Abstract

We demonstrate the production of high-quality polymer opal fibers in an industrially-scalable process. These fibers exhibit structural color, based on the self-assembly of sub-micron core-shell particles, with a spectrum which is stretch-tunable across the visible region. The internal substructure and ordering of fibers, as inferred from variations in spectral bandwidth, is studied using dark-field microscopy. We employ a granular model to examine flow and shear forces during the extrusion process, and the effects on particle ordering. In both theory and experiment, a concentric zone of the fiber near the exposed surface develops particularly strong structural color. Such elastically-tuned structurally colored fibers are of interest for many applications.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Ruhl, P. Spahn, and G. P. Hellmann, “Artificial opals prepared by melt compression,” Polymer (Guildf.) 44(25), 7625–7634 (2003).
    [CrossRef]
  2. O. L. J. Pursiainen, J. J. Baumberg, K. Ryan, J. Bauer, H. Winkler, B. Viel, and T. Ruhl, “Compact strain-sensitive flexible photonic crystals for sensors,” Appl. Phys. Lett. 87(10), 101902 (2005).
    [CrossRef]
  3. B. Viel, T. Ruhl, and G. P. Hellmann, “Reversible deformation of opal elastomers,” Chem. Mater. 19(23), 5673–5679 (2007).
    [CrossRef]
  4. O. L. J. Pursiainen, J. J. Baumberg, H. Winkler, B. Viel, P. Spahn, and T. Ruhl, “Nanoparticle-tuned structural color from polymer opals,” Opt. Express 15(15), 9553–9561 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-15-9553 .
    [CrossRef] [PubMed]
  5. O. L. J. Pursiainen, J. J. Baumberg, H. Winkler, B. Viel, P. Spahn, and T. Ruhl, “Shear-induced organization in flexible polymer opals,” Adv. Mater. 20(8), 1484–1487 (2008).
    [CrossRef]
  6. D. R. E. Snoswell, A. Kontogeorgos, J. J. Baumberg, T. D. Lord, M. R. Mackley, P. Spahn, and G. P. Hellmann, “Shear ordering in polymer photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 81(2 Pt 1), 020401 (2010).
    [CrossRef] [PubMed]
  7. B. J. Ackerson and P. N. Pusey, “Shear-induced order in suspensions of hard spheres,” Phys. Rev. Lett. 61(8), 1033–1036 (1988).
    [CrossRef] [PubMed]
  8. Y. A. Vlasov, X.-Z. Bo, J. C. Sturm, and D. J. Norris, “On-chip natural assembly of silicon photonic bandgap crystals,” Nature 414(6861), 289–293 (2001).
    [CrossRef] [PubMed]
  9. M. D. Haw, W. C. K. Poon, and P. N. Pusey, “Direct observation of oscillatory-shear-induced order in colloidal suspensions,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 57(6), 6859–6864 (1998).
    [CrossRef]
  10. R. De La Rue, “Photonic crystals: Microassembly in 3D,” Nat. Mater. 2(2), 74–76 (2003).
    [CrossRef] [PubMed]
  11. J. J. Baumberg, O. L. Pursiainen, and P. Spahn, “Resonant optical scattering in nanoparticle-doped polymer photonic crystals,” Phys. Rev. B 80(20), 201103 (2009).
    [CrossRef]
  12. P. Vukusic and J. R. Sambles, “Photonic structures in biology,” Nature 424(6950), 852–855 (2003).
    [CrossRef] [PubMed]
  13. Strain, e, where e = 100% x Δl/l, or % increase in length.
  14. A. Kontogeorgos, D. R. Snoswell, C. E. Finlayson, J. J. Baumberg, P. Spahn, and G. P. Hellmann, “Inducing symmetry breaking in nanostructures: anisotropic stretch-tuning photonic crystals,” Phys. Rev. Lett. 105(23), 233909 (2010).
    [CrossRef]
  15. M. Kolle, B. Zheng, N. Gibbons, J. J. Baumberg, and U. Steiner, “Stretch-tuneable dielectric mirrors and optical microcavities,” Opt. Express 18(5), 4356–4364 (2010).
    [CrossRef] [PubMed]
  16. C. E. Finlayson, P. Spahn, D. R. E. Snoswell, G. Yates, A. Kontogeorgos, A. I. Haines, G. P. Hellmann, and J. J. Baumberg, “3D bulk-ordering in macroscopic solid opaline films by edge-induced rotational-shearing,” Adv. Mater. doi 10.1002/adma.201003934 (to be published).
    [PubMed]
  17. J. Batchelor, J. P. Berry, and F. Horsfall, “Die swell in elastic and viscous fluids,” Polymer (Guildf.) 14(7), 297–299 (1973).
    [CrossRef]
  18. P. C. Hiemenz, and T. P. Lodge, in Polymer Chemistry, 2nd ed. (CRC Press, London, 2007)
    [PubMed]
  19. T. Ruhl and G. P. Hellmann, “Colloidal crystals in latex films: Rubbery opals,” Macromol. Chem. Phys. 202(18), 3502–3505 (2001).
    [CrossRef]
  20. L. Verlet, “Computer ’Experiments’ on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules,” Phys. Rev. 159(1), 98–103 (1967).
    [CrossRef]
  21. L. Verlet, “Computer ’Experiments’ on Classical Fluids. II. Equilibrium Correlation Functions,” Phys. Rev. 165(1), 201–214 (1968).
    [CrossRef]
  22. H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. DiNola, and J. R. Haak, “Molecular dynamics with coupling to an external bath,” J. Chem. Phys. 81(8), 3684–3690 (1984).
    [CrossRef]
  23. M. Oda, and K. Iwashita, in Mechanics of granular materials: an introduction (Taylor & Francis, London, 1999)
  24. T. Ruhl, P. Spahn, H. Winkler, and G. P. Hellmann, “Large Area Monodomain Order in Colloidal Crystals,” Macromol. Chem. Phys. 205(10), 1385–1393 (2004).
    [CrossRef]

2010 (3)

D. R. E. Snoswell, A. Kontogeorgos, J. J. Baumberg, T. D. Lord, M. R. Mackley, P. Spahn, and G. P. Hellmann, “Shear ordering in polymer photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 81(2 Pt 1), 020401 (2010).
[CrossRef] [PubMed]

A. Kontogeorgos, D. R. Snoswell, C. E. Finlayson, J. J. Baumberg, P. Spahn, and G. P. Hellmann, “Inducing symmetry breaking in nanostructures: anisotropic stretch-tuning photonic crystals,” Phys. Rev. Lett. 105(23), 233909 (2010).
[CrossRef]

M. Kolle, B. Zheng, N. Gibbons, J. J. Baumberg, and U. Steiner, “Stretch-tuneable dielectric mirrors and optical microcavities,” Opt. Express 18(5), 4356–4364 (2010).
[CrossRef] [PubMed]

2009 (1)

J. J. Baumberg, O. L. Pursiainen, and P. Spahn, “Resonant optical scattering in nanoparticle-doped polymer photonic crystals,” Phys. Rev. B 80(20), 201103 (2009).
[CrossRef]

2008 (1)

O. L. J. Pursiainen, J. J. Baumberg, H. Winkler, B. Viel, P. Spahn, and T. Ruhl, “Shear-induced organization in flexible polymer opals,” Adv. Mater. 20(8), 1484–1487 (2008).
[CrossRef]

2007 (2)

2005 (1)

O. L. J. Pursiainen, J. J. Baumberg, K. Ryan, J. Bauer, H. Winkler, B. Viel, and T. Ruhl, “Compact strain-sensitive flexible photonic crystals for sensors,” Appl. Phys. Lett. 87(10), 101902 (2005).
[CrossRef]

2004 (1)

T. Ruhl, P. Spahn, H. Winkler, and G. P. Hellmann, “Large Area Monodomain Order in Colloidal Crystals,” Macromol. Chem. Phys. 205(10), 1385–1393 (2004).
[CrossRef]

2003 (3)

T. Ruhl, P. Spahn, and G. P. Hellmann, “Artificial opals prepared by melt compression,” Polymer (Guildf.) 44(25), 7625–7634 (2003).
[CrossRef]

R. De La Rue, “Photonic crystals: Microassembly in 3D,” Nat. Mater. 2(2), 74–76 (2003).
[CrossRef] [PubMed]

P. Vukusic and J. R. Sambles, “Photonic structures in biology,” Nature 424(6950), 852–855 (2003).
[CrossRef] [PubMed]

2001 (2)

Y. A. Vlasov, X.-Z. Bo, J. C. Sturm, and D. J. Norris, “On-chip natural assembly of silicon photonic bandgap crystals,” Nature 414(6861), 289–293 (2001).
[CrossRef] [PubMed]

T. Ruhl and G. P. Hellmann, “Colloidal crystals in latex films: Rubbery opals,” Macromol. Chem. Phys. 202(18), 3502–3505 (2001).
[CrossRef]

1998 (1)

M. D. Haw, W. C. K. Poon, and P. N. Pusey, “Direct observation of oscillatory-shear-induced order in colloidal suspensions,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 57(6), 6859–6864 (1998).
[CrossRef]

1988 (1)

B. J. Ackerson and P. N. Pusey, “Shear-induced order in suspensions of hard spheres,” Phys. Rev. Lett. 61(8), 1033–1036 (1988).
[CrossRef] [PubMed]

1984 (1)

H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. DiNola, and J. R. Haak, “Molecular dynamics with coupling to an external bath,” J. Chem. Phys. 81(8), 3684–3690 (1984).
[CrossRef]

1973 (1)

J. Batchelor, J. P. Berry, and F. Horsfall, “Die swell in elastic and viscous fluids,” Polymer (Guildf.) 14(7), 297–299 (1973).
[CrossRef]

1968 (1)

L. Verlet, “Computer ’Experiments’ on Classical Fluids. II. Equilibrium Correlation Functions,” Phys. Rev. 165(1), 201–214 (1968).
[CrossRef]

1967 (1)

L. Verlet, “Computer ’Experiments’ on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules,” Phys. Rev. 159(1), 98–103 (1967).
[CrossRef]

Ackerson, B. J.

B. J. Ackerson and P. N. Pusey, “Shear-induced order in suspensions of hard spheres,” Phys. Rev. Lett. 61(8), 1033–1036 (1988).
[CrossRef] [PubMed]

Batchelor, J.

J. Batchelor, J. P. Berry, and F. Horsfall, “Die swell in elastic and viscous fluids,” Polymer (Guildf.) 14(7), 297–299 (1973).
[CrossRef]

Bauer, J.

O. L. J. Pursiainen, J. J. Baumberg, K. Ryan, J. Bauer, H. Winkler, B. Viel, and T. Ruhl, “Compact strain-sensitive flexible photonic crystals for sensors,” Appl. Phys. Lett. 87(10), 101902 (2005).
[CrossRef]

Baumberg, J. J.

D. R. E. Snoswell, A. Kontogeorgos, J. J. Baumberg, T. D. Lord, M. R. Mackley, P. Spahn, and G. P. Hellmann, “Shear ordering in polymer photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 81(2 Pt 1), 020401 (2010).
[CrossRef] [PubMed]

A. Kontogeorgos, D. R. Snoswell, C. E. Finlayson, J. J. Baumberg, P. Spahn, and G. P. Hellmann, “Inducing symmetry breaking in nanostructures: anisotropic stretch-tuning photonic crystals,” Phys. Rev. Lett. 105(23), 233909 (2010).
[CrossRef]

M. Kolle, B. Zheng, N. Gibbons, J. J. Baumberg, and U. Steiner, “Stretch-tuneable dielectric mirrors and optical microcavities,” Opt. Express 18(5), 4356–4364 (2010).
[CrossRef] [PubMed]

J. J. Baumberg, O. L. Pursiainen, and P. Spahn, “Resonant optical scattering in nanoparticle-doped polymer photonic crystals,” Phys. Rev. B 80(20), 201103 (2009).
[CrossRef]

O. L. J. Pursiainen, J. J. Baumberg, H. Winkler, B. Viel, P. Spahn, and T. Ruhl, “Shear-induced organization in flexible polymer opals,” Adv. Mater. 20(8), 1484–1487 (2008).
[CrossRef]

O. L. J. Pursiainen, J. J. Baumberg, H. Winkler, B. Viel, P. Spahn, and T. Ruhl, “Nanoparticle-tuned structural color from polymer opals,” Opt. Express 15(15), 9553–9561 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-15-9553 .
[CrossRef] [PubMed]

O. L. J. Pursiainen, J. J. Baumberg, K. Ryan, J. Bauer, H. Winkler, B. Viel, and T. Ruhl, “Compact strain-sensitive flexible photonic crystals for sensors,” Appl. Phys. Lett. 87(10), 101902 (2005).
[CrossRef]

C. E. Finlayson, P. Spahn, D. R. E. Snoswell, G. Yates, A. Kontogeorgos, A. I. Haines, G. P. Hellmann, and J. J. Baumberg, “3D bulk-ordering in macroscopic solid opaline films by edge-induced rotational-shearing,” Adv. Mater. doi 10.1002/adma.201003934 (to be published).
[PubMed]

Berendsen, H. J. C.

H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. DiNola, and J. R. Haak, “Molecular dynamics with coupling to an external bath,” J. Chem. Phys. 81(8), 3684–3690 (1984).
[CrossRef]

Berry, J. P.

J. Batchelor, J. P. Berry, and F. Horsfall, “Die swell in elastic and viscous fluids,” Polymer (Guildf.) 14(7), 297–299 (1973).
[CrossRef]

Bo, X.-Z.

Y. A. Vlasov, X.-Z. Bo, J. C. Sturm, and D. J. Norris, “On-chip natural assembly of silicon photonic bandgap crystals,” Nature 414(6861), 289–293 (2001).
[CrossRef] [PubMed]

De La Rue, R.

R. De La Rue, “Photonic crystals: Microassembly in 3D,” Nat. Mater. 2(2), 74–76 (2003).
[CrossRef] [PubMed]

DiNola, A.

H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. DiNola, and J. R. Haak, “Molecular dynamics with coupling to an external bath,” J. Chem. Phys. 81(8), 3684–3690 (1984).
[CrossRef]

Finlayson, C. E.

A. Kontogeorgos, D. R. Snoswell, C. E. Finlayson, J. J. Baumberg, P. Spahn, and G. P. Hellmann, “Inducing symmetry breaking in nanostructures: anisotropic stretch-tuning photonic crystals,” Phys. Rev. Lett. 105(23), 233909 (2010).
[CrossRef]

C. E. Finlayson, P. Spahn, D. R. E. Snoswell, G. Yates, A. Kontogeorgos, A. I. Haines, G. P. Hellmann, and J. J. Baumberg, “3D bulk-ordering in macroscopic solid opaline films by edge-induced rotational-shearing,” Adv. Mater. doi 10.1002/adma.201003934 (to be published).
[PubMed]

Gibbons, N.

Haak, J. R.

H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. DiNola, and J. R. Haak, “Molecular dynamics with coupling to an external bath,” J. Chem. Phys. 81(8), 3684–3690 (1984).
[CrossRef]

Haines, A. I.

C. E. Finlayson, P. Spahn, D. R. E. Snoswell, G. Yates, A. Kontogeorgos, A. I. Haines, G. P. Hellmann, and J. J. Baumberg, “3D bulk-ordering in macroscopic solid opaline films by edge-induced rotational-shearing,” Adv. Mater. doi 10.1002/adma.201003934 (to be published).
[PubMed]

Haw, M. D.

M. D. Haw, W. C. K. Poon, and P. N. Pusey, “Direct observation of oscillatory-shear-induced order in colloidal suspensions,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 57(6), 6859–6864 (1998).
[CrossRef]

Hellmann, G. P.

A. Kontogeorgos, D. R. Snoswell, C. E. Finlayson, J. J. Baumberg, P. Spahn, and G. P. Hellmann, “Inducing symmetry breaking in nanostructures: anisotropic stretch-tuning photonic crystals,” Phys. Rev. Lett. 105(23), 233909 (2010).
[CrossRef]

D. R. E. Snoswell, A. Kontogeorgos, J. J. Baumberg, T. D. Lord, M. R. Mackley, P. Spahn, and G. P. Hellmann, “Shear ordering in polymer photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 81(2 Pt 1), 020401 (2010).
[CrossRef] [PubMed]

B. Viel, T. Ruhl, and G. P. Hellmann, “Reversible deformation of opal elastomers,” Chem. Mater. 19(23), 5673–5679 (2007).
[CrossRef]

T. Ruhl, P. Spahn, H. Winkler, and G. P. Hellmann, “Large Area Monodomain Order in Colloidal Crystals,” Macromol. Chem. Phys. 205(10), 1385–1393 (2004).
[CrossRef]

T. Ruhl, P. Spahn, and G. P. Hellmann, “Artificial opals prepared by melt compression,” Polymer (Guildf.) 44(25), 7625–7634 (2003).
[CrossRef]

T. Ruhl and G. P. Hellmann, “Colloidal crystals in latex films: Rubbery opals,” Macromol. Chem. Phys. 202(18), 3502–3505 (2001).
[CrossRef]

C. E. Finlayson, P. Spahn, D. R. E. Snoswell, G. Yates, A. Kontogeorgos, A. I. Haines, G. P. Hellmann, and J. J. Baumberg, “3D bulk-ordering in macroscopic solid opaline films by edge-induced rotational-shearing,” Adv. Mater. doi 10.1002/adma.201003934 (to be published).
[PubMed]

Horsfall, F.

J. Batchelor, J. P. Berry, and F. Horsfall, “Die swell in elastic and viscous fluids,” Polymer (Guildf.) 14(7), 297–299 (1973).
[CrossRef]

Kolle, M.

Kontogeorgos, A.

A. Kontogeorgos, D. R. Snoswell, C. E. Finlayson, J. J. Baumberg, P. Spahn, and G. P. Hellmann, “Inducing symmetry breaking in nanostructures: anisotropic stretch-tuning photonic crystals,” Phys. Rev. Lett. 105(23), 233909 (2010).
[CrossRef]

D. R. E. Snoswell, A. Kontogeorgos, J. J. Baumberg, T. D. Lord, M. R. Mackley, P. Spahn, and G. P. Hellmann, “Shear ordering in polymer photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 81(2 Pt 1), 020401 (2010).
[CrossRef] [PubMed]

C. E. Finlayson, P. Spahn, D. R. E. Snoswell, G. Yates, A. Kontogeorgos, A. I. Haines, G. P. Hellmann, and J. J. Baumberg, “3D bulk-ordering in macroscopic solid opaline films by edge-induced rotational-shearing,” Adv. Mater. doi 10.1002/adma.201003934 (to be published).
[PubMed]

Lord, T. D.

D. R. E. Snoswell, A. Kontogeorgos, J. J. Baumberg, T. D. Lord, M. R. Mackley, P. Spahn, and G. P. Hellmann, “Shear ordering in polymer photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 81(2 Pt 1), 020401 (2010).
[CrossRef] [PubMed]

Mackley, M. R.

D. R. E. Snoswell, A. Kontogeorgos, J. J. Baumberg, T. D. Lord, M. R. Mackley, P. Spahn, and G. P. Hellmann, “Shear ordering in polymer photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 81(2 Pt 1), 020401 (2010).
[CrossRef] [PubMed]

Norris, D. J.

Y. A. Vlasov, X.-Z. Bo, J. C. Sturm, and D. J. Norris, “On-chip natural assembly of silicon photonic bandgap crystals,” Nature 414(6861), 289–293 (2001).
[CrossRef] [PubMed]

Poon, W. C. K.

M. D. Haw, W. C. K. Poon, and P. N. Pusey, “Direct observation of oscillatory-shear-induced order in colloidal suspensions,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 57(6), 6859–6864 (1998).
[CrossRef]

Postma, J. P. M.

H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. DiNola, and J. R. Haak, “Molecular dynamics with coupling to an external bath,” J. Chem. Phys. 81(8), 3684–3690 (1984).
[CrossRef]

Pursiainen, O. L.

J. J. Baumberg, O. L. Pursiainen, and P. Spahn, “Resonant optical scattering in nanoparticle-doped polymer photonic crystals,” Phys. Rev. B 80(20), 201103 (2009).
[CrossRef]

Pursiainen, O. L. J.

O. L. J. Pursiainen, J. J. Baumberg, H. Winkler, B. Viel, P. Spahn, and T. Ruhl, “Shear-induced organization in flexible polymer opals,” Adv. Mater. 20(8), 1484–1487 (2008).
[CrossRef]

O. L. J. Pursiainen, J. J. Baumberg, H. Winkler, B. Viel, P. Spahn, and T. Ruhl, “Nanoparticle-tuned structural color from polymer opals,” Opt. Express 15(15), 9553–9561 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-15-9553 .
[CrossRef] [PubMed]

O. L. J. Pursiainen, J. J. Baumberg, K. Ryan, J. Bauer, H. Winkler, B. Viel, and T. Ruhl, “Compact strain-sensitive flexible photonic crystals for sensors,” Appl. Phys. Lett. 87(10), 101902 (2005).
[CrossRef]

Pusey, P. N.

M. D. Haw, W. C. K. Poon, and P. N. Pusey, “Direct observation of oscillatory-shear-induced order in colloidal suspensions,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 57(6), 6859–6864 (1998).
[CrossRef]

B. J. Ackerson and P. N. Pusey, “Shear-induced order in suspensions of hard spheres,” Phys. Rev. Lett. 61(8), 1033–1036 (1988).
[CrossRef] [PubMed]

Ruhl, T.

O. L. J. Pursiainen, J. J. Baumberg, H. Winkler, B. Viel, P. Spahn, and T. Ruhl, “Shear-induced organization in flexible polymer opals,” Adv. Mater. 20(8), 1484–1487 (2008).
[CrossRef]

B. Viel, T. Ruhl, and G. P. Hellmann, “Reversible deformation of opal elastomers,” Chem. Mater. 19(23), 5673–5679 (2007).
[CrossRef]

O. L. J. Pursiainen, J. J. Baumberg, H. Winkler, B. Viel, P. Spahn, and T. Ruhl, “Nanoparticle-tuned structural color from polymer opals,” Opt. Express 15(15), 9553–9561 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-15-9553 .
[CrossRef] [PubMed]

O. L. J. Pursiainen, J. J. Baumberg, K. Ryan, J. Bauer, H. Winkler, B. Viel, and T. Ruhl, “Compact strain-sensitive flexible photonic crystals for sensors,” Appl. Phys. Lett. 87(10), 101902 (2005).
[CrossRef]

T. Ruhl, P. Spahn, H. Winkler, and G. P. Hellmann, “Large Area Monodomain Order in Colloidal Crystals,” Macromol. Chem. Phys. 205(10), 1385–1393 (2004).
[CrossRef]

T. Ruhl, P. Spahn, and G. P. Hellmann, “Artificial opals prepared by melt compression,” Polymer (Guildf.) 44(25), 7625–7634 (2003).
[CrossRef]

T. Ruhl and G. P. Hellmann, “Colloidal crystals in latex films: Rubbery opals,” Macromol. Chem. Phys. 202(18), 3502–3505 (2001).
[CrossRef]

Ryan, K.

O. L. J. Pursiainen, J. J. Baumberg, K. Ryan, J. Bauer, H. Winkler, B. Viel, and T. Ruhl, “Compact strain-sensitive flexible photonic crystals for sensors,” Appl. Phys. Lett. 87(10), 101902 (2005).
[CrossRef]

Sambles, J. R.

P. Vukusic and J. R. Sambles, “Photonic structures in biology,” Nature 424(6950), 852–855 (2003).
[CrossRef] [PubMed]

Snoswell, D. R.

A. Kontogeorgos, D. R. Snoswell, C. E. Finlayson, J. J. Baumberg, P. Spahn, and G. P. Hellmann, “Inducing symmetry breaking in nanostructures: anisotropic stretch-tuning photonic crystals,” Phys. Rev. Lett. 105(23), 233909 (2010).
[CrossRef]

Snoswell, D. R. E.

D. R. E. Snoswell, A. Kontogeorgos, J. J. Baumberg, T. D. Lord, M. R. Mackley, P. Spahn, and G. P. Hellmann, “Shear ordering in polymer photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 81(2 Pt 1), 020401 (2010).
[CrossRef] [PubMed]

C. E. Finlayson, P. Spahn, D. R. E. Snoswell, G. Yates, A. Kontogeorgos, A. I. Haines, G. P. Hellmann, and J. J. Baumberg, “3D bulk-ordering in macroscopic solid opaline films by edge-induced rotational-shearing,” Adv. Mater. doi 10.1002/adma.201003934 (to be published).
[PubMed]

Spahn, P.

A. Kontogeorgos, D. R. Snoswell, C. E. Finlayson, J. J. Baumberg, P. Spahn, and G. P. Hellmann, “Inducing symmetry breaking in nanostructures: anisotropic stretch-tuning photonic crystals,” Phys. Rev. Lett. 105(23), 233909 (2010).
[CrossRef]

D. R. E. Snoswell, A. Kontogeorgos, J. J. Baumberg, T. D. Lord, M. R. Mackley, P. Spahn, and G. P. Hellmann, “Shear ordering in polymer photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 81(2 Pt 1), 020401 (2010).
[CrossRef] [PubMed]

J. J. Baumberg, O. L. Pursiainen, and P. Spahn, “Resonant optical scattering in nanoparticle-doped polymer photonic crystals,” Phys. Rev. B 80(20), 201103 (2009).
[CrossRef]

O. L. J. Pursiainen, J. J. Baumberg, H. Winkler, B. Viel, P. Spahn, and T. Ruhl, “Shear-induced organization in flexible polymer opals,” Adv. Mater. 20(8), 1484–1487 (2008).
[CrossRef]

O. L. J. Pursiainen, J. J. Baumberg, H. Winkler, B. Viel, P. Spahn, and T. Ruhl, “Nanoparticle-tuned structural color from polymer opals,” Opt. Express 15(15), 9553–9561 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-15-9553 .
[CrossRef] [PubMed]

T. Ruhl, P. Spahn, H. Winkler, and G. P. Hellmann, “Large Area Monodomain Order in Colloidal Crystals,” Macromol. Chem. Phys. 205(10), 1385–1393 (2004).
[CrossRef]

T. Ruhl, P. Spahn, and G. P. Hellmann, “Artificial opals prepared by melt compression,” Polymer (Guildf.) 44(25), 7625–7634 (2003).
[CrossRef]

C. E. Finlayson, P. Spahn, D. R. E. Snoswell, G. Yates, A. Kontogeorgos, A. I. Haines, G. P. Hellmann, and J. J. Baumberg, “3D bulk-ordering in macroscopic solid opaline films by edge-induced rotational-shearing,” Adv. Mater. doi 10.1002/adma.201003934 (to be published).
[PubMed]

Steiner, U.

Sturm, J. C.

Y. A. Vlasov, X.-Z. Bo, J. C. Sturm, and D. J. Norris, “On-chip natural assembly of silicon photonic bandgap crystals,” Nature 414(6861), 289–293 (2001).
[CrossRef] [PubMed]

van Gunsteren, W. F.

H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. DiNola, and J. R. Haak, “Molecular dynamics with coupling to an external bath,” J. Chem. Phys. 81(8), 3684–3690 (1984).
[CrossRef]

Verlet, L.

L. Verlet, “Computer ’Experiments’ on Classical Fluids. II. Equilibrium Correlation Functions,” Phys. Rev. 165(1), 201–214 (1968).
[CrossRef]

L. Verlet, “Computer ’Experiments’ on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules,” Phys. Rev. 159(1), 98–103 (1967).
[CrossRef]

Viel, B.

O. L. J. Pursiainen, J. J. Baumberg, H. Winkler, B. Viel, P. Spahn, and T. Ruhl, “Shear-induced organization in flexible polymer opals,” Adv. Mater. 20(8), 1484–1487 (2008).
[CrossRef]

B. Viel, T. Ruhl, and G. P. Hellmann, “Reversible deformation of opal elastomers,” Chem. Mater. 19(23), 5673–5679 (2007).
[CrossRef]

O. L. J. Pursiainen, J. J. Baumberg, H. Winkler, B. Viel, P. Spahn, and T. Ruhl, “Nanoparticle-tuned structural color from polymer opals,” Opt. Express 15(15), 9553–9561 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-15-9553 .
[CrossRef] [PubMed]

O. L. J. Pursiainen, J. J. Baumberg, K. Ryan, J. Bauer, H. Winkler, B. Viel, and T. Ruhl, “Compact strain-sensitive flexible photonic crystals for sensors,” Appl. Phys. Lett. 87(10), 101902 (2005).
[CrossRef]

Vlasov, Y. A.

Y. A. Vlasov, X.-Z. Bo, J. C. Sturm, and D. J. Norris, “On-chip natural assembly of silicon photonic bandgap crystals,” Nature 414(6861), 289–293 (2001).
[CrossRef] [PubMed]

Vukusic, P.

P. Vukusic and J. R. Sambles, “Photonic structures in biology,” Nature 424(6950), 852–855 (2003).
[CrossRef] [PubMed]

Winkler, H.

O. L. J. Pursiainen, J. J. Baumberg, H. Winkler, B. Viel, P. Spahn, and T. Ruhl, “Shear-induced organization in flexible polymer opals,” Adv. Mater. 20(8), 1484–1487 (2008).
[CrossRef]

O. L. J. Pursiainen, J. J. Baumberg, H. Winkler, B. Viel, P. Spahn, and T. Ruhl, “Nanoparticle-tuned structural color from polymer opals,” Opt. Express 15(15), 9553–9561 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-15-9553 .
[CrossRef] [PubMed]

O. L. J. Pursiainen, J. J. Baumberg, K. Ryan, J. Bauer, H. Winkler, B. Viel, and T. Ruhl, “Compact strain-sensitive flexible photonic crystals for sensors,” Appl. Phys. Lett. 87(10), 101902 (2005).
[CrossRef]

T. Ruhl, P. Spahn, H. Winkler, and G. P. Hellmann, “Large Area Monodomain Order in Colloidal Crystals,” Macromol. Chem. Phys. 205(10), 1385–1393 (2004).
[CrossRef]

Yates, G.

C. E. Finlayson, P. Spahn, D. R. E. Snoswell, G. Yates, A. Kontogeorgos, A. I. Haines, G. P. Hellmann, and J. J. Baumberg, “3D bulk-ordering in macroscopic solid opaline films by edge-induced rotational-shearing,” Adv. Mater. doi 10.1002/adma.201003934 (to be published).
[PubMed]

Zheng, B.

Adv. Mater. (2)

O. L. J. Pursiainen, J. J. Baumberg, H. Winkler, B. Viel, P. Spahn, and T. Ruhl, “Shear-induced organization in flexible polymer opals,” Adv. Mater. 20(8), 1484–1487 (2008).
[CrossRef]

C. E. Finlayson, P. Spahn, D. R. E. Snoswell, G. Yates, A. Kontogeorgos, A. I. Haines, G. P. Hellmann, and J. J. Baumberg, “3D bulk-ordering in macroscopic solid opaline films by edge-induced rotational-shearing,” Adv. Mater. doi 10.1002/adma.201003934 (to be published).
[PubMed]

Appl. Phys. Lett. (1)

O. L. J. Pursiainen, J. J. Baumberg, K. Ryan, J. Bauer, H. Winkler, B. Viel, and T. Ruhl, “Compact strain-sensitive flexible photonic crystals for sensors,” Appl. Phys. Lett. 87(10), 101902 (2005).
[CrossRef]

Chem. Mater. (1)

B. Viel, T. Ruhl, and G. P. Hellmann, “Reversible deformation of opal elastomers,” Chem. Mater. 19(23), 5673–5679 (2007).
[CrossRef]

J. Chem. Phys. (1)

H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. DiNola, and J. R. Haak, “Molecular dynamics with coupling to an external bath,” J. Chem. Phys. 81(8), 3684–3690 (1984).
[CrossRef]

Macromol. Chem. Phys. (2)

T. Ruhl, P. Spahn, H. Winkler, and G. P. Hellmann, “Large Area Monodomain Order in Colloidal Crystals,” Macromol. Chem. Phys. 205(10), 1385–1393 (2004).
[CrossRef]

T. Ruhl and G. P. Hellmann, “Colloidal crystals in latex films: Rubbery opals,” Macromol. Chem. Phys. 202(18), 3502–3505 (2001).
[CrossRef]

Nat. Mater. (1)

R. De La Rue, “Photonic crystals: Microassembly in 3D,” Nat. Mater. 2(2), 74–76 (2003).
[CrossRef] [PubMed]

Nature (2)

P. Vukusic and J. R. Sambles, “Photonic structures in biology,” Nature 424(6950), 852–855 (2003).
[CrossRef] [PubMed]

Y. A. Vlasov, X.-Z. Bo, J. C. Sturm, and D. J. Norris, “On-chip natural assembly of silicon photonic bandgap crystals,” Nature 414(6861), 289–293 (2001).
[CrossRef] [PubMed]

Opt. Express (2)

Phys. Rev. (2)

L. Verlet, “Computer ’Experiments’ on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules,” Phys. Rev. 159(1), 98–103 (1967).
[CrossRef]

L. Verlet, “Computer ’Experiments’ on Classical Fluids. II. Equilibrium Correlation Functions,” Phys. Rev. 165(1), 201–214 (1968).
[CrossRef]

Phys. Rev. B (1)

J. J. Baumberg, O. L. Pursiainen, and P. Spahn, “Resonant optical scattering in nanoparticle-doped polymer photonic crystals,” Phys. Rev. B 80(20), 201103 (2009).
[CrossRef]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

D. R. E. Snoswell, A. Kontogeorgos, J. J. Baumberg, T. D. Lord, M. R. Mackley, P. Spahn, and G. P. Hellmann, “Shear ordering in polymer photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 81(2 Pt 1), 020401 (2010).
[CrossRef] [PubMed]

Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics (1)

M. D. Haw, W. C. K. Poon, and P. N. Pusey, “Direct observation of oscillatory-shear-induced order in colloidal suspensions,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 57(6), 6859–6864 (1998).
[CrossRef]

Phys. Rev. Lett. (2)

B. J. Ackerson and P. N. Pusey, “Shear-induced order in suspensions of hard spheres,” Phys. Rev. Lett. 61(8), 1033–1036 (1988).
[CrossRef] [PubMed]

A. Kontogeorgos, D. R. Snoswell, C. E. Finlayson, J. J. Baumberg, P. Spahn, and G. P. Hellmann, “Inducing symmetry breaking in nanostructures: anisotropic stretch-tuning photonic crystals,” Phys. Rev. Lett. 105(23), 233909 (2010).
[CrossRef]

Polymer (Guildf.) (2)

J. Batchelor, J. P. Berry, and F. Horsfall, “Die swell in elastic and viscous fluids,” Polymer (Guildf.) 14(7), 297–299 (1973).
[CrossRef]

T. Ruhl, P. Spahn, and G. P. Hellmann, “Artificial opals prepared by melt compression,” Polymer (Guildf.) 44(25), 7625–7634 (2003).
[CrossRef]

Other (3)

M. Oda, and K. Iwashita, in Mechanics of granular materials: an introduction (Taylor & Francis, London, 1999)

P. C. Hiemenz, and T. P. Lodge, in Polymer Chemistry, 2nd ed. (CRC Press, London, 2007)
[PubMed]

Strain, e, where e = 100% x Δl/l, or % increase in length.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) Schematic of core-interlayer-shell system, based on polystyrene (PS)-allyl methacrylate (ALMA)-polyethylacrylate (PEA), used for polymer opal production. (b) Fiber extrusion process, illustrating how the viscous ensemble of CIS particles is forced through a die aperture (not to scale) under pressure to produce long fibers of opaline quality, as shown in (c). Cross-linked fibers may be knitted into fabrics (d), with a marked stretch-variable structural color effect (e).

Fig. 2
Fig. 2

(a) Dark-field x5 images of 1000 μm diameter red-opal fiber at strains (left to right, in montage) of e = 0, 20%, 35% and 50%. The scale bar is 500 μm long. (b) Corresponding dark-field reflectance spectra for different strains.

Fig. 3
Fig. 3

Dark-field microscopy images of transverse cross-sections of red-opal fibers, showing concentric substructure. The fiber diameters, d, are as indicated; the scale bars have lengths of (a) 500 μm, (b) 250 μm, (c) 200 μm and (d) 25 μm.

Fig. 4
Fig. 4

(a) Dark-field reflectance spectra collected at increasing radial positions on the fiber transverse cross-section shown in Fig. 3(a) (radius = 1000 μm). (b) Peak wavelength and spectral FWHM of spectra as a function of radial distance from the fiber centre. The blue-shaded region indicates the zone of best ordering, where the FWHM < 70 nm

Fig. 5
Fig. 5

Dark-field reflectance spectra of a 2000 μm diameter fiber before (red) and after (black) longitudinal cross-sectioning. The left inset shows the relative geometries of transverse and longitudinal cross-sectioning of fibers. The right inset shows an image of the exposed surface of the red opal after longitudinal sectioning, with the point at which spectrum was collected being at the centre of the overlaid cross-hairs.

Fig. 6
Fig. 6

Force between two spheres, as given by Eq. (1). F(r) is set as zero for values of r > r 0.

Fig. 7
Fig. 7

Snapshots in time for a simulation of 5000 spheres. The darker color corresponds to higher local order.

Fig. 8
Fig. 8

Snapshot of a region of the wire showing the surface order along with corresponding stress and pressure measurements. Defects show correlation with regions of higher pressure and stress.

Tables (1)

Tables Icon

Table 1 Comparison of the measured diameter of extruded fibers with the die diameter, together with the peak spectral wavelength (dark-field) at the zone of best ordering.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

F ( r ) = r 14 14 r + 16 ,    r   <    r 0 .

Metrics