Abstract

A planar ion trap with an integrated waveguide was fabricated and characterized. The microdevice, consisting of a 1 mm-diameter one-hole ring trap and multi-mode optical waveguides, was made on a glass wafer using microfabrication techniques. The experimental results demonstrate that the microdevice can trap 1.5 μm- to 150 μm-diameter charged particles in air under an alternating electric field with the amplitude and frequency varying from 100 V to 750 V, and 100 Hz to 700 Hz, respectively. The on-chip waveguide is capable of detecting the presence of a particle in the trap, and the particle secular motion frequency was found to depend on the input alternating signal amplitude and frequency.

© 2011 OSA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Kim and C. Kim, “Integrated optical approach to trapped ion quantum computation,” Quant. Inform. Comp. 9, 181–202 (2009).
  2. H.-C. Chang, “Ultrahigh-mass mass spectrometry of single biomolecules and bioparticles,” Annu Rev Anal Chem (Palo Alto Calif) 2(1), 169–185 (2009).
    [CrossRef] [PubMed]
  3. J. Meinen, S. Khasminskaya, E. Ruhl, W. Baumann, and T. Leisner, “The TRAPS apparatus: enhancing target density of nanoparticle beams in vacuum for X-ray and optical spectroscopy,” Aerosol Sci. Technol. 44(4), 316–328 (2010).
    [CrossRef]
  4. A. P. VanDevender, Y. Colombe, J. Amini, D. Leibfried, and D. J. Wineland, “Efficient fiber optic detection of trapped ion fluorescence,” Phys. Rev. Lett. 105(2), 023001 (2010).
    [CrossRef] [PubMed]
  5. S. A. Smith, C. C. Mulligan, Q. Song, R. J. Noll, R. G. Cooks, and Z. Ouyang, “Ion traps for miniature, multiplexed and soft-landing technologies,” Practical Aspects of Trapped Ion Mass Spectrometry, Vol. IV, 169–250, ed. R. E. March, J. F. J. Todd, CRC Press (2010).
  6. Al. A. Kolomenskii, S. N. Jerebtsov, J. A. Stoker, M. O. Scully, and H. A. Schuessler, “Storage and light scattering of microparticles in ring-type electrodynamics trap,” J. Appl. Phys. 102, 094902 (2007).
    [CrossRef]
  7. C. E. Pearson, D. R. Leibrandt, W. S. Bakr, W. J. Mallard, K. R. Brown, and I. L. Chuang, “Experimental investigation of planar ion traps,” Phys. Rev. A 73, 032307 (2006).
  8. K. Cheung, L. F. Velasquez-Garcia, and A. I. Akinwande, “Chip-scale quadrupole mass filters for portable mass spectrometry,” J. Microelectromech. Syst. 19(3), 469–483 (2010).
    [CrossRef]
  9. S. Pau, W. B. Whitten, and J. M. Ramsey, “Planar geometry for trapping and separating ions and charged particles,” Anal. Chem. 79(17), 6857–6861 (2007).
    [CrossRef] [PubMed]
  10. J.-Y. Wan, Q.-Z. Qu, Z.-C. Zhou, X.-L. Li, Y.-Z. Wang, and L. Liu, “Surface planar ion chip for linear radio-frequency paul traps,” Chin. Phys. Lett. 24(95), 1238–1241 (2007).
    [CrossRef]
  11. D. E. Austin, M. Wang, S. E. Tolley, J. D. Maas, A. R. Hawkins, A. L. Rockwood, H. D. Tolley, E. D. Lee, and M. L. Lee, “Halo ion trap mass spectrometer,” Anal. Chem. 79(7), 2927–2932 (2007).
    [CrossRef] [PubMed]
  12. L. Jiang and S. Pau, “Integrated waveguide with a microfluidic channel in spiral geometry for spectroscopic applications,” Appl. Phys. Lett. 90(11), 111108 (2007).
    [CrossRef]
  13. Y. Cai, W.-P. Peng, S.-J. Kuo, Y.-T. Lee, and H.-C. Chang, “Single-particle mass spectrometry of polystyrene microspheres and diamond nanocrystals,” Anal. Chem. 74(1), 232–238 (2002).
    [CrossRef] [PubMed]
  14. X. Meng, J. Zhu, and H. Zhang, “Influences of different powders on the characteristics of particle charging and deposition in powder coating processes,” J. Electrost. 67(4), 663–671 (2009).
    [CrossRef]
  15. Y. Cai, W.-P. Peng, S.-J. Kuo, and H.-C. Chang, “Calibration of an audio-frequency ion trap mass spectrometer,” Int. J. Mass Spectrom. 214(1), 63–73 (2002).
    [CrossRef]
  16. R. G. Brewer, R. G. DeVoe, and R. Kallenbach, “Planar ion microtrap,” Phys. Rev. A 46(11),R 6781–6785 (1992).
    [CrossRef]
  17. R. F. Wuerker, H. Shelton, and R. V. Langmuir, “Electrodynamics containment of charged particles,” Appl. Phys. 30(3), 342–349 (1959).
    [CrossRef]
  18. S. R. Jefferts, C. Monroe, A. S. Barton, and D. J. Wineland, “Paul trap for optical frequency standards,” IEEE Trans. Instrum. Meas. 44(2), 148–150 (1995).
    [CrossRef]
  19. S. Arnold and N. Hessel, “Photoemission from single electrodynamically levitated microparticles,” Rev. Sci. Instrum. 56(11), 2066–2069 (1985).
    [CrossRef]
  20. J. F. Spann, M. M. Abbas, C. C. Venturini, and R. H. Comfort, “Electrodynamic balance for studies of cosmic dust particles,” Phys. Scr. T 89(1), 147–153 (2001).
    [CrossRef]

2010 (3)

J. Meinen, S. Khasminskaya, E. Ruhl, W. Baumann, and T. Leisner, “The TRAPS apparatus: enhancing target density of nanoparticle beams in vacuum for X-ray and optical spectroscopy,” Aerosol Sci. Technol. 44(4), 316–328 (2010).
[CrossRef]

A. P. VanDevender, Y. Colombe, J. Amini, D. Leibfried, and D. J. Wineland, “Efficient fiber optic detection of trapped ion fluorescence,” Phys. Rev. Lett. 105(2), 023001 (2010).
[CrossRef] [PubMed]

K. Cheung, L. F. Velasquez-Garcia, and A. I. Akinwande, “Chip-scale quadrupole mass filters for portable mass spectrometry,” J. Microelectromech. Syst. 19(3), 469–483 (2010).
[CrossRef]

2009 (3)

X. Meng, J. Zhu, and H. Zhang, “Influences of different powders on the characteristics of particle charging and deposition in powder coating processes,” J. Electrost. 67(4), 663–671 (2009).
[CrossRef]

J. Kim and C. Kim, “Integrated optical approach to trapped ion quantum computation,” Quant. Inform. Comp. 9, 181–202 (2009).

H.-C. Chang, “Ultrahigh-mass mass spectrometry of single biomolecules and bioparticles,” Annu Rev Anal Chem (Palo Alto Calif) 2(1), 169–185 (2009).
[CrossRef] [PubMed]

2007 (5)

S. Pau, W. B. Whitten, and J. M. Ramsey, “Planar geometry for trapping and separating ions and charged particles,” Anal. Chem. 79(17), 6857–6861 (2007).
[CrossRef] [PubMed]

J.-Y. Wan, Q.-Z. Qu, Z.-C. Zhou, X.-L. Li, Y.-Z. Wang, and L. Liu, “Surface planar ion chip for linear radio-frequency paul traps,” Chin. Phys. Lett. 24(95), 1238–1241 (2007).
[CrossRef]

D. E. Austin, M. Wang, S. E. Tolley, J. D. Maas, A. R. Hawkins, A. L. Rockwood, H. D. Tolley, E. D. Lee, and M. L. Lee, “Halo ion trap mass spectrometer,” Anal. Chem. 79(7), 2927–2932 (2007).
[CrossRef] [PubMed]

L. Jiang and S. Pau, “Integrated waveguide with a microfluidic channel in spiral geometry for spectroscopic applications,” Appl. Phys. Lett. 90(11), 111108 (2007).
[CrossRef]

Al. A. Kolomenskii, S. N. Jerebtsov, J. A. Stoker, M. O. Scully, and H. A. Schuessler, “Storage and light scattering of microparticles in ring-type electrodynamics trap,” J. Appl. Phys. 102, 094902 (2007).
[CrossRef]

2006 (1)

C. E. Pearson, D. R. Leibrandt, W. S. Bakr, W. J. Mallard, K. R. Brown, and I. L. Chuang, “Experimental investigation of planar ion traps,” Phys. Rev. A 73, 032307 (2006).

2002 (2)

Y. Cai, W.-P. Peng, S.-J. Kuo, Y.-T. Lee, and H.-C. Chang, “Single-particle mass spectrometry of polystyrene microspheres and diamond nanocrystals,” Anal. Chem. 74(1), 232–238 (2002).
[CrossRef] [PubMed]

Y. Cai, W.-P. Peng, S.-J. Kuo, and H.-C. Chang, “Calibration of an audio-frequency ion trap mass spectrometer,” Int. J. Mass Spectrom. 214(1), 63–73 (2002).
[CrossRef]

2001 (1)

J. F. Spann, M. M. Abbas, C. C. Venturini, and R. H. Comfort, “Electrodynamic balance for studies of cosmic dust particles,” Phys. Scr. T 89(1), 147–153 (2001).
[CrossRef]

1995 (1)

S. R. Jefferts, C. Monroe, A. S. Barton, and D. J. Wineland, “Paul trap for optical frequency standards,” IEEE Trans. Instrum. Meas. 44(2), 148–150 (1995).
[CrossRef]

1992 (1)

R. G. Brewer, R. G. DeVoe, and R. Kallenbach, “Planar ion microtrap,” Phys. Rev. A 46(11),R 6781–6785 (1992).
[CrossRef]

1985 (1)

S. Arnold and N. Hessel, “Photoemission from single electrodynamically levitated microparticles,” Rev. Sci. Instrum. 56(11), 2066–2069 (1985).
[CrossRef]

1959 (1)

R. F. Wuerker, H. Shelton, and R. V. Langmuir, “Electrodynamics containment of charged particles,” Appl. Phys. 30(3), 342–349 (1959).
[CrossRef]

Abbas, M. M.

J. F. Spann, M. M. Abbas, C. C. Venturini, and R. H. Comfort, “Electrodynamic balance for studies of cosmic dust particles,” Phys. Scr. T 89(1), 147–153 (2001).
[CrossRef]

Akinwande, A. I.

K. Cheung, L. F. Velasquez-Garcia, and A. I. Akinwande, “Chip-scale quadrupole mass filters for portable mass spectrometry,” J. Microelectromech. Syst. 19(3), 469–483 (2010).
[CrossRef]

Amini, J.

A. P. VanDevender, Y. Colombe, J. Amini, D. Leibfried, and D. J. Wineland, “Efficient fiber optic detection of trapped ion fluorescence,” Phys. Rev. Lett. 105(2), 023001 (2010).
[CrossRef] [PubMed]

Arnold, S.

S. Arnold and N. Hessel, “Photoemission from single electrodynamically levitated microparticles,” Rev. Sci. Instrum. 56(11), 2066–2069 (1985).
[CrossRef]

Austin, D. E.

D. E. Austin, M. Wang, S. E. Tolley, J. D. Maas, A. R. Hawkins, A. L. Rockwood, H. D. Tolley, E. D. Lee, and M. L. Lee, “Halo ion trap mass spectrometer,” Anal. Chem. 79(7), 2927–2932 (2007).
[CrossRef] [PubMed]

Bakr, W. S.

C. E. Pearson, D. R. Leibrandt, W. S. Bakr, W. J. Mallard, K. R. Brown, and I. L. Chuang, “Experimental investigation of planar ion traps,” Phys. Rev. A 73, 032307 (2006).

Barton, A. S.

S. R. Jefferts, C. Monroe, A. S. Barton, and D. J. Wineland, “Paul trap for optical frequency standards,” IEEE Trans. Instrum. Meas. 44(2), 148–150 (1995).
[CrossRef]

Baumann, W.

J. Meinen, S. Khasminskaya, E. Ruhl, W. Baumann, and T. Leisner, “The TRAPS apparatus: enhancing target density of nanoparticle beams in vacuum for X-ray and optical spectroscopy,” Aerosol Sci. Technol. 44(4), 316–328 (2010).
[CrossRef]

Brewer, R. G.

R. G. Brewer, R. G. DeVoe, and R. Kallenbach, “Planar ion microtrap,” Phys. Rev. A 46(11),R 6781–6785 (1992).
[CrossRef]

Brown, K. R.

C. E. Pearson, D. R. Leibrandt, W. S. Bakr, W. J. Mallard, K. R. Brown, and I. L. Chuang, “Experimental investigation of planar ion traps,” Phys. Rev. A 73, 032307 (2006).

Cai, Y.

Y. Cai, W.-P. Peng, S.-J. Kuo, Y.-T. Lee, and H.-C. Chang, “Single-particle mass spectrometry of polystyrene microspheres and diamond nanocrystals,” Anal. Chem. 74(1), 232–238 (2002).
[CrossRef] [PubMed]

Y. Cai, W.-P. Peng, S.-J. Kuo, and H.-C. Chang, “Calibration of an audio-frequency ion trap mass spectrometer,” Int. J. Mass Spectrom. 214(1), 63–73 (2002).
[CrossRef]

Chang, H.-C.

H.-C. Chang, “Ultrahigh-mass mass spectrometry of single biomolecules and bioparticles,” Annu Rev Anal Chem (Palo Alto Calif) 2(1), 169–185 (2009).
[CrossRef] [PubMed]

Y. Cai, W.-P. Peng, S.-J. Kuo, Y.-T. Lee, and H.-C. Chang, “Single-particle mass spectrometry of polystyrene microspheres and diamond nanocrystals,” Anal. Chem. 74(1), 232–238 (2002).
[CrossRef] [PubMed]

Y. Cai, W.-P. Peng, S.-J. Kuo, and H.-C. Chang, “Calibration of an audio-frequency ion trap mass spectrometer,” Int. J. Mass Spectrom. 214(1), 63–73 (2002).
[CrossRef]

Cheung, K.

K. Cheung, L. F. Velasquez-Garcia, and A. I. Akinwande, “Chip-scale quadrupole mass filters for portable mass spectrometry,” J. Microelectromech. Syst. 19(3), 469–483 (2010).
[CrossRef]

Chuang, I. L.

C. E. Pearson, D. R. Leibrandt, W. S. Bakr, W. J. Mallard, K. R. Brown, and I. L. Chuang, “Experimental investigation of planar ion traps,” Phys. Rev. A 73, 032307 (2006).

Colombe, Y.

A. P. VanDevender, Y. Colombe, J. Amini, D. Leibfried, and D. J. Wineland, “Efficient fiber optic detection of trapped ion fluorescence,” Phys. Rev. Lett. 105(2), 023001 (2010).
[CrossRef] [PubMed]

Comfort, R. H.

J. F. Spann, M. M. Abbas, C. C. Venturini, and R. H. Comfort, “Electrodynamic balance for studies of cosmic dust particles,” Phys. Scr. T 89(1), 147–153 (2001).
[CrossRef]

DeVoe, R. G.

R. G. Brewer, R. G. DeVoe, and R. Kallenbach, “Planar ion microtrap,” Phys. Rev. A 46(11),R 6781–6785 (1992).
[CrossRef]

Hawkins, A. R.

D. E. Austin, M. Wang, S. E. Tolley, J. D. Maas, A. R. Hawkins, A. L. Rockwood, H. D. Tolley, E. D. Lee, and M. L. Lee, “Halo ion trap mass spectrometer,” Anal. Chem. 79(7), 2927–2932 (2007).
[CrossRef] [PubMed]

Hessel, N.

S. Arnold and N. Hessel, “Photoemission from single electrodynamically levitated microparticles,” Rev. Sci. Instrum. 56(11), 2066–2069 (1985).
[CrossRef]

Jefferts, S. R.

S. R. Jefferts, C. Monroe, A. S. Barton, and D. J. Wineland, “Paul trap for optical frequency standards,” IEEE Trans. Instrum. Meas. 44(2), 148–150 (1995).
[CrossRef]

Jerebtsov, S. N.

Al. A. Kolomenskii, S. N. Jerebtsov, J. A. Stoker, M. O. Scully, and H. A. Schuessler, “Storage and light scattering of microparticles in ring-type electrodynamics trap,” J. Appl. Phys. 102, 094902 (2007).
[CrossRef]

Jiang, L.

L. Jiang and S. Pau, “Integrated waveguide with a microfluidic channel in spiral geometry for spectroscopic applications,” Appl. Phys. Lett. 90(11), 111108 (2007).
[CrossRef]

Kallenbach, R.

R. G. Brewer, R. G. DeVoe, and R. Kallenbach, “Planar ion microtrap,” Phys. Rev. A 46(11),R 6781–6785 (1992).
[CrossRef]

Khasminskaya, S.

J. Meinen, S. Khasminskaya, E. Ruhl, W. Baumann, and T. Leisner, “The TRAPS apparatus: enhancing target density of nanoparticle beams in vacuum for X-ray and optical spectroscopy,” Aerosol Sci. Technol. 44(4), 316–328 (2010).
[CrossRef]

Kim, C.

J. Kim and C. Kim, “Integrated optical approach to trapped ion quantum computation,” Quant. Inform. Comp. 9, 181–202 (2009).

Kim, J.

J. Kim and C. Kim, “Integrated optical approach to trapped ion quantum computation,” Quant. Inform. Comp. 9, 181–202 (2009).

Kolomenskii, Al. A.

Al. A. Kolomenskii, S. N. Jerebtsov, J. A. Stoker, M. O. Scully, and H. A. Schuessler, “Storage and light scattering of microparticles in ring-type electrodynamics trap,” J. Appl. Phys. 102, 094902 (2007).
[CrossRef]

Kuo, S.-J.

Y. Cai, W.-P. Peng, S.-J. Kuo, Y.-T. Lee, and H.-C. Chang, “Single-particle mass spectrometry of polystyrene microspheres and diamond nanocrystals,” Anal. Chem. 74(1), 232–238 (2002).
[CrossRef] [PubMed]

Y. Cai, W.-P. Peng, S.-J. Kuo, and H.-C. Chang, “Calibration of an audio-frequency ion trap mass spectrometer,” Int. J. Mass Spectrom. 214(1), 63–73 (2002).
[CrossRef]

Langmuir, R. V.

R. F. Wuerker, H. Shelton, and R. V. Langmuir, “Electrodynamics containment of charged particles,” Appl. Phys. 30(3), 342–349 (1959).
[CrossRef]

Lee, E. D.

D. E. Austin, M. Wang, S. E. Tolley, J. D. Maas, A. R. Hawkins, A. L. Rockwood, H. D. Tolley, E. D. Lee, and M. L. Lee, “Halo ion trap mass spectrometer,” Anal. Chem. 79(7), 2927–2932 (2007).
[CrossRef] [PubMed]

Lee, M. L.

D. E. Austin, M. Wang, S. E. Tolley, J. D. Maas, A. R. Hawkins, A. L. Rockwood, H. D. Tolley, E. D. Lee, and M. L. Lee, “Halo ion trap mass spectrometer,” Anal. Chem. 79(7), 2927–2932 (2007).
[CrossRef] [PubMed]

Lee, Y.-T.

Y. Cai, W.-P. Peng, S.-J. Kuo, Y.-T. Lee, and H.-C. Chang, “Single-particle mass spectrometry of polystyrene microspheres and diamond nanocrystals,” Anal. Chem. 74(1), 232–238 (2002).
[CrossRef] [PubMed]

Leibfried, D.

A. P. VanDevender, Y. Colombe, J. Amini, D. Leibfried, and D. J. Wineland, “Efficient fiber optic detection of trapped ion fluorescence,” Phys. Rev. Lett. 105(2), 023001 (2010).
[CrossRef] [PubMed]

Leibrandt, D. R.

C. E. Pearson, D. R. Leibrandt, W. S. Bakr, W. J. Mallard, K. R. Brown, and I. L. Chuang, “Experimental investigation of planar ion traps,” Phys. Rev. A 73, 032307 (2006).

Leisner, T.

J. Meinen, S. Khasminskaya, E. Ruhl, W. Baumann, and T. Leisner, “The TRAPS apparatus: enhancing target density of nanoparticle beams in vacuum for X-ray and optical spectroscopy,” Aerosol Sci. Technol. 44(4), 316–328 (2010).
[CrossRef]

Li, X.-L.

J.-Y. Wan, Q.-Z. Qu, Z.-C. Zhou, X.-L. Li, Y.-Z. Wang, and L. Liu, “Surface planar ion chip for linear radio-frequency paul traps,” Chin. Phys. Lett. 24(95), 1238–1241 (2007).
[CrossRef]

Liu, L.

J.-Y. Wan, Q.-Z. Qu, Z.-C. Zhou, X.-L. Li, Y.-Z. Wang, and L. Liu, “Surface planar ion chip for linear radio-frequency paul traps,” Chin. Phys. Lett. 24(95), 1238–1241 (2007).
[CrossRef]

Maas, J. D.

D. E. Austin, M. Wang, S. E. Tolley, J. D. Maas, A. R. Hawkins, A. L. Rockwood, H. D. Tolley, E. D. Lee, and M. L. Lee, “Halo ion trap mass spectrometer,” Anal. Chem. 79(7), 2927–2932 (2007).
[CrossRef] [PubMed]

Mallard, W. J.

C. E. Pearson, D. R. Leibrandt, W. S. Bakr, W. J. Mallard, K. R. Brown, and I. L. Chuang, “Experimental investigation of planar ion traps,” Phys. Rev. A 73, 032307 (2006).

Meinen, J.

J. Meinen, S. Khasminskaya, E. Ruhl, W. Baumann, and T. Leisner, “The TRAPS apparatus: enhancing target density of nanoparticle beams in vacuum for X-ray and optical spectroscopy,” Aerosol Sci. Technol. 44(4), 316–328 (2010).
[CrossRef]

Meng, X.

X. Meng, J. Zhu, and H. Zhang, “Influences of different powders on the characteristics of particle charging and deposition in powder coating processes,” J. Electrost. 67(4), 663–671 (2009).
[CrossRef]

Monroe, C.

S. R. Jefferts, C. Monroe, A. S. Barton, and D. J. Wineland, “Paul trap for optical frequency standards,” IEEE Trans. Instrum. Meas. 44(2), 148–150 (1995).
[CrossRef]

Pau, S.

L. Jiang and S. Pau, “Integrated waveguide with a microfluidic channel in spiral geometry for spectroscopic applications,” Appl. Phys. Lett. 90(11), 111108 (2007).
[CrossRef]

S. Pau, W. B. Whitten, and J. M. Ramsey, “Planar geometry for trapping and separating ions and charged particles,” Anal. Chem. 79(17), 6857–6861 (2007).
[CrossRef] [PubMed]

Pearson, C. E.

C. E. Pearson, D. R. Leibrandt, W. S. Bakr, W. J. Mallard, K. R. Brown, and I. L. Chuang, “Experimental investigation of planar ion traps,” Phys. Rev. A 73, 032307 (2006).

Peng, W.-P.

Y. Cai, W.-P. Peng, S.-J. Kuo, Y.-T. Lee, and H.-C. Chang, “Single-particle mass spectrometry of polystyrene microspheres and diamond nanocrystals,” Anal. Chem. 74(1), 232–238 (2002).
[CrossRef] [PubMed]

Y. Cai, W.-P. Peng, S.-J. Kuo, and H.-C. Chang, “Calibration of an audio-frequency ion trap mass spectrometer,” Int. J. Mass Spectrom. 214(1), 63–73 (2002).
[CrossRef]

Qu, Q.-Z.

J.-Y. Wan, Q.-Z. Qu, Z.-C. Zhou, X.-L. Li, Y.-Z. Wang, and L. Liu, “Surface planar ion chip for linear radio-frequency paul traps,” Chin. Phys. Lett. 24(95), 1238–1241 (2007).
[CrossRef]

Ramsey, J. M.

S. Pau, W. B. Whitten, and J. M. Ramsey, “Planar geometry for trapping and separating ions and charged particles,” Anal. Chem. 79(17), 6857–6861 (2007).
[CrossRef] [PubMed]

Rockwood, A. L.

D. E. Austin, M. Wang, S. E. Tolley, J. D. Maas, A. R. Hawkins, A. L. Rockwood, H. D. Tolley, E. D. Lee, and M. L. Lee, “Halo ion trap mass spectrometer,” Anal. Chem. 79(7), 2927–2932 (2007).
[CrossRef] [PubMed]

Ruhl, E.

J. Meinen, S. Khasminskaya, E. Ruhl, W. Baumann, and T. Leisner, “The TRAPS apparatus: enhancing target density of nanoparticle beams in vacuum for X-ray and optical spectroscopy,” Aerosol Sci. Technol. 44(4), 316–328 (2010).
[CrossRef]

Schuessler, H. A.

Al. A. Kolomenskii, S. N. Jerebtsov, J. A. Stoker, M. O. Scully, and H. A. Schuessler, “Storage and light scattering of microparticles in ring-type electrodynamics trap,” J. Appl. Phys. 102, 094902 (2007).
[CrossRef]

Scully, M. O.

Al. A. Kolomenskii, S. N. Jerebtsov, J. A. Stoker, M. O. Scully, and H. A. Schuessler, “Storage and light scattering of microparticles in ring-type electrodynamics trap,” J. Appl. Phys. 102, 094902 (2007).
[CrossRef]

Shelton, H.

R. F. Wuerker, H. Shelton, and R. V. Langmuir, “Electrodynamics containment of charged particles,” Appl. Phys. 30(3), 342–349 (1959).
[CrossRef]

Spann, J. F.

J. F. Spann, M. M. Abbas, C. C. Venturini, and R. H. Comfort, “Electrodynamic balance for studies of cosmic dust particles,” Phys. Scr. T 89(1), 147–153 (2001).
[CrossRef]

Stoker, J. A.

Al. A. Kolomenskii, S. N. Jerebtsov, J. A. Stoker, M. O. Scully, and H. A. Schuessler, “Storage and light scattering of microparticles in ring-type electrodynamics trap,” J. Appl. Phys. 102, 094902 (2007).
[CrossRef]

Tolley, H. D.

D. E. Austin, M. Wang, S. E. Tolley, J. D. Maas, A. R. Hawkins, A. L. Rockwood, H. D. Tolley, E. D. Lee, and M. L. Lee, “Halo ion trap mass spectrometer,” Anal. Chem. 79(7), 2927–2932 (2007).
[CrossRef] [PubMed]

Tolley, S. E.

D. E. Austin, M. Wang, S. E. Tolley, J. D. Maas, A. R. Hawkins, A. L. Rockwood, H. D. Tolley, E. D. Lee, and M. L. Lee, “Halo ion trap mass spectrometer,” Anal. Chem. 79(7), 2927–2932 (2007).
[CrossRef] [PubMed]

VanDevender, A. P.

A. P. VanDevender, Y. Colombe, J. Amini, D. Leibfried, and D. J. Wineland, “Efficient fiber optic detection of trapped ion fluorescence,” Phys. Rev. Lett. 105(2), 023001 (2010).
[CrossRef] [PubMed]

Velasquez-Garcia, L. F.

K. Cheung, L. F. Velasquez-Garcia, and A. I. Akinwande, “Chip-scale quadrupole mass filters for portable mass spectrometry,” J. Microelectromech. Syst. 19(3), 469–483 (2010).
[CrossRef]

Venturini, C. C.

J. F. Spann, M. M. Abbas, C. C. Venturini, and R. H. Comfort, “Electrodynamic balance for studies of cosmic dust particles,” Phys. Scr. T 89(1), 147–153 (2001).
[CrossRef]

Wan, J.-Y.

J.-Y. Wan, Q.-Z. Qu, Z.-C. Zhou, X.-L. Li, Y.-Z. Wang, and L. Liu, “Surface planar ion chip for linear radio-frequency paul traps,” Chin. Phys. Lett. 24(95), 1238–1241 (2007).
[CrossRef]

Wang, M.

D. E. Austin, M. Wang, S. E. Tolley, J. D. Maas, A. R. Hawkins, A. L. Rockwood, H. D. Tolley, E. D. Lee, and M. L. Lee, “Halo ion trap mass spectrometer,” Anal. Chem. 79(7), 2927–2932 (2007).
[CrossRef] [PubMed]

Wang, Y.-Z.

J.-Y. Wan, Q.-Z. Qu, Z.-C. Zhou, X.-L. Li, Y.-Z. Wang, and L. Liu, “Surface planar ion chip for linear radio-frequency paul traps,” Chin. Phys. Lett. 24(95), 1238–1241 (2007).
[CrossRef]

Whitten, W. B.

S. Pau, W. B. Whitten, and J. M. Ramsey, “Planar geometry for trapping and separating ions and charged particles,” Anal. Chem. 79(17), 6857–6861 (2007).
[CrossRef] [PubMed]

Wineland, D. J.

A. P. VanDevender, Y. Colombe, J. Amini, D. Leibfried, and D. J. Wineland, “Efficient fiber optic detection of trapped ion fluorescence,” Phys. Rev. Lett. 105(2), 023001 (2010).
[CrossRef] [PubMed]

S. R. Jefferts, C. Monroe, A. S. Barton, and D. J. Wineland, “Paul trap for optical frequency standards,” IEEE Trans. Instrum. Meas. 44(2), 148–150 (1995).
[CrossRef]

Wuerker, R. F.

R. F. Wuerker, H. Shelton, and R. V. Langmuir, “Electrodynamics containment of charged particles,” Appl. Phys. 30(3), 342–349 (1959).
[CrossRef]

Zhang, H.

X. Meng, J. Zhu, and H. Zhang, “Influences of different powders on the characteristics of particle charging and deposition in powder coating processes,” J. Electrost. 67(4), 663–671 (2009).
[CrossRef]

Zhou, Z.-C.

J.-Y. Wan, Q.-Z. Qu, Z.-C. Zhou, X.-L. Li, Y.-Z. Wang, and L. Liu, “Surface planar ion chip for linear radio-frequency paul traps,” Chin. Phys. Lett. 24(95), 1238–1241 (2007).
[CrossRef]

Zhu, J.

X. Meng, J. Zhu, and H. Zhang, “Influences of different powders on the characteristics of particle charging and deposition in powder coating processes,” J. Electrost. 67(4), 663–671 (2009).
[CrossRef]

Aerosol Sci. Technol. (1)

J. Meinen, S. Khasminskaya, E. Ruhl, W. Baumann, and T. Leisner, “The TRAPS apparatus: enhancing target density of nanoparticle beams in vacuum for X-ray and optical spectroscopy,” Aerosol Sci. Technol. 44(4), 316–328 (2010).
[CrossRef]

Anal. Chem. (3)

S. Pau, W. B. Whitten, and J. M. Ramsey, “Planar geometry for trapping and separating ions and charged particles,” Anal. Chem. 79(17), 6857–6861 (2007).
[CrossRef] [PubMed]

D. E. Austin, M. Wang, S. E. Tolley, J. D. Maas, A. R. Hawkins, A. L. Rockwood, H. D. Tolley, E. D. Lee, and M. L. Lee, “Halo ion trap mass spectrometer,” Anal. Chem. 79(7), 2927–2932 (2007).
[CrossRef] [PubMed]

Y. Cai, W.-P. Peng, S.-J. Kuo, Y.-T. Lee, and H.-C. Chang, “Single-particle mass spectrometry of polystyrene microspheres and diamond nanocrystals,” Anal. Chem. 74(1), 232–238 (2002).
[CrossRef] [PubMed]

Annu Rev Anal Chem (Palo Alto Calif) (1)

H.-C. Chang, “Ultrahigh-mass mass spectrometry of single biomolecules and bioparticles,” Annu Rev Anal Chem (Palo Alto Calif) 2(1), 169–185 (2009).
[CrossRef] [PubMed]

Appl. Phys. (1)

R. F. Wuerker, H. Shelton, and R. V. Langmuir, “Electrodynamics containment of charged particles,” Appl. Phys. 30(3), 342–349 (1959).
[CrossRef]

Appl. Phys. Lett. (1)

L. Jiang and S. Pau, “Integrated waveguide with a microfluidic channel in spiral geometry for spectroscopic applications,” Appl. Phys. Lett. 90(11), 111108 (2007).
[CrossRef]

Chin. Phys. Lett. (1)

J.-Y. Wan, Q.-Z. Qu, Z.-C. Zhou, X.-L. Li, Y.-Z. Wang, and L. Liu, “Surface planar ion chip for linear radio-frequency paul traps,” Chin. Phys. Lett. 24(95), 1238–1241 (2007).
[CrossRef]

IEEE Trans. Instrum. Meas. (1)

S. R. Jefferts, C. Monroe, A. S. Barton, and D. J. Wineland, “Paul trap for optical frequency standards,” IEEE Trans. Instrum. Meas. 44(2), 148–150 (1995).
[CrossRef]

Int. J. Mass Spectrom. (1)

Y. Cai, W.-P. Peng, S.-J. Kuo, and H.-C. Chang, “Calibration of an audio-frequency ion trap mass spectrometer,” Int. J. Mass Spectrom. 214(1), 63–73 (2002).
[CrossRef]

J. Appl. Phys. (1)

Al. A. Kolomenskii, S. N. Jerebtsov, J. A. Stoker, M. O. Scully, and H. A. Schuessler, “Storage and light scattering of microparticles in ring-type electrodynamics trap,” J. Appl. Phys. 102, 094902 (2007).
[CrossRef]

J. Electrost. (1)

X. Meng, J. Zhu, and H. Zhang, “Influences of different powders on the characteristics of particle charging and deposition in powder coating processes,” J. Electrost. 67(4), 663–671 (2009).
[CrossRef]

J. Microelectromech. Syst. (1)

K. Cheung, L. F. Velasquez-Garcia, and A. I. Akinwande, “Chip-scale quadrupole mass filters for portable mass spectrometry,” J. Microelectromech. Syst. 19(3), 469–483 (2010).
[CrossRef]

Phys. Rev. A (2)

R. G. Brewer, R. G. DeVoe, and R. Kallenbach, “Planar ion microtrap,” Phys. Rev. A 46(11),R 6781–6785 (1992).
[CrossRef]

C. E. Pearson, D. R. Leibrandt, W. S. Bakr, W. J. Mallard, K. R. Brown, and I. L. Chuang, “Experimental investigation of planar ion traps,” Phys. Rev. A 73, 032307 (2006).

Phys. Rev. Lett. (1)

A. P. VanDevender, Y. Colombe, J. Amini, D. Leibfried, and D. J. Wineland, “Efficient fiber optic detection of trapped ion fluorescence,” Phys. Rev. Lett. 105(2), 023001 (2010).
[CrossRef] [PubMed]

Phys. Scr. T (1)

J. F. Spann, M. M. Abbas, C. C. Venturini, and R. H. Comfort, “Electrodynamic balance for studies of cosmic dust particles,” Phys. Scr. T 89(1), 147–153 (2001).
[CrossRef]

Quant. Inform. Comp. (1)

J. Kim and C. Kim, “Integrated optical approach to trapped ion quantum computation,” Quant. Inform. Comp. 9, 181–202 (2009).

Rev. Sci. Instrum. (1)

S. Arnold and N. Hessel, “Photoemission from single electrodynamically levitated microparticles,” Rev. Sci. Instrum. 56(11), 2066–2069 (1985).
[CrossRef]

Other (1)

S. A. Smith, C. C. Mulligan, Q. Song, R. J. Noll, R. G. Cooks, and Z. Ouyang, “Ion traps for miniature, multiplexed and soft-landing technologies,” Practical Aspects of Trapped Ion Mass Spectrometry, Vol. IV, 169–250, ed. R. E. March, J. F. J. Todd, CRC Press (2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics