Kalyvas, M.

N. Pleros, C. Bintjas, M. Kalyvas, G. Theophilopoulos, K. Yiannopoulos, S. Sygletos, and H. Avramopoulos, “K, Yiannopoulos, S. Sygletos, and H. Avramopoulos, “Multiwavelength and power equalized SOA laser sources,” IEEE Photon. Technol. Lett. 14(5), 693–695 (2002).
[CrossRef]

Kang, J. U.

R. M. Sova, C.-S. Kim, and J. U. Kang, “Tunable Dual-Wavelength All-PM Fiber Ring Laser,” IEEE Photon. Technol. Lett. 14(3), 287–289 (2002).
[CrossRef]

Ke, T.

T. Zhu, T. Ke, Y. Rao, and K. Chiang, “Fabry–Perot optical fiber tip sensor for high temperature measurement,” Opt. Commun. 283(19), 3683–3685 (2010).
[CrossRef]

Kim, C.-S.

C.-S. Kim, Y.-G. Han, and R. M. Sova, “Optical Fiber Modal Birefringence Measurement Based on Lyot-Sagnac Interferometer,” IEEE Photon. Technol. Lett. 15(2), 269-271 (2003).
[CrossRef]

R. M. Sova, C.-S. Kim, and J. U. Kang, “Tunable Dual-Wavelength All-PM Fiber Ring Laser,” IEEE Photon. Technol. Lett. 14(3), 287–289 (2002).
[CrossRef]

Kim, D. H.

B. A. Yu, D. H. Kim, and B. Lee, “Multiwavelength pulse generation in semiconductor-fiber ring laser using a sampled fiber grating,” Opt. Commun. 2, 343–347 (2000).

D. H. Kim, S. H. Kim, Y. M. Jhon, S. Y. Ko, J. C. Jo, and S. S. Choi, “Relaxation-free harmonically mode-locked semiconductor- fiber ring laser,” IEEE Photon. Technol. Lett. 11(5), 521–523 (1999).
[CrossRef]

Kim, S. H.

D. H. Kim, S. H. Kim, Y. M. Jhon, S. Y. Ko, J. C. Jo, and S. S. Choi, “Relaxation-free harmonically mode-locked semiconductor- fiber ring laser,” IEEE Photon. Technol. Lett. 11(5), 521–523 (1999).
[CrossRef]

Ko, S. Y.

D. H. Kim, S. H. Kim, Y. M. Jhon, S. Y. Ko, J. C. Jo, and S. S. Choi, “Relaxation-free harmonically mode-locked semiconductor- fiber ring laser,” IEEE Photon. Technol. Lett. 11(5), 521–523 (1999).
[CrossRef]

Lama, P.

LaRochelle, S.

G. Brochu, R. Slavík, and S. LaRochelle, “Ultra-compact 52mW 50-GHz spaced 16 channels narrow-line and single-polarization fiber laser,” Optical Fiber Communication Conf., Washington, DC 2, 1522–1524 (2004).

LaRochellea, S.

J. Marana, S. LaRochellea, and P. Besnard, “C-band multi-wavelength frequency-shifted erbium-doped fiber laser,” Opt. Commun. 218(1-3), 81–86 (2003).
[CrossRef]

Lee, B.

S. Roh, S. Chung, Y. W. Lee, I. Yoon, and B. Lee, “Channel-spacing and wavelength-tunable multiwavelength fiber ring using semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 18(21), 2302–2304 (2006).
[CrossRef]

B. A. Yu, D. H. Kim, and B. Lee, “Multiwavelength pulse generation in semiconductor-fiber ring laser using a sampled fiber grating,” Opt. Commun. 2, 343–347 (2000).

Lee, J. H.

Y. Han, J. H. Lee, S. B. Lee, L. Potì, and A. Bogoni, “Novel multiwavelength erbium-doped fiber and Raman fiber ring lasers with continuous wavelength spacing tunability at room temperature,” J. Lightwave Technol 25(8), 2219–2225 (2007).
[CrossRef]

Lee, S. B.

Y. Han, J. H. Lee, S. B. Lee, L. Potì, and A. Bogoni, “Novel multiwavelength erbium-doped fiber and Raman fiber ring lasers with continuous wavelength spacing tunability at room temperature,” J. Lightwave Technol 25(8), 2219–2225 (2007).
[CrossRef]

Lee, Y. T.

Lee, Y. W.

S. Roh, S. Chung, Y. W. Lee, I. Yoon, and B. Lee, “Channel-spacing and wavelength-tunable multiwavelength fiber ring using semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 18(21), 2302–2304 (2006).
[CrossRef]

Li, F.

Z. Hu, F. Li, Z. Pan, and W. Tan, “Wavelength-tunable narrow linewidth semiconductor fiber-ring laser,” IEEE Photon. Technol. Lett. 12(8), 977–979 (2000).
[CrossRef]

Lit, J. W. Y.

Lu, C.

C. L. Zhao, X. Yang, C. Lu, J. H. Ng, X. Guo, P. R. Chaudhuri, X. Wang, X. Zhou, and X. Dong, “Switchable multiwavelength SOA fiber ring laser based on a slanted multimode fiber Bragg grating,” Opt. Commun. 230, 313 (2004).

Lu, Z. G.

Z. G. Lu, F. G. Sun, G. Z. Xiao, and C. P. Grover, “A Tunable Multiwavelength Fiber Ring Laser for Measuring Polarization-Mode Dispersion in Optical Fibers,” IEEE Photon. Technol. Lett. 16(5), 1280–1282 (2004).
[CrossRef]

Ma, S.

Madamopoulos, N.

Manning, R. J.

D. M. Patrick and R. J. Manning, “20 Gbit/s all-optical clock recovery using semiconductor nonlinearity,” Electron. Lett. 30(2), 151–152 (1994).
[CrossRef]

Marana, J.

J. Marana, S. LaRochellea, and P. Besnard, “C-band multi-wavelength frequency-shifted erbium-doped fiber laser,” Opt. Commun. 218(1-3), 81–86 (2003).
[CrossRef]

Millar, C.

Mollier, P.

Ng, J. H.

C. L. Zhao, X. Yang, C. Lu, J. H. Ng, X. Guo, P. R. Chaudhuri, X. Wang, X. Zhou, and X. Dong, “Switchable multiwavelength SOA fiber ring laser based on a slanted multimode fiber Bragg grating,” Opt. Commun. 230, 313 (2004).

Pan, Z.

Z. Hu, F. Li, Z. Pan, and W. Tan, “Wavelength-tunable narrow linewidth semiconductor fiber-ring laser,” IEEE Photon. Technol. Lett. 12(8), 977–979 (2000).
[CrossRef]

Park, N.

N. Park, J. W. Dawson, and K. J. Vahala, “Multiple wavelength operation of an Erbium-doped fiber laser,” IEEE Photon. Technol. Lett. 4(6), 540–541 (1992).
[CrossRef]

Patrick, D. M.

D. M. Patrick and R. J. Manning, “20 Gbit/s all-optical clock recovery using semiconductor nonlinearity,” Electron. Lett. 30(2), 151–152 (1994).
[CrossRef]

Pleros, N.

N. Pleros, C. Bintjas, M. Kalyvas, G. Theophilopoulos, K. Yiannopoulos, S. Sygletos, and H. Avramopoulos, “K, Yiannopoulos, S. Sygletos, and H. Avramopoulos, “Multiwavelength and power equalized SOA laser sources,” IEEE Photon. Technol. Lett. 14(5), 693–695 (2002).
[CrossRef]

Potì, L.

Y. Han, J. H. Lee, S. B. Lee, L. Potì, and A. Bogoni, “Novel multiwavelength erbium-doped fiber and Raman fiber ring lasers with continuous wavelength spacing tunability at room temperature,” J. Lightwave Technol 25(8), 2219–2225 (2007).
[CrossRef]

Prucnal, P. R.

D. Zhou, P. R. Prucnal, and I. Glesh, “A widely tunable narrow linewidth semiconductor figer ring laser,” IEEE Photon. Technol. Lett. 10(6), 781–783 (1998).
[CrossRef]

Qureshi, K. K.

K. K. Qureshi, H. Y. Tam, W. H. Chung, and P. K. A. Wai, “Multiwavelength Laser Source Using Linear Optical Amplifier,” IEEE Photon. Technol. Lett. 17(8), 1611–1613 (2005).
[CrossRef]

Rao, Y.

T. Zhu, T. Ke, Y. Rao, and K. Chiang, “Fabry–Perot optical fiber tip sensor for high temperature measurement,” Opt. Commun. 283(19), 3683–3685 (2010).
[CrossRef]

Rejeaunier, X.

Rhodes, W. T.

Roh, S.

S. Roh, S. Chung, Y. W. Lee, I. Yoon, and B. Lee, “Channel-spacing and wavelength-tunable multiwavelength fiber ring using semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 18(21), 2302–2304 (2006).
[CrossRef]

Shirazi, M. R.

Slavík, R.

G. Brochu, R. Slavík, and S. LaRochelle, “Ultra-compact 52mW 50-GHz spaced 16 channels narrow-line and single-polarization fiber laser,” Optical Fiber Communication Conf., Washington, DC 2, 1522–1524 (2004).

Sova, R. M.

C.-S. Kim, Y.-G. Han, and R. M. Sova, “Optical Fiber Modal Birefringence Measurement Based on Lyot-Sagnac Interferometer,” IEEE Photon. Technol. Lett. 15(2), 269-271 (2003).
[CrossRef]

R. M. Sova, C.-S. Kim, and J. U. Kang, “Tunable Dual-Wavelength All-PM Fiber Ring Laser,” IEEE Photon. Technol. Lett. 14(3), 287–289 (2002).
[CrossRef]

Sugden, K.

J. Chow, G. Town, B. Eggleton, M. Ibsen, K. Sugden, and I. Bennion, “Multiwavelength generation in an erbium-fiber laser using in-fiber comb filters,” IEEE Photon. Technol. Lett. 8(1), 60–62 (1996).
[CrossRef]

Sun, F. G.

Z. G. Lu, F. G. Sun, G. Z. Xiao, and C. P. Grover, “A Tunable Multiwavelength Fiber Ring Laser for Measuring Polarization-Mode Dispersion in Optical Fibers,” IEEE Photon. Technol. Lett. 16(5), 1280–1282 (2004).
[CrossRef]

Sygletos, S.

N. Pleros, C. Bintjas, M. Kalyvas, G. Theophilopoulos, K. Yiannopoulos, S. Sygletos, and H. Avramopoulos, “K, Yiannopoulos, S. Sygletos, and H. Avramopoulos, “Multiwavelength and power equalized SOA laser sources,” IEEE Photon. Technol. Lett. 14(5), 693–695 (2002).
[CrossRef]

Tam, H. Y.

K. K. Qureshi, H. Y. Tam, W. H. Chung, and P. K. A. Wai, “Multiwavelength Laser Source Using Linear Optical Amplifier,” IEEE Photon. Technol. Lett. 17(8), 1611–1613 (2005).
[CrossRef]

Tan, W.

Z. Hu, F. Li, Z. Pan, and W. Tan, “Wavelength-tunable narrow linewidth semiconductor fiber-ring laser,” IEEE Photon. Technol. Lett. 12(8), 977–979 (2000).
[CrossRef]

Theophilopoulos, G.

N. Pleros, C. Bintjas, M. Kalyvas, G. Theophilopoulos, K. Yiannopoulos, S. Sygletos, and H. Avramopoulos, “K, Yiannopoulos, S. Sygletos, and H. Avramopoulos, “Multiwavelength and power equalized SOA laser sources,” IEEE Photon. Technol. Lett. 14(5), 693–695 (2002).
[CrossRef]

K. Vlachos, G. Theophilopoulos, A. Hatziefremidis, and H. Avramopoulos, “30 Gb/s all-optical clock recovery circuit,” IEEE Photon. Technol. Lett. 12(6), 705–707 (2000).
[CrossRef]

Town, G.

J. Chow, G. Town, B. Eggleton, M. Ibsen, K. Sugden, and I. Bennion, “Multiwavelength generation in an erbium-fiber laser using in-fiber comb filters,” IEEE Photon. Technol. Lett. 8(1), 60–62 (1996).
[CrossRef]

Ummy, M. A.

Urquhart, P.

Vahala, K. J.

N. Park, J. W. Dawson, and K. J. Vahala, “Multiple wavelength operation of an Erbium-doped fiber laser,” IEEE Photon. Technol. Lett. 4(6), 540–541 (1992).
[CrossRef]

Vlachos, K.

K. Vlachos, K. Zoiros, T. Houbavlis, and J. Avramopoulos, “10x30 GHz pulse train generation from semiconductor amplifier fiber ring laser,” IEEE Photon. Technol. Lett. 12(1), 25–27 (2000).
[CrossRef]

K. Vlachos, G. Theophilopoulos, A. Hatziefremidis, and H. Avramopoulos, “30 Gb/s all-optical clock recovery circuit,” IEEE Photon. Technol. Lett. 12(6), 705–707 (2000).
[CrossRef]

K. Vlachos, K. Zoiros, T. Houbavlis, and H. Avramopoulos, “10×30 GHz pulse train generation from semiconductor amplifier fiber ring laser,” IEEE Photon. Technol. Lett. 12(1), 25–27 (2000).
[CrossRef]

Wai, P. K. A.

K. K. Qureshi, H. Y. Tam, W. H. Chung, and P. K. A. Wai, “Multiwavelength Laser Source Using Linear Optical Amplifier,” IEEE Photon. Technol. Lett. 17(8), 1611–1613 (2005).
[CrossRef]

Wang, X.

C. L. Zhao, X. Yang, C. Lu, J. H. Ng, X. Guo, P. R. Chaudhuri, X. Wang, X. Zhou, and X. Dong, “Switchable multiwavelength SOA fiber ring laser based on a slanted multimode fiber Bragg grating,” Opt. Commun. 230, 313 (2004).

Xiao, F.

Xiao, G. Z.

Z. G. Lu, F. G. Sun, G. Z. Xiao, and C. P. Grover, “A Tunable Multiwavelength Fiber Ring Laser for Measuring Polarization-Mode Dispersion in Optical Fibers,” IEEE Photon. Technol. Lett. 16(5), 1280–1282 (2004).
[CrossRef]

YamaShita, S.

S. YamaShita and T. Baba, “Spacing-tunable multiwavelength fibre laser,” Electron. Lett. 37(16), 1015–1017 (2007).
[CrossRef]

S. Yamashita and K. Hotate, “Multiwavelength erbium-doped fibre laser using intracavity etalon and cooled by liquid nitrogen,” Electron. Lett. 32(14), 1298–1299 (1996).
[CrossRef]

Yang, X.

C. L. Zhao, X. Yang, C. Lu, J. H. Ng, X. Guo, P. R. Chaudhuri, X. Wang, X. Zhou, and X. Dong, “Switchable multiwavelength SOA fiber ring laser based on a slanted multimode fiber Bragg grating,” Opt. Commun. 230, 313 (2004).

Yiannopoulos, K.

N. Pleros, C. Bintjas, M. Kalyvas, G. Theophilopoulos, K. Yiannopoulos, S. Sygletos, and H. Avramopoulos, “K, Yiannopoulos, S. Sygletos, and H. Avramopoulos, “Multiwavelength and power equalized SOA laser sources,” IEEE Photon. Technol. Lett. 14(5), 693–695 (2002).
[CrossRef]

Yoon, I.

S. Roh, S. Chung, Y. W. Lee, I. Yoon, and B. Lee, “Channel-spacing and wavelength-tunable multiwavelength fiber ring using semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 18(21), 2302–2304 (2006).
[CrossRef]

Yu, B. A.

B. A. Yu, D. H. Kim, and B. Lee, “Multiwavelength pulse generation in semiconductor-fiber ring laser using a sampled fiber grating,” Opt. Commun. 2, 343–347 (2000).

Zhang, J.

Zhao, C. L.

C. L. Zhao, X. Yang, C. Lu, J. H. Ng, X. Guo, P. R. Chaudhuri, X. Wang, X. Zhou, and X. Dong, “Switchable multiwavelength SOA fiber ring laser based on a slanted multimode fiber Bragg grating,” Opt. Commun. 230, 313 (2004).

Zhou, D.

D. Zhou, P. R. Prucnal, and I. Glesh, “A widely tunable narrow linewidth semiconductor figer ring laser,” IEEE Photon. Technol. Lett. 10(6), 781–783 (1998).
[CrossRef]

Zhou, X.

C. L. Zhao, X. Yang, C. Lu, J. H. Ng, X. Guo, P. R. Chaudhuri, X. Wang, X. Zhou, and X. Dong, “Switchable multiwavelength SOA fiber ring laser based on a slanted multimode fiber Bragg grating,” Opt. Commun. 230, 313 (2004).

Zhu, T.

T. Zhu, T. Ke, Y. Rao, and K. Chiang, “Fabry–Perot optical fiber tip sensor for high temperature measurement,” Opt. Commun. 283(19), 3683–3685 (2010).
[CrossRef]

Zoiros, K.

K. Vlachos, K. Zoiros, T. Houbavlis, and J. Avramopoulos, “10x30 GHz pulse train generation from semiconductor amplifier fiber ring laser,” IEEE Photon. Technol. Lett. 12(1), 25–27 (2000).
[CrossRef]

K. Vlachos, K. Zoiros, T. Houbavlis, and H. Avramopoulos, “10×30 GHz pulse train generation from semiconductor amplifier fiber ring laser,” IEEE Photon. Technol. Lett. 12(1), 25–27 (2000).
[CrossRef]

Electron. Lett.

S. Yamashita and K. Hotate, “Multiwavelength erbium-doped fibre laser using intracavity etalon and cooled by liquid nitrogen,” Electron. Lett. 32(14), 1298–1299 (1996).
[CrossRef]

S. YamaShita and T. Baba, “Spacing-tunable multiwavelength fibre laser,” Electron. Lett. 37(16), 1015–1017 (2007).
[CrossRef]

D. M. Patrick and R. J. Manning, “20 Gbit/s all-optical clock recovery using semiconductor nonlinearity,” Electron. Lett. 30(2), 151–152 (1994).
[CrossRef]

IEEE J. Quantum Electron.

M. J. Connelly, “Wideband Semiconductor Optical Amplifier Steady-State Numerical Model,” IEEE J. Quantum Electron. 37(3), 439–447 (2001).
[CrossRef]

IEEE Photon. Technol. Lett.

R. M. Sova, C.-S. Kim, and J. U. Kang, “Tunable Dual-Wavelength All-PM Fiber Ring Laser,” IEEE Photon. Technol. Lett. 14(3), 287–289 (2002).
[CrossRef]

K. Vlachos, K. Zoiros, T. Houbavlis, and H. Avramopoulos, “10×30 GHz pulse train generation from semiconductor amplifier fiber ring laser,” IEEE Photon. Technol. Lett. 12(1), 25–27 (2000).
[CrossRef]

J. Chow, G. Town, B. Eggleton, M. Ibsen, K. Sugden, and I. Bennion, “Multiwavelength generation in an erbium-fiber laser using in-fiber comb filters,” IEEE Photon. Technol. Lett. 8(1), 60–62 (1996).
[CrossRef]

C.-S. Kim, Y.-G. Han, and R. M. Sova, “Optical Fiber Modal Birefringence Measurement Based on Lyot-Sagnac Interferometer,” IEEE Photon. Technol. Lett. 15(2), 269-271 (2003).
[CrossRef]

K. Vlachos, G. Theophilopoulos, A. Hatziefremidis, and H. Avramopoulos, “30 Gb/s all-optical clock recovery circuit,” IEEE Photon. Technol. Lett. 12(6), 705–707 (2000).
[CrossRef]

K. Vlachos, K. Zoiros, T. Houbavlis, and J. Avramopoulos, “10x30 GHz pulse train generation from semiconductor amplifier fiber ring laser,” IEEE Photon. Technol. Lett. 12(1), 25–27 (2000).
[CrossRef]

D. H. Kim, S. H. Kim, Y. M. Jhon, S. Y. Ko, J. C. Jo, and S. S. Choi, “Relaxation-free harmonically mode-locked semiconductor- fiber ring laser,” IEEE Photon. Technol. Lett. 11(5), 521–523 (1999).
[CrossRef]

D. Zhou, P. R. Prucnal, and I. Glesh, “A widely tunable narrow linewidth semiconductor figer ring laser,” IEEE Photon. Technol. Lett. 10(6), 781–783 (1998).
[CrossRef]

Z. Hu, F. Li, Z. Pan, and W. Tan, “Wavelength-tunable narrow linewidth semiconductor fiber-ring laser,” IEEE Photon. Technol. Lett. 12(8), 977–979 (2000).
[CrossRef]

N. Pleros, C. Bintjas, M. Kalyvas, G. Theophilopoulos, K. Yiannopoulos, S. Sygletos, and H. Avramopoulos, “K, Yiannopoulos, S. Sygletos, and H. Avramopoulos, “Multiwavelength and power equalized SOA laser sources,” IEEE Photon. Technol. Lett. 14(5), 693–695 (2002).
[CrossRef]

S. Roh, S. Chung, Y. W. Lee, I. Yoon, and B. Lee, “Channel-spacing and wavelength-tunable multiwavelength fiber ring using semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 18(21), 2302–2304 (2006).
[CrossRef]

N. Park, J. W. Dawson, and K. J. Vahala, “Multiple wavelength operation of an Erbium-doped fiber laser,” IEEE Photon. Technol. Lett. 4(6), 540–541 (1992).
[CrossRef]

K. K. Qureshi, H. Y. Tam, W. H. Chung, and P. K. A. Wai, “Multiwavelength Laser Source Using Linear Optical Amplifier,” IEEE Photon. Technol. Lett. 17(8), 1611–1613 (2005).
[CrossRef]

Z. G. Lu, F. G. Sun, G. Z. Xiao, and C. P. Grover, “A Tunable Multiwavelength Fiber Ring Laser for Measuring Polarization-Mode Dispersion in Optical Fibers,” IEEE Photon. Technol. Lett. 16(5), 1280–1282 (2004).
[CrossRef]

J. Lightwave Technol

Y. Han, J. H. Lee, S. B. Lee, L. Potì, and A. Bogoni, “Novel multiwavelength erbium-doped fiber and Raman fiber ring lasers with continuous wavelength spacing tunability at room temperature,” J. Lightwave Technol 25(8), 2219–2225 (2007).
[CrossRef]

J. Lightwave Technol.

J. Opt. Soc. Am. A

Opt. Commun.

C. L. Zhao, X. Yang, C. Lu, J. H. Ng, X. Guo, P. R. Chaudhuri, X. Wang, X. Zhou, and X. Dong, “Switchable multiwavelength SOA fiber ring laser based on a slanted multimode fiber Bragg grating,” Opt. Commun. 230, 313 (2004).

B. A. Yu, D. H. Kim, and B. Lee, “Multiwavelength pulse generation in semiconductor-fiber ring laser using a sampled fiber grating,” Opt. Commun. 2, 343–347 (2000).

T. Zhu, T. Ke, Y. Rao, and K. Chiang, “Fabry–Perot optical fiber tip sensor for high temperature measurement,” Opt. Commun. 283(19), 3683–3685 (2010).
[CrossRef]

J. Marana, S. LaRochellea, and P. Besnard, “C-band multi-wavelength frequency-shifted erbium-doped fiber laser,” Opt. Commun. 218(1-3), 81–86 (2003).
[CrossRef]

Opt. Express

Opt. Lett.

Optical Fiber Communication Conf., Washington, DC

G. Brochu, R. Slavík, and S. LaRochelle, “Ultra-compact 52mW 50-GHz spaced 16 channels narrow-line and single-polarization fiber laser,” Optical Fiber Communication Conf., Washington, DC 2, 1522–1524 (2004).

Other

M. H. Al-Mansoori, M. K. Abdullah, and S. J. Iqbal, “Threshold features of L-band linear cavity multiwavelength Brillouin-erbium fiber laser,” in Proceedings of IEEE TENCON Region 10 Annual International Conference (Institute of Electrical and Electronics Engineers, pp.1–4, Nov. 2005.

A. Vilcot, B. Cabon, and J. Chazelas, eds., “Microwave Photonics from Components to Applications,” Kluwer Academic Publishers, May 2003.

C. H. Cox III, Analog Optical Links: Theory and Practice (Cambridge University Press, 2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Experimental setup of the SOA based dual loop mirror fiber lase.

Fig. 2
Fig. 2

ASE spectra of the SOA at bias current set at 100 mA and 200mA. The gain at linear and saturation region are compared.

Fig. 3
Fig. 3

Laser resonator with two loops.

Fig. 4
Fig. 4

Comparison between the transmission spectra of the fiber laser and the simulation results without taking into account the gain profile (a) and with gain profile in the simulation results (b).

Fig. 5
Fig. 5

Laser spectra measured with and without a PMF. The SOA operation current is 200mA.

Fig. 6
Fig. 6

Gain profile as a function of input power to the SOA at 1554nm and 1597 nm.

Fig. 7
Fig. 7

Wavelength tunability achieved by varying the reflectivity of the LM1 loop. a) Bias current set at 100 mA. b) Bias current set at 200 mA.

Fig. 8
Fig. 8

Wavelength tunability achieved by varying the VOA. a) Bias current set at 100 mA. b) Bias current set at 200 mA.

Fig. 9
Fig. 9

Power (a) and wavelength (b) stability measurement for one of the output wavelengths.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

L R = L 1 + L 2 + 2 L 3 .
L = L 1 2 + L 2 2 + L 3 .
T ( θ 1 , θ 2 ) = [ sin ( π λ ( Δ n 1 L 1 + Δ n 2 L 2 ) ) sin ( θ 1 + θ 2 2 ) cos ( θ 1 θ 2 2 ) + + sin ( π λ ( Δ n 1 L 1 Δ n 2 L 2 ) ) cos ( θ 1 + θ 2 2 ) sin ( θ 1 θ 2 2 ) ] 2
T ( λ , θ 1 ) = [ sin ( π λ ( Δ n 1 L P M F ) ) sin ( θ 1 2 ) cos ( θ 1 2 ) + sin ( π λ ( Δ n 1 L P M F ) ) cos ( θ 1 2 ) sin ( θ 1 2 ) ] 2 .
T ( λ , θ 1 ) = [ sin ( π λ ( Δ n 1 L P M F ) ) sin ( θ 1 ) ] 2 .
T ( λ ) = sin 2 ( θ 1 ) [ sin ( π λ ( Δ n 1 L P M F ) ) ] 2 ,
T ( λ ) L C = T ( λ ) 1 T ( λ ) 2 ... T ( λ ) n ,

Metrics