Abstract

Through the detection of Coherent Population Trapping (CPT) resonances, we demonstrate the temperature-dependence cancellation of the Cs clock frequency in microfabricated vapor cells filled with a mixture of Ne and Ar. The inversion temperature at which the Cs clock frequency temperature sensitivity is greatly reduced only depends on the partial pressure of buffer gases and is measured to be lower than 80°C as expected with simple theoretical calculations. These results are important for the development of state-of-the-art Cs vapor cell clocks with improved long-term frequency stability.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Knappe, V. Gerginov, P. D. D. Schwindt, V. Shah, H. G. Robinson, L. Hollberg, and J. Kitching, "Atomic vapor cells for chip-scale atomic clocks with improved long-term frequency stability," Opt. Lett. 30(18), 2351 (2005).
    [CrossRef] [PubMed]
  2. R. H. Dicke, "The Effect of Collisions upon the Doppler Width of Spectral Lines," Phys. Rev. 89, 472-473 (1953).
    [CrossRef]
  3. E. Bernabeu, and J. M. Alvarez, "Shift and broadening of hyperfine components of the first doublet of cesium perturbed by foreign gases," Phys. Rev. A 22(6), 2690 (1980).
    [CrossRef]
  4. G. A. Pitz, D. E. Wertepny, and G. P. Perram, "Pressure broadening and shift of the Cs D1 transition by the noble gases and N2, H2, HD, D2, CH4, C2H6, CF4 and 3He," Phys. Rev. A 80, 062718 (2009).
    [CrossRef]
  5. J. Vanier, and C. Audoin, The Quantum Physics of Atomic Frequency Standards, (Adam Hilger, Bristol, 1989).
    [CrossRef]
  6. J. Vanier, R. Kunski, N. Cyr, J. Y. Savard, and M. Tetu, "On hyperfine frequency shifts caused by buffer gases: Application to the optically pumped passive rubidium frequency standard," J. Appl. Phys. 53(8), 5387 (1982).
    [CrossRef]
  7. F. Strumia, N. Beverini, A. Moretti, and G. Rovera, "Optimization of the buffer gas mixture for optically pumped Cs frequency standard," Proc. of the 1976 Freq. Contr. Symp., 468-472 (1976).
  8. N. Beverini, F. Strumia, and G. Rovera, "Buffer gas pressure shift in the mF=0 → mF=0 ground state hyperfine line in Cs," Opt. Commun. 37(6), 394 (1981).
    [CrossRef]
  9. O. Kozlova, R. Boudot, S. Guérandel, and E. De Clercq, "Measurements of Cs buffer gas collisional frequency shift using pulsed coherent population trapping interrogation," Proc. of the 2010 Conf. Precision Electromag. Meas., Daejon, Korea (2010).
  10. T. Zanon, S. Guérandel, E. de Clercq, D. Holleville, N. Dimarcq, and A. Clairon, "High Contrast Ramsey Fringes with Coherent-Population-Trapping Pulses in a Double Lambda Atomic System," Phys. Rev. Lett. 94, 193002 (2005).
    [CrossRef] [PubMed]
  11. R. Boudot, S. Guérandel, E. De Clercq, N. Dimarcq, and A. Clairon, "Current status of a pulsed CPT Cs cell clock," IEEE Trans. Instrum. Meas. 58(4), 1217 (2009).
    [CrossRef]
  12. N. Castagna, R. Boudot, S. Guérandel, E. De Clercq, N. Dimarcq, and A. Clairon, "Investigations on continuous and pulsed interrogation for a CPT atomic clock," IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56(2), 246 (2009).
    [CrossRef] [PubMed]
  13. D. Miletic, P. Dziuban, R. Boudot, M. Hasegawa, R. K. Chutani, G. Mileti, V. Giordano, and C. Gorecki, "Quadratic dependence on temperature of the Cs 0-0 hyperfine resonance in a single Ne buffer gas microfabricated vapor cell," Electron. Lett. 46(15), 1069 (2010).
    [CrossRef]
  14. R. Boudot, P. Dziuban, M. Hasegawa, R. K. Chutani, S. Galliou, V. Giordano, and C. Gorecki, "Coherent population trapping resonances in Cs-Ne microcells for miniature clocks applications," J. Appl. Phys. (to be published).
    [CrossRef]
  15. S. Knappe, V. Shah, P. D. D. Schwindt, L. Hollberg, J. Kitching, L.-A. Liew, and J. Moreland, "A microfabricated atomic clock," Appl. Phys. Lett. 85(9), 1460 (2004).
    [CrossRef]
  16. R. Lutwak, A. Rashed, M. Varghese, G. Tepolt, J. Leblanc, M. Mescher, D. K. Serkland, K. M. Geib, and G. M. Peake, "CSAC- The Chip Scale Atomic Clock," Proc. of the 7th Symp. Freq. Standards and Metrology, Pacific Grove (CA), edited by Lute Maleki (World scientific), 454-462 (2008).
  17. P. Knapkiewicz, J. Dziuban, R. Walczak, L. Mauri, P. Dziuban, and C. Gorecki, "MEMS Cs vapour cell for European Micro-Atomic Clock," Proc. Eurosensors, Sept. 5-8, Linz, Austria (2010).
  18. A. Douahi, L. Nieradko, J. C. Beugnot, J. Dziuban, H. Maillote, S. Guérandel, M. Moraja, C. Gorecki, and V. Giordano, "Vapor Microcell for Chip Scale Atomic Frequency Standard," Electron. Lett. 43(9), 279 (2007).
    [CrossRef]
  19. L. Nieradko, C. Gorecki, A. Douahi, V. Giordano, J. C. Beugnot, J. Dziuban, and M. Moraja, "New approaching of fabrication and dispensing of micromachined Cs vapor cell," J. Micro/Nanolith. MEMS MOEMS 7, 033013 (2008).
    [CrossRef]
  20. R. Lutwak, D. Emmons, W. Riley, and R. M. Garvey, "The Chip-Scale atomic clock: Coherent population trapping vs conventional interrogation," Proc. 34th Annual Precise Time and Time Interval Systems Applications Meeting, Reston (Virginia), 3-5 Dec. 2002 (2002).
  21. S. Knappe, L. Hollberg, and J. Kitching, "Dark-line atomic resonances in submillimeter structures," Opt. Lett. 29(9), 388 (2004).
    [CrossRef] [PubMed]
  22. S. Knappe, J. Kitching, L. Hollberg, and R. Wynands, "Temperature dependence of coherent population trapping resonances," Appl. Phys. B 74, 217 (2002).
    [CrossRef]

2010 (1)

D. Miletic, P. Dziuban, R. Boudot, M. Hasegawa, R. K. Chutani, G. Mileti, V. Giordano, and C. Gorecki, "Quadratic dependence on temperature of the Cs 0-0 hyperfine resonance in a single Ne buffer gas microfabricated vapor cell," Electron. Lett. 46(15), 1069 (2010).
[CrossRef]

2009 (3)

R. Boudot, S. Guérandel, E. De Clercq, N. Dimarcq, and A. Clairon, "Current status of a pulsed CPT Cs cell clock," IEEE Trans. Instrum. Meas. 58(4), 1217 (2009).
[CrossRef]

N. Castagna, R. Boudot, S. Guérandel, E. De Clercq, N. Dimarcq, and A. Clairon, "Investigations on continuous and pulsed interrogation for a CPT atomic clock," IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56(2), 246 (2009).
[CrossRef] [PubMed]

G. A. Pitz, D. E. Wertepny, and G. P. Perram, "Pressure broadening and shift of the Cs D1 transition by the noble gases and N2, H2, HD, D2, CH4, C2H6, CF4 and 3He," Phys. Rev. A 80, 062718 (2009).
[CrossRef]

2008 (1)

L. Nieradko, C. Gorecki, A. Douahi, V. Giordano, J. C. Beugnot, J. Dziuban, and M. Moraja, "New approaching of fabrication and dispensing of micromachined Cs vapor cell," J. Micro/Nanolith. MEMS MOEMS 7, 033013 (2008).
[CrossRef]

2007 (1)

A. Douahi, L. Nieradko, J. C. Beugnot, J. Dziuban, H. Maillote, S. Guérandel, M. Moraja, C. Gorecki, and V. Giordano, "Vapor Microcell for Chip Scale Atomic Frequency Standard," Electron. Lett. 43(9), 279 (2007).
[CrossRef]

2005 (2)

T. Zanon, S. Guérandel, E. de Clercq, D. Holleville, N. Dimarcq, and A. Clairon, "High Contrast Ramsey Fringes with Coherent-Population-Trapping Pulses in a Double Lambda Atomic System," Phys. Rev. Lett. 94, 193002 (2005).
[CrossRef] [PubMed]

S. Knappe, V. Gerginov, P. D. D. Schwindt, V. Shah, H. G. Robinson, L. Hollberg, and J. Kitching, "Atomic vapor cells for chip-scale atomic clocks with improved long-term frequency stability," Opt. Lett. 30(18), 2351 (2005).
[CrossRef] [PubMed]

2004 (2)

S. Knappe, L. Hollberg, and J. Kitching, "Dark-line atomic resonances in submillimeter structures," Opt. Lett. 29(9), 388 (2004).
[CrossRef] [PubMed]

S. Knappe, V. Shah, P. D. D. Schwindt, L. Hollberg, J. Kitching, L.-A. Liew, and J. Moreland, "A microfabricated atomic clock," Appl. Phys. Lett. 85(9), 1460 (2004).
[CrossRef]

2002 (1)

S. Knappe, J. Kitching, L. Hollberg, and R. Wynands, "Temperature dependence of coherent population trapping resonances," Appl. Phys. B 74, 217 (2002).
[CrossRef]

1982 (1)

J. Vanier, R. Kunski, N. Cyr, J. Y. Savard, and M. Tetu, "On hyperfine frequency shifts caused by buffer gases: Application to the optically pumped passive rubidium frequency standard," J. Appl. Phys. 53(8), 5387 (1982).
[CrossRef]

1981 (1)

N. Beverini, F. Strumia, and G. Rovera, "Buffer gas pressure shift in the mF=0 → mF=0 ground state hyperfine line in Cs," Opt. Commun. 37(6), 394 (1981).
[CrossRef]

1980 (1)

E. Bernabeu, and J. M. Alvarez, "Shift and broadening of hyperfine components of the first doublet of cesium perturbed by foreign gases," Phys. Rev. A 22(6), 2690 (1980).
[CrossRef]

1953 (1)

R. H. Dicke, "The Effect of Collisions upon the Doppler Width of Spectral Lines," Phys. Rev. 89, 472-473 (1953).
[CrossRef]

Alvarez, J. M.

E. Bernabeu, and J. M. Alvarez, "Shift and broadening of hyperfine components of the first doublet of cesium perturbed by foreign gases," Phys. Rev. A 22(6), 2690 (1980).
[CrossRef]

Bernabeu, E.

E. Bernabeu, and J. M. Alvarez, "Shift and broadening of hyperfine components of the first doublet of cesium perturbed by foreign gases," Phys. Rev. A 22(6), 2690 (1980).
[CrossRef]

Beugnot, J. C.

L. Nieradko, C. Gorecki, A. Douahi, V. Giordano, J. C. Beugnot, J. Dziuban, and M. Moraja, "New approaching of fabrication and dispensing of micromachined Cs vapor cell," J. Micro/Nanolith. MEMS MOEMS 7, 033013 (2008).
[CrossRef]

A. Douahi, L. Nieradko, J. C. Beugnot, J. Dziuban, H. Maillote, S. Guérandel, M. Moraja, C. Gorecki, and V. Giordano, "Vapor Microcell for Chip Scale Atomic Frequency Standard," Electron. Lett. 43(9), 279 (2007).
[CrossRef]

Beverini, N.

N. Beverini, F. Strumia, and G. Rovera, "Buffer gas pressure shift in the mF=0 → mF=0 ground state hyperfine line in Cs," Opt. Commun. 37(6), 394 (1981).
[CrossRef]

Boudot, R.

D. Miletic, P. Dziuban, R. Boudot, M. Hasegawa, R. K. Chutani, G. Mileti, V. Giordano, and C. Gorecki, "Quadratic dependence on temperature of the Cs 0-0 hyperfine resonance in a single Ne buffer gas microfabricated vapor cell," Electron. Lett. 46(15), 1069 (2010).
[CrossRef]

R. Boudot, S. Guérandel, E. De Clercq, N. Dimarcq, and A. Clairon, "Current status of a pulsed CPT Cs cell clock," IEEE Trans. Instrum. Meas. 58(4), 1217 (2009).
[CrossRef]

N. Castagna, R. Boudot, S. Guérandel, E. De Clercq, N. Dimarcq, and A. Clairon, "Investigations on continuous and pulsed interrogation for a CPT atomic clock," IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56(2), 246 (2009).
[CrossRef] [PubMed]

R. Boudot, P. Dziuban, M. Hasegawa, R. K. Chutani, S. Galliou, V. Giordano, and C. Gorecki, "Coherent population trapping resonances in Cs-Ne microcells for miniature clocks applications," J. Appl. Phys. (to be published).
[CrossRef]

Castagna, N.

N. Castagna, R. Boudot, S. Guérandel, E. De Clercq, N. Dimarcq, and A. Clairon, "Investigations on continuous and pulsed interrogation for a CPT atomic clock," IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56(2), 246 (2009).
[CrossRef] [PubMed]

Chutani, R. K.

D. Miletic, P. Dziuban, R. Boudot, M. Hasegawa, R. K. Chutani, G. Mileti, V. Giordano, and C. Gorecki, "Quadratic dependence on temperature of the Cs 0-0 hyperfine resonance in a single Ne buffer gas microfabricated vapor cell," Electron. Lett. 46(15), 1069 (2010).
[CrossRef]

R. Boudot, P. Dziuban, M. Hasegawa, R. K. Chutani, S. Galliou, V. Giordano, and C. Gorecki, "Coherent population trapping resonances in Cs-Ne microcells for miniature clocks applications," J. Appl. Phys. (to be published).
[CrossRef]

Clairon, A.

N. Castagna, R. Boudot, S. Guérandel, E. De Clercq, N. Dimarcq, and A. Clairon, "Investigations on continuous and pulsed interrogation for a CPT atomic clock," IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56(2), 246 (2009).
[CrossRef] [PubMed]

R. Boudot, S. Guérandel, E. De Clercq, N. Dimarcq, and A. Clairon, "Current status of a pulsed CPT Cs cell clock," IEEE Trans. Instrum. Meas. 58(4), 1217 (2009).
[CrossRef]

T. Zanon, S. Guérandel, E. de Clercq, D. Holleville, N. Dimarcq, and A. Clairon, "High Contrast Ramsey Fringes with Coherent-Population-Trapping Pulses in a Double Lambda Atomic System," Phys. Rev. Lett. 94, 193002 (2005).
[CrossRef] [PubMed]

Cyr, N.

J. Vanier, R. Kunski, N. Cyr, J. Y. Savard, and M. Tetu, "On hyperfine frequency shifts caused by buffer gases: Application to the optically pumped passive rubidium frequency standard," J. Appl. Phys. 53(8), 5387 (1982).
[CrossRef]

De Clercq, E.

N. Castagna, R. Boudot, S. Guérandel, E. De Clercq, N. Dimarcq, and A. Clairon, "Investigations on continuous and pulsed interrogation for a CPT atomic clock," IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56(2), 246 (2009).
[CrossRef] [PubMed]

R. Boudot, S. Guérandel, E. De Clercq, N. Dimarcq, and A. Clairon, "Current status of a pulsed CPT Cs cell clock," IEEE Trans. Instrum. Meas. 58(4), 1217 (2009).
[CrossRef]

T. Zanon, S. Guérandel, E. de Clercq, D. Holleville, N. Dimarcq, and A. Clairon, "High Contrast Ramsey Fringes with Coherent-Population-Trapping Pulses in a Double Lambda Atomic System," Phys. Rev. Lett. 94, 193002 (2005).
[CrossRef] [PubMed]

Dicke, R. H.

R. H. Dicke, "The Effect of Collisions upon the Doppler Width of Spectral Lines," Phys. Rev. 89, 472-473 (1953).
[CrossRef]

Dimarcq, N.

N. Castagna, R. Boudot, S. Guérandel, E. De Clercq, N. Dimarcq, and A. Clairon, "Investigations on continuous and pulsed interrogation for a CPT atomic clock," IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56(2), 246 (2009).
[CrossRef] [PubMed]

R. Boudot, S. Guérandel, E. De Clercq, N. Dimarcq, and A. Clairon, "Current status of a pulsed CPT Cs cell clock," IEEE Trans. Instrum. Meas. 58(4), 1217 (2009).
[CrossRef]

T. Zanon, S. Guérandel, E. de Clercq, D. Holleville, N. Dimarcq, and A. Clairon, "High Contrast Ramsey Fringes with Coherent-Population-Trapping Pulses in a Double Lambda Atomic System," Phys. Rev. Lett. 94, 193002 (2005).
[CrossRef] [PubMed]

Douahi, A.

L. Nieradko, C. Gorecki, A. Douahi, V. Giordano, J. C. Beugnot, J. Dziuban, and M. Moraja, "New approaching of fabrication and dispensing of micromachined Cs vapor cell," J. Micro/Nanolith. MEMS MOEMS 7, 033013 (2008).
[CrossRef]

A. Douahi, L. Nieradko, J. C. Beugnot, J. Dziuban, H. Maillote, S. Guérandel, M. Moraja, C. Gorecki, and V. Giordano, "Vapor Microcell for Chip Scale Atomic Frequency Standard," Electron. Lett. 43(9), 279 (2007).
[CrossRef]

Dziuban, J.

L. Nieradko, C. Gorecki, A. Douahi, V. Giordano, J. C. Beugnot, J. Dziuban, and M. Moraja, "New approaching of fabrication and dispensing of micromachined Cs vapor cell," J. Micro/Nanolith. MEMS MOEMS 7, 033013 (2008).
[CrossRef]

A. Douahi, L. Nieradko, J. C. Beugnot, J. Dziuban, H. Maillote, S. Guérandel, M. Moraja, C. Gorecki, and V. Giordano, "Vapor Microcell for Chip Scale Atomic Frequency Standard," Electron. Lett. 43(9), 279 (2007).
[CrossRef]

Dziuban, P.

D. Miletic, P. Dziuban, R. Boudot, M. Hasegawa, R. K. Chutani, G. Mileti, V. Giordano, and C. Gorecki, "Quadratic dependence on temperature of the Cs 0-0 hyperfine resonance in a single Ne buffer gas microfabricated vapor cell," Electron. Lett. 46(15), 1069 (2010).
[CrossRef]

R. Boudot, P. Dziuban, M. Hasegawa, R. K. Chutani, S. Galliou, V. Giordano, and C. Gorecki, "Coherent population trapping resonances in Cs-Ne microcells for miniature clocks applications," J. Appl. Phys. (to be published).
[CrossRef]

Galliou, S.

R. Boudot, P. Dziuban, M. Hasegawa, R. K. Chutani, S. Galliou, V. Giordano, and C. Gorecki, "Coherent population trapping resonances in Cs-Ne microcells for miniature clocks applications," J. Appl. Phys. (to be published).
[CrossRef]

Gerginov, V.

Giordano, V.

D. Miletic, P. Dziuban, R. Boudot, M. Hasegawa, R. K. Chutani, G. Mileti, V. Giordano, and C. Gorecki, "Quadratic dependence on temperature of the Cs 0-0 hyperfine resonance in a single Ne buffer gas microfabricated vapor cell," Electron. Lett. 46(15), 1069 (2010).
[CrossRef]

L. Nieradko, C. Gorecki, A. Douahi, V. Giordano, J. C. Beugnot, J. Dziuban, and M. Moraja, "New approaching of fabrication and dispensing of micromachined Cs vapor cell," J. Micro/Nanolith. MEMS MOEMS 7, 033013 (2008).
[CrossRef]

A. Douahi, L. Nieradko, J. C. Beugnot, J. Dziuban, H. Maillote, S. Guérandel, M. Moraja, C. Gorecki, and V. Giordano, "Vapor Microcell for Chip Scale Atomic Frequency Standard," Electron. Lett. 43(9), 279 (2007).
[CrossRef]

R. Boudot, P. Dziuban, M. Hasegawa, R. K. Chutani, S. Galliou, V. Giordano, and C. Gorecki, "Coherent population trapping resonances in Cs-Ne microcells for miniature clocks applications," J. Appl. Phys. (to be published).
[CrossRef]

Gorecki, C.

D. Miletic, P. Dziuban, R. Boudot, M. Hasegawa, R. K. Chutani, G. Mileti, V. Giordano, and C. Gorecki, "Quadratic dependence on temperature of the Cs 0-0 hyperfine resonance in a single Ne buffer gas microfabricated vapor cell," Electron. Lett. 46(15), 1069 (2010).
[CrossRef]

L. Nieradko, C. Gorecki, A. Douahi, V. Giordano, J. C. Beugnot, J. Dziuban, and M. Moraja, "New approaching of fabrication and dispensing of micromachined Cs vapor cell," J. Micro/Nanolith. MEMS MOEMS 7, 033013 (2008).
[CrossRef]

A. Douahi, L. Nieradko, J. C. Beugnot, J. Dziuban, H. Maillote, S. Guérandel, M. Moraja, C. Gorecki, and V. Giordano, "Vapor Microcell for Chip Scale Atomic Frequency Standard," Electron. Lett. 43(9), 279 (2007).
[CrossRef]

R. Boudot, P. Dziuban, M. Hasegawa, R. K. Chutani, S. Galliou, V. Giordano, and C. Gorecki, "Coherent population trapping resonances in Cs-Ne microcells for miniature clocks applications," J. Appl. Phys. (to be published).
[CrossRef]

Guérandel, S.

N. Castagna, R. Boudot, S. Guérandel, E. De Clercq, N. Dimarcq, and A. Clairon, "Investigations on continuous and pulsed interrogation for a CPT atomic clock," IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56(2), 246 (2009).
[CrossRef] [PubMed]

R. Boudot, S. Guérandel, E. De Clercq, N. Dimarcq, and A. Clairon, "Current status of a pulsed CPT Cs cell clock," IEEE Trans. Instrum. Meas. 58(4), 1217 (2009).
[CrossRef]

A. Douahi, L. Nieradko, J. C. Beugnot, J. Dziuban, H. Maillote, S. Guérandel, M. Moraja, C. Gorecki, and V. Giordano, "Vapor Microcell for Chip Scale Atomic Frequency Standard," Electron. Lett. 43(9), 279 (2007).
[CrossRef]

T. Zanon, S. Guérandel, E. de Clercq, D. Holleville, N. Dimarcq, and A. Clairon, "High Contrast Ramsey Fringes with Coherent-Population-Trapping Pulses in a Double Lambda Atomic System," Phys. Rev. Lett. 94, 193002 (2005).
[CrossRef] [PubMed]

Hasegawa, M.

D. Miletic, P. Dziuban, R. Boudot, M. Hasegawa, R. K. Chutani, G. Mileti, V. Giordano, and C. Gorecki, "Quadratic dependence on temperature of the Cs 0-0 hyperfine resonance in a single Ne buffer gas microfabricated vapor cell," Electron. Lett. 46(15), 1069 (2010).
[CrossRef]

R. Boudot, P. Dziuban, M. Hasegawa, R. K. Chutani, S. Galliou, V. Giordano, and C. Gorecki, "Coherent population trapping resonances in Cs-Ne microcells for miniature clocks applications," J. Appl. Phys. (to be published).
[CrossRef]

Hollberg, L.

S. Knappe, V. Gerginov, P. D. D. Schwindt, V. Shah, H. G. Robinson, L. Hollberg, and J. Kitching, "Atomic vapor cells for chip-scale atomic clocks with improved long-term frequency stability," Opt. Lett. 30(18), 2351 (2005).
[CrossRef] [PubMed]

S. Knappe, L. Hollberg, and J. Kitching, "Dark-line atomic resonances in submillimeter structures," Opt. Lett. 29(9), 388 (2004).
[CrossRef] [PubMed]

S. Knappe, V. Shah, P. D. D. Schwindt, L. Hollberg, J. Kitching, L.-A. Liew, and J. Moreland, "A microfabricated atomic clock," Appl. Phys. Lett. 85(9), 1460 (2004).
[CrossRef]

S. Knappe, J. Kitching, L. Hollberg, and R. Wynands, "Temperature dependence of coherent population trapping resonances," Appl. Phys. B 74, 217 (2002).
[CrossRef]

Holleville, D.

T. Zanon, S. Guérandel, E. de Clercq, D. Holleville, N. Dimarcq, and A. Clairon, "High Contrast Ramsey Fringes with Coherent-Population-Trapping Pulses in a Double Lambda Atomic System," Phys. Rev. Lett. 94, 193002 (2005).
[CrossRef] [PubMed]

Kitching, J.

S. Knappe, V. Gerginov, P. D. D. Schwindt, V. Shah, H. G. Robinson, L. Hollberg, and J. Kitching, "Atomic vapor cells for chip-scale atomic clocks with improved long-term frequency stability," Opt. Lett. 30(18), 2351 (2005).
[CrossRef] [PubMed]

S. Knappe, V. Shah, P. D. D. Schwindt, L. Hollberg, J. Kitching, L.-A. Liew, and J. Moreland, "A microfabricated atomic clock," Appl. Phys. Lett. 85(9), 1460 (2004).
[CrossRef]

S. Knappe, L. Hollberg, and J. Kitching, "Dark-line atomic resonances in submillimeter structures," Opt. Lett. 29(9), 388 (2004).
[CrossRef] [PubMed]

S. Knappe, J. Kitching, L. Hollberg, and R. Wynands, "Temperature dependence of coherent population trapping resonances," Appl. Phys. B 74, 217 (2002).
[CrossRef]

Knappe, S.

S. Knappe, V. Gerginov, P. D. D. Schwindt, V. Shah, H. G. Robinson, L. Hollberg, and J. Kitching, "Atomic vapor cells for chip-scale atomic clocks with improved long-term frequency stability," Opt. Lett. 30(18), 2351 (2005).
[CrossRef] [PubMed]

S. Knappe, L. Hollberg, and J. Kitching, "Dark-line atomic resonances in submillimeter structures," Opt. Lett. 29(9), 388 (2004).
[CrossRef] [PubMed]

S. Knappe, V. Shah, P. D. D. Schwindt, L. Hollberg, J. Kitching, L.-A. Liew, and J. Moreland, "A microfabricated atomic clock," Appl. Phys. Lett. 85(9), 1460 (2004).
[CrossRef]

S. Knappe, J. Kitching, L. Hollberg, and R. Wynands, "Temperature dependence of coherent population trapping resonances," Appl. Phys. B 74, 217 (2002).
[CrossRef]

Kunski, R.

J. Vanier, R. Kunski, N. Cyr, J. Y. Savard, and M. Tetu, "On hyperfine frequency shifts caused by buffer gases: Application to the optically pumped passive rubidium frequency standard," J. Appl. Phys. 53(8), 5387 (1982).
[CrossRef]

Liew, L.-A.

S. Knappe, V. Shah, P. D. D. Schwindt, L. Hollberg, J. Kitching, L.-A. Liew, and J. Moreland, "A microfabricated atomic clock," Appl. Phys. Lett. 85(9), 1460 (2004).
[CrossRef]

Maillote, H.

A. Douahi, L. Nieradko, J. C. Beugnot, J. Dziuban, H. Maillote, S. Guérandel, M. Moraja, C. Gorecki, and V. Giordano, "Vapor Microcell for Chip Scale Atomic Frequency Standard," Electron. Lett. 43(9), 279 (2007).
[CrossRef]

Mileti, G.

D. Miletic, P. Dziuban, R. Boudot, M. Hasegawa, R. K. Chutani, G. Mileti, V. Giordano, and C. Gorecki, "Quadratic dependence on temperature of the Cs 0-0 hyperfine resonance in a single Ne buffer gas microfabricated vapor cell," Electron. Lett. 46(15), 1069 (2010).
[CrossRef]

Miletic, D.

D. Miletic, P. Dziuban, R. Boudot, M. Hasegawa, R. K. Chutani, G. Mileti, V. Giordano, and C. Gorecki, "Quadratic dependence on temperature of the Cs 0-0 hyperfine resonance in a single Ne buffer gas microfabricated vapor cell," Electron. Lett. 46(15), 1069 (2010).
[CrossRef]

Moraja, M.

L. Nieradko, C. Gorecki, A. Douahi, V. Giordano, J. C. Beugnot, J. Dziuban, and M. Moraja, "New approaching of fabrication and dispensing of micromachined Cs vapor cell," J. Micro/Nanolith. MEMS MOEMS 7, 033013 (2008).
[CrossRef]

A. Douahi, L. Nieradko, J. C. Beugnot, J. Dziuban, H. Maillote, S. Guérandel, M. Moraja, C. Gorecki, and V. Giordano, "Vapor Microcell for Chip Scale Atomic Frequency Standard," Electron. Lett. 43(9), 279 (2007).
[CrossRef]

Moreland, J.

S. Knappe, V. Shah, P. D. D. Schwindt, L. Hollberg, J. Kitching, L.-A. Liew, and J. Moreland, "A microfabricated atomic clock," Appl. Phys. Lett. 85(9), 1460 (2004).
[CrossRef]

Nieradko, L.

L. Nieradko, C. Gorecki, A. Douahi, V. Giordano, J. C. Beugnot, J. Dziuban, and M. Moraja, "New approaching of fabrication and dispensing of micromachined Cs vapor cell," J. Micro/Nanolith. MEMS MOEMS 7, 033013 (2008).
[CrossRef]

A. Douahi, L. Nieradko, J. C. Beugnot, J. Dziuban, H. Maillote, S. Guérandel, M. Moraja, C. Gorecki, and V. Giordano, "Vapor Microcell for Chip Scale Atomic Frequency Standard," Electron. Lett. 43(9), 279 (2007).
[CrossRef]

Perram, G. P.

G. A. Pitz, D. E. Wertepny, and G. P. Perram, "Pressure broadening and shift of the Cs D1 transition by the noble gases and N2, H2, HD, D2, CH4, C2H6, CF4 and 3He," Phys. Rev. A 80, 062718 (2009).
[CrossRef]

Pitz, G. A.

G. A. Pitz, D. E. Wertepny, and G. P. Perram, "Pressure broadening and shift of the Cs D1 transition by the noble gases and N2, H2, HD, D2, CH4, C2H6, CF4 and 3He," Phys. Rev. A 80, 062718 (2009).
[CrossRef]

Robinson, H. G.

Rovera, G.

N. Beverini, F. Strumia, and G. Rovera, "Buffer gas pressure shift in the mF=0 → mF=0 ground state hyperfine line in Cs," Opt. Commun. 37(6), 394 (1981).
[CrossRef]

Savard, J. Y.

J. Vanier, R. Kunski, N. Cyr, J. Y. Savard, and M. Tetu, "On hyperfine frequency shifts caused by buffer gases: Application to the optically pumped passive rubidium frequency standard," J. Appl. Phys. 53(8), 5387 (1982).
[CrossRef]

Schwindt, P. D. D.

S. Knappe, V. Gerginov, P. D. D. Schwindt, V. Shah, H. G. Robinson, L. Hollberg, and J. Kitching, "Atomic vapor cells for chip-scale atomic clocks with improved long-term frequency stability," Opt. Lett. 30(18), 2351 (2005).
[CrossRef] [PubMed]

S. Knappe, V. Shah, P. D. D. Schwindt, L. Hollberg, J. Kitching, L.-A. Liew, and J. Moreland, "A microfabricated atomic clock," Appl. Phys. Lett. 85(9), 1460 (2004).
[CrossRef]

Shah, V.

S. Knappe, V. Gerginov, P. D. D. Schwindt, V. Shah, H. G. Robinson, L. Hollberg, and J. Kitching, "Atomic vapor cells for chip-scale atomic clocks with improved long-term frequency stability," Opt. Lett. 30(18), 2351 (2005).
[CrossRef] [PubMed]

S. Knappe, V. Shah, P. D. D. Schwindt, L. Hollberg, J. Kitching, L.-A. Liew, and J. Moreland, "A microfabricated atomic clock," Appl. Phys. Lett. 85(9), 1460 (2004).
[CrossRef]

Strumia, F.

N. Beverini, F. Strumia, and G. Rovera, "Buffer gas pressure shift in the mF=0 → mF=0 ground state hyperfine line in Cs," Opt. Commun. 37(6), 394 (1981).
[CrossRef]

Tetu, M.

J. Vanier, R. Kunski, N. Cyr, J. Y. Savard, and M. Tetu, "On hyperfine frequency shifts caused by buffer gases: Application to the optically pumped passive rubidium frequency standard," J. Appl. Phys. 53(8), 5387 (1982).
[CrossRef]

Vanier, J.

J. Vanier, R. Kunski, N. Cyr, J. Y. Savard, and M. Tetu, "On hyperfine frequency shifts caused by buffer gases: Application to the optically pumped passive rubidium frequency standard," J. Appl. Phys. 53(8), 5387 (1982).
[CrossRef]

Wertepny, D. E.

G. A. Pitz, D. E. Wertepny, and G. P. Perram, "Pressure broadening and shift of the Cs D1 transition by the noble gases and N2, H2, HD, D2, CH4, C2H6, CF4 and 3He," Phys. Rev. A 80, 062718 (2009).
[CrossRef]

Wynands, R.

S. Knappe, J. Kitching, L. Hollberg, and R. Wynands, "Temperature dependence of coherent population trapping resonances," Appl. Phys. B 74, 217 (2002).
[CrossRef]

Zanon, T.

T. Zanon, S. Guérandel, E. de Clercq, D. Holleville, N. Dimarcq, and A. Clairon, "High Contrast Ramsey Fringes with Coherent-Population-Trapping Pulses in a Double Lambda Atomic System," Phys. Rev. Lett. 94, 193002 (2005).
[CrossRef] [PubMed]

Appl. Phys. B (1)

S. Knappe, J. Kitching, L. Hollberg, and R. Wynands, "Temperature dependence of coherent population trapping resonances," Appl. Phys. B 74, 217 (2002).
[CrossRef]

Appl. Phys. Lett. (1)

S. Knappe, V. Shah, P. D. D. Schwindt, L. Hollberg, J. Kitching, L.-A. Liew, and J. Moreland, "A microfabricated atomic clock," Appl. Phys. Lett. 85(9), 1460 (2004).
[CrossRef]

Electron. Lett. (2)

A. Douahi, L. Nieradko, J. C. Beugnot, J. Dziuban, H. Maillote, S. Guérandel, M. Moraja, C. Gorecki, and V. Giordano, "Vapor Microcell for Chip Scale Atomic Frequency Standard," Electron. Lett. 43(9), 279 (2007).
[CrossRef]

D. Miletic, P. Dziuban, R. Boudot, M. Hasegawa, R. K. Chutani, G. Mileti, V. Giordano, and C. Gorecki, "Quadratic dependence on temperature of the Cs 0-0 hyperfine resonance in a single Ne buffer gas microfabricated vapor cell," Electron. Lett. 46(15), 1069 (2010).
[CrossRef]

IEEE Trans. Instrum. Meas. (1)

R. Boudot, S. Guérandel, E. De Clercq, N. Dimarcq, and A. Clairon, "Current status of a pulsed CPT Cs cell clock," IEEE Trans. Instrum. Meas. 58(4), 1217 (2009).
[CrossRef]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control (1)

N. Castagna, R. Boudot, S. Guérandel, E. De Clercq, N. Dimarcq, and A. Clairon, "Investigations on continuous and pulsed interrogation for a CPT atomic clock," IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56(2), 246 (2009).
[CrossRef] [PubMed]

J. Appl. Phys. (2)

R. Boudot, P. Dziuban, M. Hasegawa, R. K. Chutani, S. Galliou, V. Giordano, and C. Gorecki, "Coherent population trapping resonances in Cs-Ne microcells for miniature clocks applications," J. Appl. Phys. (to be published).
[CrossRef]

J. Vanier, R. Kunski, N. Cyr, J. Y. Savard, and M. Tetu, "On hyperfine frequency shifts caused by buffer gases: Application to the optically pumped passive rubidium frequency standard," J. Appl. Phys. 53(8), 5387 (1982).
[CrossRef]

J. Micro/Nanolith. MEMS MOEMS (1)

L. Nieradko, C. Gorecki, A. Douahi, V. Giordano, J. C. Beugnot, J. Dziuban, and M. Moraja, "New approaching of fabrication and dispensing of micromachined Cs vapor cell," J. Micro/Nanolith. MEMS MOEMS 7, 033013 (2008).
[CrossRef]

Opt. Commun. (1)

N. Beverini, F. Strumia, and G. Rovera, "Buffer gas pressure shift in the mF=0 → mF=0 ground state hyperfine line in Cs," Opt. Commun. 37(6), 394 (1981).
[CrossRef]

Opt. Lett. (2)

Phys. Rev. (1)

R. H. Dicke, "The Effect of Collisions upon the Doppler Width of Spectral Lines," Phys. Rev. 89, 472-473 (1953).
[CrossRef]

Phys. Rev. A (2)

E. Bernabeu, and J. M. Alvarez, "Shift and broadening of hyperfine components of the first doublet of cesium perturbed by foreign gases," Phys. Rev. A 22(6), 2690 (1980).
[CrossRef]

G. A. Pitz, D. E. Wertepny, and G. P. Perram, "Pressure broadening and shift of the Cs D1 transition by the noble gases and N2, H2, HD, D2, CH4, C2H6, CF4 and 3He," Phys. Rev. A 80, 062718 (2009).
[CrossRef]

Phys. Rev. Lett. (1)

T. Zanon, S. Guérandel, E. de Clercq, D. Holleville, N. Dimarcq, and A. Clairon, "High Contrast Ramsey Fringes with Coherent-Population-Trapping Pulses in a Double Lambda Atomic System," Phys. Rev. Lett. 94, 193002 (2005).
[CrossRef] [PubMed]

Other (6)

J. Vanier, and C. Audoin, The Quantum Physics of Atomic Frequency Standards, (Adam Hilger, Bristol, 1989).
[CrossRef]

O. Kozlova, R. Boudot, S. Guérandel, and E. De Clercq, "Measurements of Cs buffer gas collisional frequency shift using pulsed coherent population trapping interrogation," Proc. of the 2010 Conf. Precision Electromag. Meas., Daejon, Korea (2010).

F. Strumia, N. Beverini, A. Moretti, and G. Rovera, "Optimization of the buffer gas mixture for optically pumped Cs frequency standard," Proc. of the 1976 Freq. Contr. Symp., 468-472 (1976).

R. Lutwak, D. Emmons, W. Riley, and R. M. Garvey, "The Chip-Scale atomic clock: Coherent population trapping vs conventional interrogation," Proc. 34th Annual Precise Time and Time Interval Systems Applications Meeting, Reston (Virginia), 3-5 Dec. 2002 (2002).

R. Lutwak, A. Rashed, M. Varghese, G. Tepolt, J. Leblanc, M. Mescher, D. K. Serkland, K. M. Geib, and G. M. Peake, "CSAC- The Chip Scale Atomic Clock," Proc. of the 7th Symp. Freq. Standards and Metrology, Pacific Grove (CA), edited by Lute Maleki (World scientific), 454-462 (2008).

P. Knapkiewicz, J. Dziuban, R. Walczak, L. Mauri, P. Dziuban, and C. Gorecki, "MEMS Cs vapour cell for European Micro-Atomic Clock," Proc. Eurosensors, Sept. 5-8, Linz, Austria (2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Theoretical estimations from [9] of the Cs frequency shift versus the cell temperature for cells filled with a Ne-Ar mixture. The total pressure is fixed to be 6.6 kPa. The ratio are Ne-Ar (90%-10%) and (95%-15%) respectively.

Fig. 2
Fig. 2

Frequency shift and inversion temperature versus the Ne-Ar mixture for a Cs cell. The total pressure is 6.6 kPa.

Fig. 3
Fig. 3

Schematic of the Cs CPT clock used to test Ne-Ar microcells.

Fig. 4
Fig. 4

Dark line resonance detected in a Cs-Ne/Ar microcell. The solid line is experimental data while the dashed line is a lorentzian fit. The laser power is 20 μW. The cell temperature is 75°C. The total buffer gas pressure is measured to be 8.5 kPa.

Fig. 5
Fig. 5

Frequency shift of the Cs clock versus the cell temperature in microcells filled with a Ne-Ar mixture. The microwave power driving the EOM is 22 dBm. (a): Cell 1. (b): Cell 2. (c): Cell 3 (d): Cell 4.

Tables (1)

Tables Icon

Table 1 Measured characteristics of the tested Cs-Ne-Ar microcells. The actual measured total buffer gas pressure Pmeas and Ne proportion (in %) in the cell is estimated using data fits reported above and pressure and temperature shift coefficients reported in [9]. The expected total buffer gas pressure Pexp is also reported to be compared to the measured one. The uncertainty on Ti and Δνbg is given to be ± 2°C and ± 10 Hz respectively. From these values and uncertainties of pressure shift coefficients reported in [9], we calculate that the uncertainty on the Ne proportion and Pmeas is typically ± 3.4 % and ± 0.9 kPa respectively for each cell

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

ν = ν 0 + α B 2 + η I ( ω ) + Δ ν b g
Δ ν b g = P [ ( β + δ ( T T 0 ) + γ ( T T 0 ) 2 ]
Δ ν b g = P [ ( r 1 β 1 + r 2 β 2 ) + ( r 1 δ 1 + r 2 δ 2 ) ( T T 0 ) + ( r 1 γ 1 + r 2 γ 2 ) ( T T 0 ) 2 ]
a = P 2 / P 1
β = β 1 + β 2 a 1 + a
δ = δ 1 + δ 2 a 1 + a
γ = γ 1 + γ 2 a 1 + a
d Δ ν d T = P [ δ 1 + δ 2 a 1 + a + 2 γ 1 + γ 2 a 1 + a ( T T 0 ) ]
a = δ 1 + 2 γ 1 ( T i T 0 ) δ 2 + 2 γ 2 ( T i T 0 )
T i = δ 1 + a γ 2 2 ( γ 1 + a γ 2 )

Metrics