Abstract

We demonstrate a novel, compact and low-loss photonic crystal fiber modal Mach-Zehnder interferometer with potential applications to sensing and WDM telecommunications. By selectively collapsing a ~1-mm-long section of a hole next to the solid core, a pair of modes of the post-processed structure are excited and interfere at its exit. A modulation depth of up to ~13 dB and an insertion loss as low as 2.8 dB were achieved. A temperature sensitivity of −53.4 pm/°C was measured, making the device suitable for temperature sensing.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. St. J. Russell, “Photonic-Crystal Fibers,” J. Lightwave Technol. 24(12), 4729–4749 (2006).
    [CrossRef]
  2. H. C. Nguyen, B. T. Kuhlmey, E. C. Magi, M. J. Steel, P. Domachuk, C. L. Smith, and B. J. Eggleton, “Tapered photonic crystal fibers: Properties, characterization and applications,” Appl. Phys. B 81(2-3), 377–387 (2005).
    [CrossRef]
  3. H. Bartelt, H. Lehmann, R. Willsch, R. Spittel, J. Mörbitz, and M. Balakrishnan, “Enhanced functionality by selective filling of microstructured optical fibers,” Proc. SPIE 7839, 783909, 783909-4 (2010).
    [CrossRef]
  4. A. Witkowska, K. Lai, S. G. Leon-Saval, W. J. Wadsworth, and T. A. Birks, “All-fiber anamorphic core-shape transitions,” Opt. Lett. 31(18), 2672–2674 (2006).
    [CrossRef] [PubMed]
  5. K. Lai, S. G. Leon-Saval, A. Witkowska, W. J. Wadsworth, and T. A. Birks, “Wavelength-independent all-fiber mode converters,” Opt. Lett. 32(4), 328–330 (2007).
    [CrossRef] [PubMed]
  6. J. Villatoro, V. P. Minkovich, and D. Monzón-Hernández, “Compact Modal Interferometer Built with Tapered Microstructured Optical Fiber,” IEEE Photon. Technol. Lett. 18(11), 1258–1260 (2006).
    [CrossRef]
  7. J. Villatoro, V. P. Minkovich, V. Pruneri, and G. Badenes, “Simple all-microstructured-optical-fiber interferometer built via fusion splicing,” Opt. Express 15(4), 1491–1496 (2007).
    [CrossRef] [PubMed]
  8. H. Y. Choi, K. S. Park, and B. H. Lee, “Photonic crystal fiber interferometer composed of a long period fiber grating and one point collapsing of air holes,” Opt. Lett. 33(8), 812–814 (2008).
    [CrossRef] [PubMed]
  9. J. H. Lim, H. S. Jang, K. S. Lee, J. C. Kim, and B. H. Lee, “Mach-Zehnder interferometer formed in a photonic crystal fiber based on a pair of long-period fiber gratings,” Opt. Lett. 29(4), 346–348 (2004).
    [CrossRef] [PubMed]
  10. J. Du, Y. Dai, G. K. P. Lei, W. Tong, and C. Shu, “Photonic crystal fiber based Mach-Zehnder interferometer for DPSK signal demodulation,” Opt. Express 18(8), 7917–7922 (2010).
    [CrossRef] [PubMed]
  11. H. Y. Choi, M. J. Kim, and B. H. Lee, “All-fiber Mach-Zehnder type interferometers formed in photonic crystal fiber,” Opt. Express 15(9), 5711–5720 (2007).
    [CrossRef] [PubMed]
  12. J. Villatoro, V. Finazzi, V. P. Minkovich, V. Pruneri, and G. Badenes, “Temperature-insensitive photonic crystal fiber interferometer for absolute strain sensing,” Appl. Phys. Lett. 91(9), 091109 (2007).
    [CrossRef]
  13. W. J. Bock, T. A. Eftimov, P. Mikulic, and J. Chen, “An inline core-cladding intermodal interferometer using a photonic crystal fiber,” J. Lightwave Technol. 27(17), 3933–3939 (2009).
    [CrossRef]
  14. S. H. Aref, R. Amezcua-Correa, J. P. Carvalho, O. Frazão, P. Caldas, J. L. Santos, F. M. Araújo, H. Latifi, F. Farahi, L. A. Ferreira, and J. C. Knight, “Modal interferometer based on hollow-core photonic crystal fiber for strain and temperature measurement,” Opt. Express 17(21), 18669–18675 (2009).
    [CrossRef]
  15. G. Coviello, V. Finazzi, J. Villatoro, and V. Pruneri, “Thermally stabilized PCF-based sensor for temperature measurements up to 1000°C,” Opt. Express 17(24), 21551–21559 (2009).
    [CrossRef] [PubMed]
  16. R. Jha, J. Villatoro, G. Badenes, and V. Pruneri, “Refractometry based on a photonic crystal fiber interferometer,” Opt. Lett. 34(5), 617–619 (2009).
    [CrossRef] [PubMed]
  17. J. Villatoro, M. P. Kreuzer, R. Jha, V. P. Minkovich, V. Finazzi, G. Badenes, and V. Pruneri, “Photonic crystal fiber interferometer for chemical vapor detection with high sensitivity,” Opt. Express 17(3), 1447–1453 (2009).
    [CrossRef] [PubMed]
  18. B. H. Lee and J. Nishii, “Dependence of fringe spacing on the grating separation in a long-period fiber grating pair,” Appl. Opt. 38(16), 3450–3459 (1999).
    [CrossRef]
  19. J. Ju, H. F. Xuan, W. Jin, S. Liu, and H. L. Ho, “Selective opening of airholes in photonic crystal fiber,” Opt. Lett. 35(23), 3886–3888 (2010).
    [CrossRef] [PubMed]

2010

2009

2008

2007

2006

2005

H. C. Nguyen, B. T. Kuhlmey, E. C. Magi, M. J. Steel, P. Domachuk, C. L. Smith, and B. J. Eggleton, “Tapered photonic crystal fibers: Properties, characterization and applications,” Appl. Phys. B 81(2-3), 377–387 (2005).
[CrossRef]

2004

1999

Amezcua-Correa, R.

Araújo, F. M.

Aref, S. H.

Badenes, G.

Balakrishnan, M.

H. Bartelt, H. Lehmann, R. Willsch, R. Spittel, J. Mörbitz, and M. Balakrishnan, “Enhanced functionality by selective filling of microstructured optical fibers,” Proc. SPIE 7839, 783909, 783909-4 (2010).
[CrossRef]

Bartelt, H.

H. Bartelt, H. Lehmann, R. Willsch, R. Spittel, J. Mörbitz, and M. Balakrishnan, “Enhanced functionality by selective filling of microstructured optical fibers,” Proc. SPIE 7839, 783909, 783909-4 (2010).
[CrossRef]

Birks, T. A.

Bock, W. J.

Caldas, P.

Carvalho, J. P.

Chen, J.

Choi, H. Y.

Coviello, G.

Dai, Y.

Domachuk, P.

H. C. Nguyen, B. T. Kuhlmey, E. C. Magi, M. J. Steel, P. Domachuk, C. L. Smith, and B. J. Eggleton, “Tapered photonic crystal fibers: Properties, characterization and applications,” Appl. Phys. B 81(2-3), 377–387 (2005).
[CrossRef]

Du, J.

Eftimov, T. A.

Eggleton, B. J.

H. C. Nguyen, B. T. Kuhlmey, E. C. Magi, M. J. Steel, P. Domachuk, C. L. Smith, and B. J. Eggleton, “Tapered photonic crystal fibers: Properties, characterization and applications,” Appl. Phys. B 81(2-3), 377–387 (2005).
[CrossRef]

Farahi, F.

Ferreira, L. A.

Finazzi, V.

Frazão, O.

Ho, H. L.

Jang, H. S.

Jha, R.

Jin, W.

Ju, J.

Kim, J. C.

Kim, M. J.

Knight, J. C.

Kreuzer, M. P.

Kuhlmey, B. T.

H. C. Nguyen, B. T. Kuhlmey, E. C. Magi, M. J. Steel, P. Domachuk, C. L. Smith, and B. J. Eggleton, “Tapered photonic crystal fibers: Properties, characterization and applications,” Appl. Phys. B 81(2-3), 377–387 (2005).
[CrossRef]

Lai, K.

Latifi, H.

Lee, B. H.

Lee, K. S.

Lehmann, H.

H. Bartelt, H. Lehmann, R. Willsch, R. Spittel, J. Mörbitz, and M. Balakrishnan, “Enhanced functionality by selective filling of microstructured optical fibers,” Proc. SPIE 7839, 783909, 783909-4 (2010).
[CrossRef]

Lei, G. K. P.

Leon-Saval, S. G.

Lim, J. H.

Liu, S.

Magi, E. C.

H. C. Nguyen, B. T. Kuhlmey, E. C. Magi, M. J. Steel, P. Domachuk, C. L. Smith, and B. J. Eggleton, “Tapered photonic crystal fibers: Properties, characterization and applications,” Appl. Phys. B 81(2-3), 377–387 (2005).
[CrossRef]

Mikulic, P.

Minkovich, V. P.

J. Villatoro, M. P. Kreuzer, R. Jha, V. P. Minkovich, V. Finazzi, G. Badenes, and V. Pruneri, “Photonic crystal fiber interferometer for chemical vapor detection with high sensitivity,” Opt. Express 17(3), 1447–1453 (2009).
[CrossRef] [PubMed]

J. Villatoro, V. Finazzi, V. P. Minkovich, V. Pruneri, and G. Badenes, “Temperature-insensitive photonic crystal fiber interferometer for absolute strain sensing,” Appl. Phys. Lett. 91(9), 091109 (2007).
[CrossRef]

J. Villatoro, V. P. Minkovich, V. Pruneri, and G. Badenes, “Simple all-microstructured-optical-fiber interferometer built via fusion splicing,” Opt. Express 15(4), 1491–1496 (2007).
[CrossRef] [PubMed]

J. Villatoro, V. P. Minkovich, and D. Monzón-Hernández, “Compact Modal Interferometer Built with Tapered Microstructured Optical Fiber,” IEEE Photon. Technol. Lett. 18(11), 1258–1260 (2006).
[CrossRef]

Monzón-Hernández, D.

J. Villatoro, V. P. Minkovich, and D. Monzón-Hernández, “Compact Modal Interferometer Built with Tapered Microstructured Optical Fiber,” IEEE Photon. Technol. Lett. 18(11), 1258–1260 (2006).
[CrossRef]

Mörbitz, J.

H. Bartelt, H. Lehmann, R. Willsch, R. Spittel, J. Mörbitz, and M. Balakrishnan, “Enhanced functionality by selective filling of microstructured optical fibers,” Proc. SPIE 7839, 783909, 783909-4 (2010).
[CrossRef]

Nguyen, H. C.

H. C. Nguyen, B. T. Kuhlmey, E. C. Magi, M. J. Steel, P. Domachuk, C. L. Smith, and B. J. Eggleton, “Tapered photonic crystal fibers: Properties, characterization and applications,” Appl. Phys. B 81(2-3), 377–387 (2005).
[CrossRef]

Nishii, J.

Park, K. S.

Pruneri, V.

Russell, P. St. J.

Santos, J. L.

Shu, C.

Smith, C. L.

H. C. Nguyen, B. T. Kuhlmey, E. C. Magi, M. J. Steel, P. Domachuk, C. L. Smith, and B. J. Eggleton, “Tapered photonic crystal fibers: Properties, characterization and applications,” Appl. Phys. B 81(2-3), 377–387 (2005).
[CrossRef]

Spittel, R.

H. Bartelt, H. Lehmann, R. Willsch, R. Spittel, J. Mörbitz, and M. Balakrishnan, “Enhanced functionality by selective filling of microstructured optical fibers,” Proc. SPIE 7839, 783909, 783909-4 (2010).
[CrossRef]

Steel, M. J.

H. C. Nguyen, B. T. Kuhlmey, E. C. Magi, M. J. Steel, P. Domachuk, C. L. Smith, and B. J. Eggleton, “Tapered photonic crystal fibers: Properties, characterization and applications,” Appl. Phys. B 81(2-3), 377–387 (2005).
[CrossRef]

Tong, W.

Villatoro, J.

Wadsworth, W. J.

Willsch, R.

H. Bartelt, H. Lehmann, R. Willsch, R. Spittel, J. Mörbitz, and M. Balakrishnan, “Enhanced functionality by selective filling of microstructured optical fibers,” Proc. SPIE 7839, 783909, 783909-4 (2010).
[CrossRef]

Witkowska, A.

Xuan, H. F.

Appl. Opt.

Appl. Phys. B

H. C. Nguyen, B. T. Kuhlmey, E. C. Magi, M. J. Steel, P. Domachuk, C. L. Smith, and B. J. Eggleton, “Tapered photonic crystal fibers: Properties, characterization and applications,” Appl. Phys. B 81(2-3), 377–387 (2005).
[CrossRef]

Appl. Phys. Lett.

J. Villatoro, V. Finazzi, V. P. Minkovich, V. Pruneri, and G. Badenes, “Temperature-insensitive photonic crystal fiber interferometer for absolute strain sensing,” Appl. Phys. Lett. 91(9), 091109 (2007).
[CrossRef]

IEEE Photon. Technol. Lett.

J. Villatoro, V. P. Minkovich, and D. Monzón-Hernández, “Compact Modal Interferometer Built with Tapered Microstructured Optical Fiber,” IEEE Photon. Technol. Lett. 18(11), 1258–1260 (2006).
[CrossRef]

J. Lightwave Technol.

Opt. Express

Opt. Lett.

Proc. SPIE

H. Bartelt, H. Lehmann, R. Willsch, R. Spittel, J. Mörbitz, and M. Balakrishnan, “Enhanced functionality by selective filling of microstructured optical fibers,” Proc. SPIE 7839, 783909, 783909-4 (2010).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Longitudinal cut of a PCF with a section of a hole next to the solid core collapsed (circled). (b) Scanning electron micrograph of the PCF cross section (F-NL-5/1040).

Fig. 2
Fig. 2

Experimental setup used for collapsing the selected hole in the PCF microstructure.

Fig. 3
Fig. 3

Experimental setup for optically characterizing the post-processed PCF.

Fig. 4
Fig. 4

Transmission spectra of PCFs with 1.5-mm (a) and 0.75-mm (b) long collapsed holes. (c) Light at the output of a PCF cleaved at the modified region and showing light propagation along the original core as well as the collapsed region.

Fig. 5
Fig. 5

Optical micrographs of the post-processed PCF cross section cleaved at two different positions along the same fiber. The selected hole (red arrow) is successfully collapsed in (a) but not in (b). Blue arrow points to another hole that nearly collapsed. The bars are 20 μm long.

Fig. 6
Fig. 6

(a) Transmission spectra for temperatures of 23.5°C (black), 26.6°C (red), 31.2°C (blue) and 35.8°C (green). (b) Peak wavelength versus temperature. The slope is −53.4 pm/°C.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

λ m = Δ n L m ,
Δ λ = λ 2 Δ n L .

Metrics