Abstract

A coupler based on silicon spherical microcavities coupled to silicon waveguides for telecom wavelengths is presented. The light scattered by the microcavity is detected and analyzed as a function of the wavelength. The transmittance signal through the waveguide is strongly attenuated (up to 25 dB) at wavelengths corresponding to the Mie resonances of the microcavity. The coupling between the microcavity and the waveguide is experimentally demonstrated and theoretically modeled with the help of FDTD calculations.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Cai, O. Painter, K. J. Vahala, and P. C. Sercel, “Fiber-coupled microsphere laser,” Opt. Lett. 25(19), 1430–1432 (2000).
    [CrossRef]
  2. J. C. Knight, N. Dubreuil, V. Sandoghdar, J. Hare, V. Lefèvre-Seguin, J. M. Raimond, and S. Haroche, “Mapping whispering-gallery modes in microspheres with a near-field probe,” Opt. Lett. 20(14), 1515–1517 (1995).
    [CrossRef] [PubMed]
  3. V. Lefevre-Seguin and S. Haroche, “Towards cavity-QED experiments with silica microspheres,” Mater. Sci. Eng. B 48(1-2), 53–58 (1997).
    [CrossRef]
  4. M. L. Gorodetsky, A. A. Savchenkov, and V. S. Ilchenko, “Ultimate Q of optical microsphere resonators,” Opt. Lett. 21(7), 453–455 (1996).
    [CrossRef] [PubMed]
  5. D. W. Vernooy, V. S. Ilchenko, H. Mabuchi, E. W. Streed, and H. J. Kimble, “High-Q measurements of fused-silica microspheres in the near infrared,” Opt. Lett. 23(4), 247–249 (1998).
    [CrossRef]
  6. K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
    [CrossRef] [PubMed]
  7. A. Serpengüzel and A. Demir, “Silicon Microspheres for Near-IR-Communication Applications,” Semicond. Sci. Technol. 23(6), 064009 (2008).
    [CrossRef]
  8. D. H. Broaddus, M. A. Foster, I. H. Agha, J. T. Robinson, M. Lipson, and A. L. Gaeta, “Silicon-waveguide-coupled high-Q chalcogenide microspheres,” Opt. Express 17(8), 5998–6003 (2009).
    [CrossRef] [PubMed]
  9. Y. O. Yilmaz, A. Demir, A. Kurt, and A. Serpengüzel, “Optical Channel Dropping With a Silicon Microsphere,” IEEE Photon. Technol. Lett. 17(8), 1662–1664 (2005).
    [CrossRef]
  10. V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
    [CrossRef] [PubMed]
  11. S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407(6804), 608–610 (2000).
    [CrossRef] [PubMed]
  12. R. Fenollosa, F. Meseguer, and M. Tymczenko, “Silicon Colloids: from microcavities to photonic sponges,” Adv. Mater. (Deerfield Beach Fla.) 20(1), 95–98 (2008).
    [CrossRef]
  13. M. Tymczenko, PhD Thesis, March 2010.
  14. E. Xifré-Pérez, R. Fenollosa, and F. Meseguer, “Low order modes in microcavities based on silicon colloids,” Opt. Express . in press.
    [PubMed]
  15. E. Xifré-Pérez, F. J. García de Abajo, R. Fenollosa, and F. Meseguer, “Photonic binding in silicon-colloid microcavities,” Phys. Rev. Lett. 103(10), 103902 (2009).
    [CrossRef] [PubMed]
  16. P. R. Conwell, P. W. Barber, and C. K. Rushforth, “Resonant spectra of dielectric spheres,” J. Opt. Soc. Am. A 1(1), 62–67 (1984).
    [CrossRef]
  17. C. F. Bohren, and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley & Sons, 1998).
  18. P. W. Barber, and S. C. Hill, Light Scattering by Particles: Computational Methods (World Scientific, 1990).
  19. E. Palik, Handbook of Optical Constants of Solids, Vol. 1 (Academic Press, 1985).
  20. F. J. García de Abajo, “Multiple Scattering of Radiation in Clusters of Dielectrics,” Phys. Rev. B 60(8), 6086–6102 (1999).
    [CrossRef]
  21. J. P. Laine, C. Tapalian, B. Little, and H. Haus, “Acceleration Sensor Based on High-Q Optical Microsphere Resonator and Pedestal Antiresonant Reflecting Waveguide Coupler,” Sens. Actuators A Phys. 93(1), 1–7 (2001).
    [CrossRef]
  22. K. Vahala, Optical Microcavities (World Scientific Publishing, 2004).
  23. Y. Panitchob, G. S. Murugan, M. N. Zervas, P. Horak, S. Berneschi, S. Pelli, G. Nunzi Conti, and J. S. Wilkinson, “Whispering gallery mode spectra of channel waveguide coupled microspheres,” Opt. Express 16(15), 11066–11076 (2008).
    [CrossRef] [PubMed]
  24. D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45(No. 8A), 6071–6077 (2006).
    [CrossRef]
  25. T. Mukaiyama, K. Takeda, H. Miyazaki, Y. Jimba, and M. Kuwata-Gonokami, “Tight-Binding Photonic Molecule Modes of Resonant Bispheres,” Phys. Rev. Lett. 82(23), 4623–4626 (1999).
    [CrossRef]
  26. D. D. Smith, H. Chang, and K. A. Fuller, “Whispering-Gallery Mode Splitting in Coupled Microresonators,” J. Opt. Soc. Am. B 20(9), 1967–1974 (2003).
    [CrossRef]

2009 (2)

E. Xifré-Pérez, F. J. García de Abajo, R. Fenollosa, and F. Meseguer, “Photonic binding in silicon-colloid microcavities,” Phys. Rev. Lett. 103(10), 103902 (2009).
[CrossRef] [PubMed]

D. H. Broaddus, M. A. Foster, I. H. Agha, J. T. Robinson, M. Lipson, and A. L. Gaeta, “Silicon-waveguide-coupled high-Q chalcogenide microspheres,” Opt. Express 17(8), 5998–6003 (2009).
[CrossRef] [PubMed]

2008 (3)

Y. Panitchob, G. S. Murugan, M. N. Zervas, P. Horak, S. Berneschi, S. Pelli, G. Nunzi Conti, and J. S. Wilkinson, “Whispering gallery mode spectra of channel waveguide coupled microspheres,” Opt. Express 16(15), 11066–11076 (2008).
[CrossRef] [PubMed]

A. Serpengüzel and A. Demir, “Silicon Microspheres for Near-IR-Communication Applications,” Semicond. Sci. Technol. 23(6), 064009 (2008).
[CrossRef]

R. Fenollosa, F. Meseguer, and M. Tymczenko, “Silicon Colloids: from microcavities to photonic sponges,” Adv. Mater. (Deerfield Beach Fla.) 20(1), 95–98 (2008).
[CrossRef]

2006 (1)

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45(No. 8A), 6071–6077 (2006).
[CrossRef]

2005 (1)

Y. O. Yilmaz, A. Demir, A. Kurt, and A. Serpengüzel, “Optical Channel Dropping With a Silicon Microsphere,” IEEE Photon. Technol. Lett. 17(8), 1662–1664 (2005).
[CrossRef]

2004 (1)

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[CrossRef] [PubMed]

2003 (2)

2001 (1)

J. P. Laine, C. Tapalian, B. Little, and H. Haus, “Acceleration Sensor Based on High-Q Optical Microsphere Resonator and Pedestal Antiresonant Reflecting Waveguide Coupler,” Sens. Actuators A Phys. 93(1), 1–7 (2001).
[CrossRef]

2000 (2)

M. Cai, O. Painter, K. J. Vahala, and P. C. Sercel, “Fiber-coupled microsphere laser,” Opt. Lett. 25(19), 1430–1432 (2000).
[CrossRef]

S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407(6804), 608–610 (2000).
[CrossRef] [PubMed]

1999 (2)

F. J. García de Abajo, “Multiple Scattering of Radiation in Clusters of Dielectrics,” Phys. Rev. B 60(8), 6086–6102 (1999).
[CrossRef]

T. Mukaiyama, K. Takeda, H. Miyazaki, Y. Jimba, and M. Kuwata-Gonokami, “Tight-Binding Photonic Molecule Modes of Resonant Bispheres,” Phys. Rev. Lett. 82(23), 4623–4626 (1999).
[CrossRef]

1998 (1)

1997 (1)

V. Lefevre-Seguin and S. Haroche, “Towards cavity-QED experiments with silica microspheres,” Mater. Sci. Eng. B 48(1-2), 53–58 (1997).
[CrossRef]

1996 (1)

1995 (1)

1984 (1)

Agha, I. H.

Almeida, V. R.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[CrossRef] [PubMed]

Ayre, M.

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45(No. 8A), 6071–6077 (2006).
[CrossRef]

Baets, R.

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45(No. 8A), 6071–6077 (2006).
[CrossRef]

Barber, P. W.

Barrios, C. A.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[CrossRef] [PubMed]

Berneschi, S.

Bienstman, P.

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45(No. 8A), 6071–6077 (2006).
[CrossRef]

Bogaerts, W.

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45(No. 8A), 6071–6077 (2006).
[CrossRef]

Broaddus, D. H.

Cai, M.

Chang, H.

Chutinan, A.

S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407(6804), 608–610 (2000).
[CrossRef] [PubMed]

Conwell, P. R.

Demir, A.

A. Serpengüzel and A. Demir, “Silicon Microspheres for Near-IR-Communication Applications,” Semicond. Sci. Technol. 23(6), 064009 (2008).
[CrossRef]

Y. O. Yilmaz, A. Demir, A. Kurt, and A. Serpengüzel, “Optical Channel Dropping With a Silicon Microsphere,” IEEE Photon. Technol. Lett. 17(8), 1662–1664 (2005).
[CrossRef]

Dubreuil, N.

Fenollosa, R.

E. Xifré-Pérez, F. J. García de Abajo, R. Fenollosa, and F. Meseguer, “Photonic binding in silicon-colloid microcavities,” Phys. Rev. Lett. 103(10), 103902 (2009).
[CrossRef] [PubMed]

R. Fenollosa, F. Meseguer, and M. Tymczenko, “Silicon Colloids: from microcavities to photonic sponges,” Adv. Mater. (Deerfield Beach Fla.) 20(1), 95–98 (2008).
[CrossRef]

E. Xifré-Pérez, R. Fenollosa, and F. Meseguer, “Low order modes in microcavities based on silicon colloids,” Opt. Express . in press.
[PubMed]

Foster, M. A.

Fuller, K. A.

Gaeta, A. L.

García de Abajo, F. J.

E. Xifré-Pérez, F. J. García de Abajo, R. Fenollosa, and F. Meseguer, “Photonic binding in silicon-colloid microcavities,” Phys. Rev. Lett. 103(10), 103902 (2009).
[CrossRef] [PubMed]

F. J. García de Abajo, “Multiple Scattering of Radiation in Clusters of Dielectrics,” Phys. Rev. B 60(8), 6086–6102 (1999).
[CrossRef]

Gorodetsky, M. L.

Hare, J.

Haroche, S.

Haus, H.

J. P. Laine, C. Tapalian, B. Little, and H. Haus, “Acceleration Sensor Based on High-Q Optical Microsphere Resonator and Pedestal Antiresonant Reflecting Waveguide Coupler,” Sens. Actuators A Phys. 93(1), 1–7 (2001).
[CrossRef]

Horak, P.

Ilchenko, V. S.

Imada, M.

S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407(6804), 608–610 (2000).
[CrossRef] [PubMed]

Jimba, Y.

T. Mukaiyama, K. Takeda, H. Miyazaki, Y. Jimba, and M. Kuwata-Gonokami, “Tight-Binding Photonic Molecule Modes of Resonant Bispheres,” Phys. Rev. Lett. 82(23), 4623–4626 (1999).
[CrossRef]

Kimble, H. J.

Knight, J. C.

Kurt, A.

Y. O. Yilmaz, A. Demir, A. Kurt, and A. Serpengüzel, “Optical Channel Dropping With a Silicon Microsphere,” IEEE Photon. Technol. Lett. 17(8), 1662–1664 (2005).
[CrossRef]

Kuwata-Gonokami, M.

T. Mukaiyama, K. Takeda, H. Miyazaki, Y. Jimba, and M. Kuwata-Gonokami, “Tight-Binding Photonic Molecule Modes of Resonant Bispheres,” Phys. Rev. Lett. 82(23), 4623–4626 (1999).
[CrossRef]

Laine, J. P.

J. P. Laine, C. Tapalian, B. Little, and H. Haus, “Acceleration Sensor Based on High-Q Optical Microsphere Resonator and Pedestal Antiresonant Reflecting Waveguide Coupler,” Sens. Actuators A Phys. 93(1), 1–7 (2001).
[CrossRef]

Lefevre-Seguin, V.

V. Lefevre-Seguin and S. Haroche, “Towards cavity-QED experiments with silica microspheres,” Mater. Sci. Eng. B 48(1-2), 53–58 (1997).
[CrossRef]

Lefèvre-Seguin, V.

Lipson, M.

D. H. Broaddus, M. A. Foster, I. H. Agha, J. T. Robinson, M. Lipson, and A. L. Gaeta, “Silicon-waveguide-coupled high-Q chalcogenide microspheres,” Opt. Express 17(8), 5998–6003 (2009).
[CrossRef] [PubMed]

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[CrossRef] [PubMed]

Little, B.

J. P. Laine, C. Tapalian, B. Little, and H. Haus, “Acceleration Sensor Based on High-Q Optical Microsphere Resonator and Pedestal Antiresonant Reflecting Waveguide Coupler,” Sens. Actuators A Phys. 93(1), 1–7 (2001).
[CrossRef]

Mabuchi, H.

Meseguer, F.

E. Xifré-Pérez, F. J. García de Abajo, R. Fenollosa, and F. Meseguer, “Photonic binding in silicon-colloid microcavities,” Phys. Rev. Lett. 103(10), 103902 (2009).
[CrossRef] [PubMed]

R. Fenollosa, F. Meseguer, and M. Tymczenko, “Silicon Colloids: from microcavities to photonic sponges,” Adv. Mater. (Deerfield Beach Fla.) 20(1), 95–98 (2008).
[CrossRef]

E. Xifré-Pérez, R. Fenollosa, and F. Meseguer, “Low order modes in microcavities based on silicon colloids,” Opt. Express . in press.
[PubMed]

Miyazaki, H.

T. Mukaiyama, K. Takeda, H. Miyazaki, Y. Jimba, and M. Kuwata-Gonokami, “Tight-Binding Photonic Molecule Modes of Resonant Bispheres,” Phys. Rev. Lett. 82(23), 4623–4626 (1999).
[CrossRef]

Mukaiyama, T.

T. Mukaiyama, K. Takeda, H. Miyazaki, Y. Jimba, and M. Kuwata-Gonokami, “Tight-Binding Photonic Molecule Modes of Resonant Bispheres,” Phys. Rev. Lett. 82(23), 4623–4626 (1999).
[CrossRef]

Murugan, G. S.

Noda, S.

S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407(6804), 608–610 (2000).
[CrossRef] [PubMed]

Nunzi Conti, G.

Painter, O.

Panepucci, R. R.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[CrossRef] [PubMed]

Panitchob, Y.

Pelli, S.

Raimond, J. M.

Robinson, J. T.

Rushforth, C. K.

Sandoghdar, V.

Savchenkov, A. A.

Sercel, P. C.

Serpengüzel, A.

A. Serpengüzel and A. Demir, “Silicon Microspheres for Near-IR-Communication Applications,” Semicond. Sci. Technol. 23(6), 064009 (2008).
[CrossRef]

Y. O. Yilmaz, A. Demir, A. Kurt, and A. Serpengüzel, “Optical Channel Dropping With a Silicon Microsphere,” IEEE Photon. Technol. Lett. 17(8), 1662–1664 (2005).
[CrossRef]

Smith, D. D.

Streed, E. W.

Taillaert, D.

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45(No. 8A), 6071–6077 (2006).
[CrossRef]

Takeda, K.

T. Mukaiyama, K. Takeda, H. Miyazaki, Y. Jimba, and M. Kuwata-Gonokami, “Tight-Binding Photonic Molecule Modes of Resonant Bispheres,” Phys. Rev. Lett. 82(23), 4623–4626 (1999).
[CrossRef]

Tapalian, C.

J. P. Laine, C. Tapalian, B. Little, and H. Haus, “Acceleration Sensor Based on High-Q Optical Microsphere Resonator and Pedestal Antiresonant Reflecting Waveguide Coupler,” Sens. Actuators A Phys. 93(1), 1–7 (2001).
[CrossRef]

Tymczenko, M.

R. Fenollosa, F. Meseguer, and M. Tymczenko, “Silicon Colloids: from microcavities to photonic sponges,” Adv. Mater. (Deerfield Beach Fla.) 20(1), 95–98 (2008).
[CrossRef]

Vahala, K. J.

Van Laere, F.

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45(No. 8A), 6071–6077 (2006).
[CrossRef]

Van Thourhout, D.

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45(No. 8A), 6071–6077 (2006).
[CrossRef]

Vernooy, D. W.

Wilkinson, J. S.

Xifré-Pérez, E.

E. Xifré-Pérez, F. J. García de Abajo, R. Fenollosa, and F. Meseguer, “Photonic binding in silicon-colloid microcavities,” Phys. Rev. Lett. 103(10), 103902 (2009).
[CrossRef] [PubMed]

E. Xifré-Pérez, R. Fenollosa, and F. Meseguer, “Low order modes in microcavities based on silicon colloids,” Opt. Express . in press.
[PubMed]

Yilmaz, Y. O.

Y. O. Yilmaz, A. Demir, A. Kurt, and A. Serpengüzel, “Optical Channel Dropping With a Silicon Microsphere,” IEEE Photon. Technol. Lett. 17(8), 1662–1664 (2005).
[CrossRef]

Zervas, M. N.

Adv. Mater. (Deerfield Beach Fla.) (1)

R. Fenollosa, F. Meseguer, and M. Tymczenko, “Silicon Colloids: from microcavities to photonic sponges,” Adv. Mater. (Deerfield Beach Fla.) 20(1), 95–98 (2008).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

Y. O. Yilmaz, A. Demir, A. Kurt, and A. Serpengüzel, “Optical Channel Dropping With a Silicon Microsphere,” IEEE Photon. Technol. Lett. 17(8), 1662–1664 (2005).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Jpn. J. Appl. Phys. (1)

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45(No. 8A), 6071–6077 (2006).
[CrossRef]

Mater. Sci. Eng. B (1)

V. Lefevre-Seguin and S. Haroche, “Towards cavity-QED experiments with silica microspheres,” Mater. Sci. Eng. B 48(1-2), 53–58 (1997).
[CrossRef]

Nature (3)

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[CrossRef] [PubMed]

S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407(6804), 608–610 (2000).
[CrossRef] [PubMed]

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[CrossRef] [PubMed]

Opt. Express (3)

Opt. Lett. (4)

Phys. Rev. B (1)

F. J. García de Abajo, “Multiple Scattering of Radiation in Clusters of Dielectrics,” Phys. Rev. B 60(8), 6086–6102 (1999).
[CrossRef]

Phys. Rev. Lett. (2)

E. Xifré-Pérez, F. J. García de Abajo, R. Fenollosa, and F. Meseguer, “Photonic binding in silicon-colloid microcavities,” Phys. Rev. Lett. 103(10), 103902 (2009).
[CrossRef] [PubMed]

T. Mukaiyama, K. Takeda, H. Miyazaki, Y. Jimba, and M. Kuwata-Gonokami, “Tight-Binding Photonic Molecule Modes of Resonant Bispheres,” Phys. Rev. Lett. 82(23), 4623–4626 (1999).
[CrossRef]

Semicond. Sci. Technol. (1)

A. Serpengüzel and A. Demir, “Silicon Microspheres for Near-IR-Communication Applications,” Semicond. Sci. Technol. 23(6), 064009 (2008).
[CrossRef]

Sens. Actuators A Phys. (1)

J. P. Laine, C. Tapalian, B. Little, and H. Haus, “Acceleration Sensor Based on High-Q Optical Microsphere Resonator and Pedestal Antiresonant Reflecting Waveguide Coupler,” Sens. Actuators A Phys. 93(1), 1–7 (2001).
[CrossRef]

Other (5)

K. Vahala, Optical Microcavities (World Scientific Publishing, 2004).

M. Tymczenko, PhD Thesis, March 2010.

C. F. Bohren, and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley & Sons, 1998).

P. W. Barber, and S. C. Hill, Light Scattering by Particles: Computational Methods (World Scientific, 1990).

E. Palik, Handbook of Optical Constants of Solids, Vol. 1 (Academic Press, 1985).

Supplementary Material (1)

» Media 1: MPG (3610 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Measured and calculated transmission spectra of a single silicon microcavity with diameter 1.05 μm. The labels indicate the type and order of the resonant modes.

Fig. 2
Fig. 2

(a) Calculated transmission of the coupler device consisting of a waveguide with a silicon microcavity placed on top (black line). The diameter of the microsphere is 2.49 μm. The red line is the transmission spectrum of the single microsphere and the red labels indicate the type and order of the modes. The inset indicates the direction of the propagation and the polarization for the light in the coupler. The waveguide is parallel to the x direction (b) Resonant plane of b (top) and a (bottom) modes. c-e) Snapshot of the temporal evolution of the electric field distribution in the coupler calculated by 3D-FDTD for the resonant modes of the sphere: (c) b10,2 1), (d) b13,1 2) and (e) for a non-resonant wavelength (λ3) (f) Electric-field intensity distribution for the isolated microcavity mode b7,3 . The surface of the microcavity is indicated with the white circle.

Fig. 3
Fig. 3

Schematic of the experimental setup. Inset: image of one of the needle shaped tools fabricated and used for the pick-and-place operation of the sphere. A silicon microsphere can also be observed at the tip of the tool.

Fig. 4
Fig. 4

Measured transmission spectrum of the coupler device (black curve) and 3D-FDTD calculated transmission (red curve). Inset: Microscope image (top view) of the silicon microsphere placed on top of the waveguide. The diameter of the microsphere is 2.49 μm.

Fig. 5
Fig. 5

Transmission spectrum of the coupler device for a silicon microsphere with diameter 2.5 μm. The inset shows the IR camera image of the light scattered by the microcavity for the wavelength indicated by the red line. Two modes are observed: b10,2 (left) and b13,1 (right). A non-resonant wavelength is also presented (center). Video online (Media 1).

Metrics