Abstract

Both single-pass gain and lasing action at 1064.4 nm were observed in ceramic gain media of neodymium doped lanthanum-modified lead zirconate titanate, which exhibits good electrooptic (EO) effect from visible through mid-wave IR band (400 nm to 5.5 µm). These works have removed roadblocks off the way leading to development of long envisioned multifunctional optical devices. The impact of the Nd3+ doping concentration on the EO effect in the Nd3+:PLZT ceramics was studied. The finding of the slowly trailing-off was satisfactorily explained with the rich vacancy-based carrier traps, which are responsible for the long persistent optoenergy storage.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ikesue, T. Kinoshita, K. Kamata, and K. Yoshita, “Fabrication and optical properties of high-performance polycrystalline Nd:YAG ceramics for solid-state lasers,” J. Am. Ceram. Soc. 78(4), 1033–1040 (1995).
    [CrossRef]
  2. A. Ikesue, Y. L. Auang, T. Taira, T. Kamimura, K. Yoshida, and G. L. Messing, “Progress in ceramic lasers,” Annu. Rev. Mater. Res. 36(1), 397–429 (2006).
    [CrossRef]
  3. A. Ikesue and Y. L. Aung, “Ceramic laser materials,” Nat. Photonics 2(12), 721–727 (2008).
    [CrossRef]
  4. J. Wisdom, M. Gigonnet, and R. L. Byer, “Ceramic lasers: Ready for action,” Photon. Spectra 38, 501 (2004).
  5. T. Y. Fan and R. L. Byer, “Diode laser-pumped solid-state lasers,” IEEE J. Quantum Electron. 24(6), 895–912 (1988).
    [CrossRef]
  6. I. P. Kaminow and L. W. Stulz, “Nd:LiNbO3 laser,” IEEE J. Quantum Electron. 11(6), 306–308 (1975).
    [CrossRef]
  7. T. Y. Fan, A. Cordova-Plaza, M. J. F. Digonnet, R. L. Byer, and H. J. Shaw, “Nd:MgO:LiNbO3 spectroscopy and laser devices,” J. Opt. Soc. Am. B 13(1), 140 (1986).
    [CrossRef]
  8. A. Cordova-Plaza, I. J. F. Digonnet, and H. J. Shaw, “Miniatured CW and active internally Q-switched Nd:MgO:LiNbO3 lasers,” IEEE J. Quantum Electron. 23(2), 262–266 (1987).
    [CrossRef]
  9. A. Cordova-Plaza, T. Y. Fan, M. J. F. Digonnet, R. L. Byer, and H. J. Shaw, “Nd:MgO:LiNbO3 continuous-wave laser pumped by a laser diode,” Opt. Lett. 13(3), 209–211 (1988).
    [CrossRef] [PubMed]
  10. G. H. Haertling, “Electro-optic Ceramics and Devices”, in Electronic Ceramics, L. M. Levinson eds. (Marcel Dekker, New York,1987), pp. 371–492.
  11. H. Jiang, Y. K. Zou, Q. Chen, K. K. Li, R. Zhang, and Y. Wang, “Transparent electro-optic ceramics and devices,” Proc. SPIE 5644, 380–394 (2005).
    [CrossRef]
  12. A. S. S. de Camargo, L.A. de O. Nunes, I.A. Santos, D.G. Arcia, and J.A. Eiras, “Structural and spectroscopic properties of rare-earth (Nd3+, Er3+, and Yb3+) doped transparent lead lanthanum zirconate titanate ceramics,” J. Appl. Phys. 95, 2135 (2004).
    [CrossRef]
  13. A. S. S. de Camargo, E. R. Botero, E. R. M. Andreeta, D. Garcia, J. A. Eiras, and L. A. O. Nunes, “2.8 and 1.55 µm emission from diode-pumped Er3+-doped and Yb3+ co-doped lead lanthanum zirconate titanate transparent ferroelectric ceramic,” Appl. Phys. Lett. 86(24), 241112 (2005).
    [CrossRef]
  14. A. S. S. de Camargo, E. R. Botero, D. Garcia, J. A. Eiras, and L. A. O. Nunes, “Nd3+-doped lead lanthanum zirconate titanate transparent ferroelectric ceramic as a laser material: Energy transfer and stimulated emission,” Appl. Phys. Lett. 86(15), 152905 (2005).
    [CrossRef]
  15. B. Li, Z. Zhang, J. Yang, K. Li, H. Jiang, X. Chen, A. Wang, J. Xie, and H. Ming, “Optical transition probability of Nd3+ ions doped in Ferroelectric PLZT for active electro-optic applications,” Chin. Phys. Lett. 22(1), 80–82 (2005).
    [CrossRef]
  16. J. W. Zhang, Y. K. Zou, Q. Chen, R. Zhang, K. K. Li, H. Jiang, P. L. Huang, and X. Chen, “Optical amplification in Nd3+ doped electro-optic lanthanum lead zirconate titanate ceramics,” Appl. Phys. Lett. 89(6), 061113 (2006).
    [CrossRef]
  17. J. Lu, M. Prabhu, J. Song, C. Li, J. Xu, K. Ueda, A. A. Kaminskii, H. Yagi, and T. Yanagitani, “Optical properties and highly efficient laser oscillation of Nd:YAG ceramics,” Appl. Phys. B 71(4), 469–473 (2000).
    [CrossRef]
  18. D. Dimos, W. L. Warren, M. B. Sinclair, B. A. Tuttle, and R. W. Schwartz, “Photoinduced hysteresis changes and optical storage in (Pb,La)(Zr,Ti)O3 thin films and ceramics,” J. Appl. Phys. 76(7), 4305 (1994).
    [CrossRef]
  19. A. C. Lewandowski and S. W. McKeever, “Generalized description of thermally stimulated process without the equilibrium approximation,” Phys. Rev. B 43(10), 8163–8178 (1991).
    [CrossRef]
  20. A. Bosacchi, S. Franchi, and B. Bosacchi, “Thermoluminescence and continous distribution of traps,” Phys. Rev. B 10(12), 5235–5238 (1974).
    [CrossRef]
  21. S. Guissi, R. Bindi, P. Lacconi, D. Jeambrun, and D. Lapraz, “Theoretical model for thermally stimulated luminescence, conductivity and exoelectronic emission,” J. Phys. D Appl. Phys. 31(1), 137–145 (1998).
    [CrossRef]

2008 (1)

A. Ikesue and Y. L. Aung, “Ceramic laser materials,” Nat. Photonics 2(12), 721–727 (2008).
[CrossRef]

2006 (2)

A. Ikesue, Y. L. Auang, T. Taira, T. Kamimura, K. Yoshida, and G. L. Messing, “Progress in ceramic lasers,” Annu. Rev. Mater. Res. 36(1), 397–429 (2006).
[CrossRef]

J. W. Zhang, Y. K. Zou, Q. Chen, R. Zhang, K. K. Li, H. Jiang, P. L. Huang, and X. Chen, “Optical amplification in Nd3+ doped electro-optic lanthanum lead zirconate titanate ceramics,” Appl. Phys. Lett. 89(6), 061113 (2006).
[CrossRef]

2005 (4)

H. Jiang, Y. K. Zou, Q. Chen, K. K. Li, R. Zhang, and Y. Wang, “Transparent electro-optic ceramics and devices,” Proc. SPIE 5644, 380–394 (2005).
[CrossRef]

A. S. S. de Camargo, E. R. Botero, E. R. M. Andreeta, D. Garcia, J. A. Eiras, and L. A. O. Nunes, “2.8 and 1.55 µm emission from diode-pumped Er3+-doped and Yb3+ co-doped lead lanthanum zirconate titanate transparent ferroelectric ceramic,” Appl. Phys. Lett. 86(24), 241112 (2005).
[CrossRef]

A. S. S. de Camargo, E. R. Botero, D. Garcia, J. A. Eiras, and L. A. O. Nunes, “Nd3+-doped lead lanthanum zirconate titanate transparent ferroelectric ceramic as a laser material: Energy transfer and stimulated emission,” Appl. Phys. Lett. 86(15), 152905 (2005).
[CrossRef]

B. Li, Z. Zhang, J. Yang, K. Li, H. Jiang, X. Chen, A. Wang, J. Xie, and H. Ming, “Optical transition probability of Nd3+ ions doped in Ferroelectric PLZT for active electro-optic applications,” Chin. Phys. Lett. 22(1), 80–82 (2005).
[CrossRef]

2004 (2)

A. S. S. de Camargo, L.A. de O. Nunes, I.A. Santos, D.G. Arcia, and J.A. Eiras, “Structural and spectroscopic properties of rare-earth (Nd3+, Er3+, and Yb3+) doped transparent lead lanthanum zirconate titanate ceramics,” J. Appl. Phys. 95, 2135 (2004).
[CrossRef]

J. Wisdom, M. Gigonnet, and R. L. Byer, “Ceramic lasers: Ready for action,” Photon. Spectra 38, 501 (2004).

2000 (1)

J. Lu, M. Prabhu, J. Song, C. Li, J. Xu, K. Ueda, A. A. Kaminskii, H. Yagi, and T. Yanagitani, “Optical properties and highly efficient laser oscillation of Nd:YAG ceramics,” Appl. Phys. B 71(4), 469–473 (2000).
[CrossRef]

1998 (1)

S. Guissi, R. Bindi, P. Lacconi, D. Jeambrun, and D. Lapraz, “Theoretical model for thermally stimulated luminescence, conductivity and exoelectronic emission,” J. Phys. D Appl. Phys. 31(1), 137–145 (1998).
[CrossRef]

1995 (1)

A. Ikesue, T. Kinoshita, K. Kamata, and K. Yoshita, “Fabrication and optical properties of high-performance polycrystalline Nd:YAG ceramics for solid-state lasers,” J. Am. Ceram. Soc. 78(4), 1033–1040 (1995).
[CrossRef]

1994 (1)

D. Dimos, W. L. Warren, M. B. Sinclair, B. A. Tuttle, and R. W. Schwartz, “Photoinduced hysteresis changes and optical storage in (Pb,La)(Zr,Ti)O3 thin films and ceramics,” J. Appl. Phys. 76(7), 4305 (1994).
[CrossRef]

1991 (1)

A. C. Lewandowski and S. W. McKeever, “Generalized description of thermally stimulated process without the equilibrium approximation,” Phys. Rev. B 43(10), 8163–8178 (1991).
[CrossRef]

1988 (2)

1987 (1)

A. Cordova-Plaza, I. J. F. Digonnet, and H. J. Shaw, “Miniatured CW and active internally Q-switched Nd:MgO:LiNbO3 lasers,” IEEE J. Quantum Electron. 23(2), 262–266 (1987).
[CrossRef]

1986 (1)

T. Y. Fan, A. Cordova-Plaza, M. J. F. Digonnet, R. L. Byer, and H. J. Shaw, “Nd:MgO:LiNbO3 spectroscopy and laser devices,” J. Opt. Soc. Am. B 13(1), 140 (1986).
[CrossRef]

1975 (1)

I. P. Kaminow and L. W. Stulz, “Nd:LiNbO3 laser,” IEEE J. Quantum Electron. 11(6), 306–308 (1975).
[CrossRef]

1974 (1)

A. Bosacchi, S. Franchi, and B. Bosacchi, “Thermoluminescence and continous distribution of traps,” Phys. Rev. B 10(12), 5235–5238 (1974).
[CrossRef]

Andreeta, E. R. M.

A. S. S. de Camargo, E. R. Botero, E. R. M. Andreeta, D. Garcia, J. A. Eiras, and L. A. O. Nunes, “2.8 and 1.55 µm emission from diode-pumped Er3+-doped and Yb3+ co-doped lead lanthanum zirconate titanate transparent ferroelectric ceramic,” Appl. Phys. Lett. 86(24), 241112 (2005).
[CrossRef]

Arcia, D.G.

A. S. S. de Camargo, L.A. de O. Nunes, I.A. Santos, D.G. Arcia, and J.A. Eiras, “Structural and spectroscopic properties of rare-earth (Nd3+, Er3+, and Yb3+) doped transparent lead lanthanum zirconate titanate ceramics,” J. Appl. Phys. 95, 2135 (2004).
[CrossRef]

Auang, Y. L.

A. Ikesue, Y. L. Auang, T. Taira, T. Kamimura, K. Yoshida, and G. L. Messing, “Progress in ceramic lasers,” Annu. Rev. Mater. Res. 36(1), 397–429 (2006).
[CrossRef]

Aung, Y. L.

A. Ikesue and Y. L. Aung, “Ceramic laser materials,” Nat. Photonics 2(12), 721–727 (2008).
[CrossRef]

Bindi, R.

S. Guissi, R. Bindi, P. Lacconi, D. Jeambrun, and D. Lapraz, “Theoretical model for thermally stimulated luminescence, conductivity and exoelectronic emission,” J. Phys. D Appl. Phys. 31(1), 137–145 (1998).
[CrossRef]

Bosacchi, A.

A. Bosacchi, S. Franchi, and B. Bosacchi, “Thermoluminescence and continous distribution of traps,” Phys. Rev. B 10(12), 5235–5238 (1974).
[CrossRef]

Bosacchi, B.

A. Bosacchi, S. Franchi, and B. Bosacchi, “Thermoluminescence and continous distribution of traps,” Phys. Rev. B 10(12), 5235–5238 (1974).
[CrossRef]

Botero, E. R.

A. S. S. de Camargo, E. R. Botero, E. R. M. Andreeta, D. Garcia, J. A. Eiras, and L. A. O. Nunes, “2.8 and 1.55 µm emission from diode-pumped Er3+-doped and Yb3+ co-doped lead lanthanum zirconate titanate transparent ferroelectric ceramic,” Appl. Phys. Lett. 86(24), 241112 (2005).
[CrossRef]

A. S. S. de Camargo, E. R. Botero, D. Garcia, J. A. Eiras, and L. A. O. Nunes, “Nd3+-doped lead lanthanum zirconate titanate transparent ferroelectric ceramic as a laser material: Energy transfer and stimulated emission,” Appl. Phys. Lett. 86(15), 152905 (2005).
[CrossRef]

Byer, R. L.

J. Wisdom, M. Gigonnet, and R. L. Byer, “Ceramic lasers: Ready for action,” Photon. Spectra 38, 501 (2004).

T. Y. Fan and R. L. Byer, “Diode laser-pumped solid-state lasers,” IEEE J. Quantum Electron. 24(6), 895–912 (1988).
[CrossRef]

A. Cordova-Plaza, T. Y. Fan, M. J. F. Digonnet, R. L. Byer, and H. J. Shaw, “Nd:MgO:LiNbO3 continuous-wave laser pumped by a laser diode,” Opt. Lett. 13(3), 209–211 (1988).
[CrossRef] [PubMed]

T. Y. Fan, A. Cordova-Plaza, M. J. F. Digonnet, R. L. Byer, and H. J. Shaw, “Nd:MgO:LiNbO3 spectroscopy and laser devices,” J. Opt. Soc. Am. B 13(1), 140 (1986).
[CrossRef]

Chen, Q.

J. W. Zhang, Y. K. Zou, Q. Chen, R. Zhang, K. K. Li, H. Jiang, P. L. Huang, and X. Chen, “Optical amplification in Nd3+ doped electro-optic lanthanum lead zirconate titanate ceramics,” Appl. Phys. Lett. 89(6), 061113 (2006).
[CrossRef]

H. Jiang, Y. K. Zou, Q. Chen, K. K. Li, R. Zhang, and Y. Wang, “Transparent electro-optic ceramics and devices,” Proc. SPIE 5644, 380–394 (2005).
[CrossRef]

Chen, X.

J. W. Zhang, Y. K. Zou, Q. Chen, R. Zhang, K. K. Li, H. Jiang, P. L. Huang, and X. Chen, “Optical amplification in Nd3+ doped electro-optic lanthanum lead zirconate titanate ceramics,” Appl. Phys. Lett. 89(6), 061113 (2006).
[CrossRef]

B. Li, Z. Zhang, J. Yang, K. Li, H. Jiang, X. Chen, A. Wang, J. Xie, and H. Ming, “Optical transition probability of Nd3+ ions doped in Ferroelectric PLZT for active electro-optic applications,” Chin. Phys. Lett. 22(1), 80–82 (2005).
[CrossRef]

Cordova-Plaza, A.

A. Cordova-Plaza, T. Y. Fan, M. J. F. Digonnet, R. L. Byer, and H. J. Shaw, “Nd:MgO:LiNbO3 continuous-wave laser pumped by a laser diode,” Opt. Lett. 13(3), 209–211 (1988).
[CrossRef] [PubMed]

A. Cordova-Plaza, I. J. F. Digonnet, and H. J. Shaw, “Miniatured CW and active internally Q-switched Nd:MgO:LiNbO3 lasers,” IEEE J. Quantum Electron. 23(2), 262–266 (1987).
[CrossRef]

T. Y. Fan, A. Cordova-Plaza, M. J. F. Digonnet, R. L. Byer, and H. J. Shaw, “Nd:MgO:LiNbO3 spectroscopy and laser devices,” J. Opt. Soc. Am. B 13(1), 140 (1986).
[CrossRef]

de Camargo, A. S. S.

A. S. S. de Camargo, E. R. Botero, E. R. M. Andreeta, D. Garcia, J. A. Eiras, and L. A. O. Nunes, “2.8 and 1.55 µm emission from diode-pumped Er3+-doped and Yb3+ co-doped lead lanthanum zirconate titanate transparent ferroelectric ceramic,” Appl. Phys. Lett. 86(24), 241112 (2005).
[CrossRef]

A. S. S. de Camargo, E. R. Botero, D. Garcia, J. A. Eiras, and L. A. O. Nunes, “Nd3+-doped lead lanthanum zirconate titanate transparent ferroelectric ceramic as a laser material: Energy transfer and stimulated emission,” Appl. Phys. Lett. 86(15), 152905 (2005).
[CrossRef]

A. S. S. de Camargo, L.A. de O. Nunes, I.A. Santos, D.G. Arcia, and J.A. Eiras, “Structural and spectroscopic properties of rare-earth (Nd3+, Er3+, and Yb3+) doped transparent lead lanthanum zirconate titanate ceramics,” J. Appl. Phys. 95, 2135 (2004).
[CrossRef]

de O. Nunes, L.A.

A. S. S. de Camargo, L.A. de O. Nunes, I.A. Santos, D.G. Arcia, and J.A. Eiras, “Structural and spectroscopic properties of rare-earth (Nd3+, Er3+, and Yb3+) doped transparent lead lanthanum zirconate titanate ceramics,” J. Appl. Phys. 95, 2135 (2004).
[CrossRef]

Digonnet, I. J. F.

A. Cordova-Plaza, I. J. F. Digonnet, and H. J. Shaw, “Miniatured CW and active internally Q-switched Nd:MgO:LiNbO3 lasers,” IEEE J. Quantum Electron. 23(2), 262–266 (1987).
[CrossRef]

Digonnet, M. J. F.

A. Cordova-Plaza, T. Y. Fan, M. J. F. Digonnet, R. L. Byer, and H. J. Shaw, “Nd:MgO:LiNbO3 continuous-wave laser pumped by a laser diode,” Opt. Lett. 13(3), 209–211 (1988).
[CrossRef] [PubMed]

T. Y. Fan, A. Cordova-Plaza, M. J. F. Digonnet, R. L. Byer, and H. J. Shaw, “Nd:MgO:LiNbO3 spectroscopy and laser devices,” J. Opt. Soc. Am. B 13(1), 140 (1986).
[CrossRef]

Dimos, D.

D. Dimos, W. L. Warren, M. B. Sinclair, B. A. Tuttle, and R. W. Schwartz, “Photoinduced hysteresis changes and optical storage in (Pb,La)(Zr,Ti)O3 thin films and ceramics,” J. Appl. Phys. 76(7), 4305 (1994).
[CrossRef]

Eiras, J. A.

A. S. S. de Camargo, E. R. Botero, D. Garcia, J. A. Eiras, and L. A. O. Nunes, “Nd3+-doped lead lanthanum zirconate titanate transparent ferroelectric ceramic as a laser material: Energy transfer and stimulated emission,” Appl. Phys. Lett. 86(15), 152905 (2005).
[CrossRef]

A. S. S. de Camargo, E. R. Botero, E. R. M. Andreeta, D. Garcia, J. A. Eiras, and L. A. O. Nunes, “2.8 and 1.55 µm emission from diode-pumped Er3+-doped and Yb3+ co-doped lead lanthanum zirconate titanate transparent ferroelectric ceramic,” Appl. Phys. Lett. 86(24), 241112 (2005).
[CrossRef]

Eiras, J.A.

A. S. S. de Camargo, L.A. de O. Nunes, I.A. Santos, D.G. Arcia, and J.A. Eiras, “Structural and spectroscopic properties of rare-earth (Nd3+, Er3+, and Yb3+) doped transparent lead lanthanum zirconate titanate ceramics,” J. Appl. Phys. 95, 2135 (2004).
[CrossRef]

Fan, T. Y.

A. Cordova-Plaza, T. Y. Fan, M. J. F. Digonnet, R. L. Byer, and H. J. Shaw, “Nd:MgO:LiNbO3 continuous-wave laser pumped by a laser diode,” Opt. Lett. 13(3), 209–211 (1988).
[CrossRef] [PubMed]

T. Y. Fan and R. L. Byer, “Diode laser-pumped solid-state lasers,” IEEE J. Quantum Electron. 24(6), 895–912 (1988).
[CrossRef]

T. Y. Fan, A. Cordova-Plaza, M. J. F. Digonnet, R. L. Byer, and H. J. Shaw, “Nd:MgO:LiNbO3 spectroscopy and laser devices,” J. Opt. Soc. Am. B 13(1), 140 (1986).
[CrossRef]

Franchi, S.

A. Bosacchi, S. Franchi, and B. Bosacchi, “Thermoluminescence and continous distribution of traps,” Phys. Rev. B 10(12), 5235–5238 (1974).
[CrossRef]

Garcia, D.

A. S. S. de Camargo, E. R. Botero, E. R. M. Andreeta, D. Garcia, J. A. Eiras, and L. A. O. Nunes, “2.8 and 1.55 µm emission from diode-pumped Er3+-doped and Yb3+ co-doped lead lanthanum zirconate titanate transparent ferroelectric ceramic,” Appl. Phys. Lett. 86(24), 241112 (2005).
[CrossRef]

A. S. S. de Camargo, E. R. Botero, D. Garcia, J. A. Eiras, and L. A. O. Nunes, “Nd3+-doped lead lanthanum zirconate titanate transparent ferroelectric ceramic as a laser material: Energy transfer and stimulated emission,” Appl. Phys. Lett. 86(15), 152905 (2005).
[CrossRef]

Gigonnet, M.

J. Wisdom, M. Gigonnet, and R. L. Byer, “Ceramic lasers: Ready for action,” Photon. Spectra 38, 501 (2004).

Guissi, S.

S. Guissi, R. Bindi, P. Lacconi, D. Jeambrun, and D. Lapraz, “Theoretical model for thermally stimulated luminescence, conductivity and exoelectronic emission,” J. Phys. D Appl. Phys. 31(1), 137–145 (1998).
[CrossRef]

Huang, P. L.

J. W. Zhang, Y. K. Zou, Q. Chen, R. Zhang, K. K. Li, H. Jiang, P. L. Huang, and X. Chen, “Optical amplification in Nd3+ doped electro-optic lanthanum lead zirconate titanate ceramics,” Appl. Phys. Lett. 89(6), 061113 (2006).
[CrossRef]

Ikesue, A.

A. Ikesue and Y. L. Aung, “Ceramic laser materials,” Nat. Photonics 2(12), 721–727 (2008).
[CrossRef]

A. Ikesue, Y. L. Auang, T. Taira, T. Kamimura, K. Yoshida, and G. L. Messing, “Progress in ceramic lasers,” Annu. Rev. Mater. Res. 36(1), 397–429 (2006).
[CrossRef]

A. Ikesue, T. Kinoshita, K. Kamata, and K. Yoshita, “Fabrication and optical properties of high-performance polycrystalline Nd:YAG ceramics for solid-state lasers,” J. Am. Ceram. Soc. 78(4), 1033–1040 (1995).
[CrossRef]

Jeambrun, D.

S. Guissi, R. Bindi, P. Lacconi, D. Jeambrun, and D. Lapraz, “Theoretical model for thermally stimulated luminescence, conductivity and exoelectronic emission,” J. Phys. D Appl. Phys. 31(1), 137–145 (1998).
[CrossRef]

Jiang, H.

J. W. Zhang, Y. K. Zou, Q. Chen, R. Zhang, K. K. Li, H. Jiang, P. L. Huang, and X. Chen, “Optical amplification in Nd3+ doped electro-optic lanthanum lead zirconate titanate ceramics,” Appl. Phys. Lett. 89(6), 061113 (2006).
[CrossRef]

B. Li, Z. Zhang, J. Yang, K. Li, H. Jiang, X. Chen, A. Wang, J. Xie, and H. Ming, “Optical transition probability of Nd3+ ions doped in Ferroelectric PLZT for active electro-optic applications,” Chin. Phys. Lett. 22(1), 80–82 (2005).
[CrossRef]

H. Jiang, Y. K. Zou, Q. Chen, K. K. Li, R. Zhang, and Y. Wang, “Transparent electro-optic ceramics and devices,” Proc. SPIE 5644, 380–394 (2005).
[CrossRef]

Kamata, K.

A. Ikesue, T. Kinoshita, K. Kamata, and K. Yoshita, “Fabrication and optical properties of high-performance polycrystalline Nd:YAG ceramics for solid-state lasers,” J. Am. Ceram. Soc. 78(4), 1033–1040 (1995).
[CrossRef]

Kamimura, T.

A. Ikesue, Y. L. Auang, T. Taira, T. Kamimura, K. Yoshida, and G. L. Messing, “Progress in ceramic lasers,” Annu. Rev. Mater. Res. 36(1), 397–429 (2006).
[CrossRef]

Kaminow, I. P.

I. P. Kaminow and L. W. Stulz, “Nd:LiNbO3 laser,” IEEE J. Quantum Electron. 11(6), 306–308 (1975).
[CrossRef]

Kaminskii, A. A.

J. Lu, M. Prabhu, J. Song, C. Li, J. Xu, K. Ueda, A. A. Kaminskii, H. Yagi, and T. Yanagitani, “Optical properties and highly efficient laser oscillation of Nd:YAG ceramics,” Appl. Phys. B 71(4), 469–473 (2000).
[CrossRef]

Kinoshita, T.

A. Ikesue, T. Kinoshita, K. Kamata, and K. Yoshita, “Fabrication and optical properties of high-performance polycrystalline Nd:YAG ceramics for solid-state lasers,” J. Am. Ceram. Soc. 78(4), 1033–1040 (1995).
[CrossRef]

Lacconi, P.

S. Guissi, R. Bindi, P. Lacconi, D. Jeambrun, and D. Lapraz, “Theoretical model for thermally stimulated luminescence, conductivity and exoelectronic emission,” J. Phys. D Appl. Phys. 31(1), 137–145 (1998).
[CrossRef]

Lapraz, D.

S. Guissi, R. Bindi, P. Lacconi, D. Jeambrun, and D. Lapraz, “Theoretical model for thermally stimulated luminescence, conductivity and exoelectronic emission,” J. Phys. D Appl. Phys. 31(1), 137–145 (1998).
[CrossRef]

Lewandowski, A. C.

A. C. Lewandowski and S. W. McKeever, “Generalized description of thermally stimulated process without the equilibrium approximation,” Phys. Rev. B 43(10), 8163–8178 (1991).
[CrossRef]

Li, B.

B. Li, Z. Zhang, J. Yang, K. Li, H. Jiang, X. Chen, A. Wang, J. Xie, and H. Ming, “Optical transition probability of Nd3+ ions doped in Ferroelectric PLZT for active electro-optic applications,” Chin. Phys. Lett. 22(1), 80–82 (2005).
[CrossRef]

Li, C.

J. Lu, M. Prabhu, J. Song, C. Li, J. Xu, K. Ueda, A. A. Kaminskii, H. Yagi, and T. Yanagitani, “Optical properties and highly efficient laser oscillation of Nd:YAG ceramics,” Appl. Phys. B 71(4), 469–473 (2000).
[CrossRef]

Li, K.

B. Li, Z. Zhang, J. Yang, K. Li, H. Jiang, X. Chen, A. Wang, J. Xie, and H. Ming, “Optical transition probability of Nd3+ ions doped in Ferroelectric PLZT for active electro-optic applications,” Chin. Phys. Lett. 22(1), 80–82 (2005).
[CrossRef]

Li, K. K.

J. W. Zhang, Y. K. Zou, Q. Chen, R. Zhang, K. K. Li, H. Jiang, P. L. Huang, and X. Chen, “Optical amplification in Nd3+ doped electro-optic lanthanum lead zirconate titanate ceramics,” Appl. Phys. Lett. 89(6), 061113 (2006).
[CrossRef]

H. Jiang, Y. K. Zou, Q. Chen, K. K. Li, R. Zhang, and Y. Wang, “Transparent electro-optic ceramics and devices,” Proc. SPIE 5644, 380–394 (2005).
[CrossRef]

Lu, J.

J. Lu, M. Prabhu, J. Song, C. Li, J. Xu, K. Ueda, A. A. Kaminskii, H. Yagi, and T. Yanagitani, “Optical properties and highly efficient laser oscillation of Nd:YAG ceramics,” Appl. Phys. B 71(4), 469–473 (2000).
[CrossRef]

McKeever, S. W.

A. C. Lewandowski and S. W. McKeever, “Generalized description of thermally stimulated process without the equilibrium approximation,” Phys. Rev. B 43(10), 8163–8178 (1991).
[CrossRef]

Messing, G. L.

A. Ikesue, Y. L. Auang, T. Taira, T. Kamimura, K. Yoshida, and G. L. Messing, “Progress in ceramic lasers,” Annu. Rev. Mater. Res. 36(1), 397–429 (2006).
[CrossRef]

Ming, H.

B. Li, Z. Zhang, J. Yang, K. Li, H. Jiang, X. Chen, A. Wang, J. Xie, and H. Ming, “Optical transition probability of Nd3+ ions doped in Ferroelectric PLZT for active electro-optic applications,” Chin. Phys. Lett. 22(1), 80–82 (2005).
[CrossRef]

Nunes, L. A. O.

A. S. S. de Camargo, E. R. Botero, D. Garcia, J. A. Eiras, and L. A. O. Nunes, “Nd3+-doped lead lanthanum zirconate titanate transparent ferroelectric ceramic as a laser material: Energy transfer and stimulated emission,” Appl. Phys. Lett. 86(15), 152905 (2005).
[CrossRef]

A. S. S. de Camargo, E. R. Botero, E. R. M. Andreeta, D. Garcia, J. A. Eiras, and L. A. O. Nunes, “2.8 and 1.55 µm emission from diode-pumped Er3+-doped and Yb3+ co-doped lead lanthanum zirconate titanate transparent ferroelectric ceramic,” Appl. Phys. Lett. 86(24), 241112 (2005).
[CrossRef]

Prabhu, M.

J. Lu, M. Prabhu, J. Song, C. Li, J. Xu, K. Ueda, A. A. Kaminskii, H. Yagi, and T. Yanagitani, “Optical properties and highly efficient laser oscillation of Nd:YAG ceramics,” Appl. Phys. B 71(4), 469–473 (2000).
[CrossRef]

Santos, I.A.

A. S. S. de Camargo, L.A. de O. Nunes, I.A. Santos, D.G. Arcia, and J.A. Eiras, “Structural and spectroscopic properties of rare-earth (Nd3+, Er3+, and Yb3+) doped transparent lead lanthanum zirconate titanate ceramics,” J. Appl. Phys. 95, 2135 (2004).
[CrossRef]

Schwartz, R. W.

D. Dimos, W. L. Warren, M. B. Sinclair, B. A. Tuttle, and R. W. Schwartz, “Photoinduced hysteresis changes and optical storage in (Pb,La)(Zr,Ti)O3 thin films and ceramics,” J. Appl. Phys. 76(7), 4305 (1994).
[CrossRef]

Shaw, H. J.

A. Cordova-Plaza, T. Y. Fan, M. J. F. Digonnet, R. L. Byer, and H. J. Shaw, “Nd:MgO:LiNbO3 continuous-wave laser pumped by a laser diode,” Opt. Lett. 13(3), 209–211 (1988).
[CrossRef] [PubMed]

A. Cordova-Plaza, I. J. F. Digonnet, and H. J. Shaw, “Miniatured CW and active internally Q-switched Nd:MgO:LiNbO3 lasers,” IEEE J. Quantum Electron. 23(2), 262–266 (1987).
[CrossRef]

T. Y. Fan, A. Cordova-Plaza, M. J. F. Digonnet, R. L. Byer, and H. J. Shaw, “Nd:MgO:LiNbO3 spectroscopy and laser devices,” J. Opt. Soc. Am. B 13(1), 140 (1986).
[CrossRef]

Sinclair, M. B.

D. Dimos, W. L. Warren, M. B. Sinclair, B. A. Tuttle, and R. W. Schwartz, “Photoinduced hysteresis changes and optical storage in (Pb,La)(Zr,Ti)O3 thin films and ceramics,” J. Appl. Phys. 76(7), 4305 (1994).
[CrossRef]

Song, J.

J. Lu, M. Prabhu, J. Song, C. Li, J. Xu, K. Ueda, A. A. Kaminskii, H. Yagi, and T. Yanagitani, “Optical properties and highly efficient laser oscillation of Nd:YAG ceramics,” Appl. Phys. B 71(4), 469–473 (2000).
[CrossRef]

Stulz, L. W.

I. P. Kaminow and L. W. Stulz, “Nd:LiNbO3 laser,” IEEE J. Quantum Electron. 11(6), 306–308 (1975).
[CrossRef]

Taira, T.

A. Ikesue, Y. L. Auang, T. Taira, T. Kamimura, K. Yoshida, and G. L. Messing, “Progress in ceramic lasers,” Annu. Rev. Mater. Res. 36(1), 397–429 (2006).
[CrossRef]

Tuttle, B. A.

D. Dimos, W. L. Warren, M. B. Sinclair, B. A. Tuttle, and R. W. Schwartz, “Photoinduced hysteresis changes and optical storage in (Pb,La)(Zr,Ti)O3 thin films and ceramics,” J. Appl. Phys. 76(7), 4305 (1994).
[CrossRef]

Ueda, K.

J. Lu, M. Prabhu, J. Song, C. Li, J. Xu, K. Ueda, A. A. Kaminskii, H. Yagi, and T. Yanagitani, “Optical properties and highly efficient laser oscillation of Nd:YAG ceramics,” Appl. Phys. B 71(4), 469–473 (2000).
[CrossRef]

Wang, A.

B. Li, Z. Zhang, J. Yang, K. Li, H. Jiang, X. Chen, A. Wang, J. Xie, and H. Ming, “Optical transition probability of Nd3+ ions doped in Ferroelectric PLZT for active electro-optic applications,” Chin. Phys. Lett. 22(1), 80–82 (2005).
[CrossRef]

Wang, Y.

H. Jiang, Y. K. Zou, Q. Chen, K. K. Li, R. Zhang, and Y. Wang, “Transparent electro-optic ceramics and devices,” Proc. SPIE 5644, 380–394 (2005).
[CrossRef]

Warren, W. L.

D. Dimos, W. L. Warren, M. B. Sinclair, B. A. Tuttle, and R. W. Schwartz, “Photoinduced hysteresis changes and optical storage in (Pb,La)(Zr,Ti)O3 thin films and ceramics,” J. Appl. Phys. 76(7), 4305 (1994).
[CrossRef]

Wisdom, J.

J. Wisdom, M. Gigonnet, and R. L. Byer, “Ceramic lasers: Ready for action,” Photon. Spectra 38, 501 (2004).

Xie, J.

B. Li, Z. Zhang, J. Yang, K. Li, H. Jiang, X. Chen, A. Wang, J. Xie, and H. Ming, “Optical transition probability of Nd3+ ions doped in Ferroelectric PLZT for active electro-optic applications,” Chin. Phys. Lett. 22(1), 80–82 (2005).
[CrossRef]

Xu, J.

J. Lu, M. Prabhu, J. Song, C. Li, J. Xu, K. Ueda, A. A. Kaminskii, H. Yagi, and T. Yanagitani, “Optical properties and highly efficient laser oscillation of Nd:YAG ceramics,” Appl. Phys. B 71(4), 469–473 (2000).
[CrossRef]

Yagi, H.

J. Lu, M. Prabhu, J. Song, C. Li, J. Xu, K. Ueda, A. A. Kaminskii, H. Yagi, and T. Yanagitani, “Optical properties and highly efficient laser oscillation of Nd:YAG ceramics,” Appl. Phys. B 71(4), 469–473 (2000).
[CrossRef]

Yanagitani, T.

J. Lu, M. Prabhu, J. Song, C. Li, J. Xu, K. Ueda, A. A. Kaminskii, H. Yagi, and T. Yanagitani, “Optical properties and highly efficient laser oscillation of Nd:YAG ceramics,” Appl. Phys. B 71(4), 469–473 (2000).
[CrossRef]

Yang, J.

B. Li, Z. Zhang, J. Yang, K. Li, H. Jiang, X. Chen, A. Wang, J. Xie, and H. Ming, “Optical transition probability of Nd3+ ions doped in Ferroelectric PLZT for active electro-optic applications,” Chin. Phys. Lett. 22(1), 80–82 (2005).
[CrossRef]

Yoshida, K.

A. Ikesue, Y. L. Auang, T. Taira, T. Kamimura, K. Yoshida, and G. L. Messing, “Progress in ceramic lasers,” Annu. Rev. Mater. Res. 36(1), 397–429 (2006).
[CrossRef]

Yoshita, K.

A. Ikesue, T. Kinoshita, K. Kamata, and K. Yoshita, “Fabrication and optical properties of high-performance polycrystalline Nd:YAG ceramics for solid-state lasers,” J. Am. Ceram. Soc. 78(4), 1033–1040 (1995).
[CrossRef]

Zhang, J. W.

J. W. Zhang, Y. K. Zou, Q. Chen, R. Zhang, K. K. Li, H. Jiang, P. L. Huang, and X. Chen, “Optical amplification in Nd3+ doped electro-optic lanthanum lead zirconate titanate ceramics,” Appl. Phys. Lett. 89(6), 061113 (2006).
[CrossRef]

Zhang, R.

J. W. Zhang, Y. K. Zou, Q. Chen, R. Zhang, K. K. Li, H. Jiang, P. L. Huang, and X. Chen, “Optical amplification in Nd3+ doped electro-optic lanthanum lead zirconate titanate ceramics,” Appl. Phys. Lett. 89(6), 061113 (2006).
[CrossRef]

H. Jiang, Y. K. Zou, Q. Chen, K. K. Li, R. Zhang, and Y. Wang, “Transparent electro-optic ceramics and devices,” Proc. SPIE 5644, 380–394 (2005).
[CrossRef]

Zhang, Z.

B. Li, Z. Zhang, J. Yang, K. Li, H. Jiang, X. Chen, A. Wang, J. Xie, and H. Ming, “Optical transition probability of Nd3+ ions doped in Ferroelectric PLZT for active electro-optic applications,” Chin. Phys. Lett. 22(1), 80–82 (2005).
[CrossRef]

Zou, Y. K.

J. W. Zhang, Y. K. Zou, Q. Chen, R. Zhang, K. K. Li, H. Jiang, P. L. Huang, and X. Chen, “Optical amplification in Nd3+ doped electro-optic lanthanum lead zirconate titanate ceramics,” Appl. Phys. Lett. 89(6), 061113 (2006).
[CrossRef]

H. Jiang, Y. K. Zou, Q. Chen, K. K. Li, R. Zhang, and Y. Wang, “Transparent electro-optic ceramics and devices,” Proc. SPIE 5644, 380–394 (2005).
[CrossRef]

Annu. Rev. Mater. Res. (1)

A. Ikesue, Y. L. Auang, T. Taira, T. Kamimura, K. Yoshida, and G. L. Messing, “Progress in ceramic lasers,” Annu. Rev. Mater. Res. 36(1), 397–429 (2006).
[CrossRef]

Appl. Phys. B (1)

J. Lu, M. Prabhu, J. Song, C. Li, J. Xu, K. Ueda, A. A. Kaminskii, H. Yagi, and T. Yanagitani, “Optical properties and highly efficient laser oscillation of Nd:YAG ceramics,” Appl. Phys. B 71(4), 469–473 (2000).
[CrossRef]

Appl. Phys. Lett. (3)

A. S. S. de Camargo, E. R. Botero, E. R. M. Andreeta, D. Garcia, J. A. Eiras, and L. A. O. Nunes, “2.8 and 1.55 µm emission from diode-pumped Er3+-doped and Yb3+ co-doped lead lanthanum zirconate titanate transparent ferroelectric ceramic,” Appl. Phys. Lett. 86(24), 241112 (2005).
[CrossRef]

A. S. S. de Camargo, E. R. Botero, D. Garcia, J. A. Eiras, and L. A. O. Nunes, “Nd3+-doped lead lanthanum zirconate titanate transparent ferroelectric ceramic as a laser material: Energy transfer and stimulated emission,” Appl. Phys. Lett. 86(15), 152905 (2005).
[CrossRef]

J. W. Zhang, Y. K. Zou, Q. Chen, R. Zhang, K. K. Li, H. Jiang, P. L. Huang, and X. Chen, “Optical amplification in Nd3+ doped electro-optic lanthanum lead zirconate titanate ceramics,” Appl. Phys. Lett. 89(6), 061113 (2006).
[CrossRef]

Chin. Phys. Lett. (1)

B. Li, Z. Zhang, J. Yang, K. Li, H. Jiang, X. Chen, A. Wang, J. Xie, and H. Ming, “Optical transition probability of Nd3+ ions doped in Ferroelectric PLZT for active electro-optic applications,” Chin. Phys. Lett. 22(1), 80–82 (2005).
[CrossRef]

IEEE J. Quantum Electron. (3)

T. Y. Fan and R. L. Byer, “Diode laser-pumped solid-state lasers,” IEEE J. Quantum Electron. 24(6), 895–912 (1988).
[CrossRef]

I. P. Kaminow and L. W. Stulz, “Nd:LiNbO3 laser,” IEEE J. Quantum Electron. 11(6), 306–308 (1975).
[CrossRef]

A. Cordova-Plaza, I. J. F. Digonnet, and H. J. Shaw, “Miniatured CW and active internally Q-switched Nd:MgO:LiNbO3 lasers,” IEEE J. Quantum Electron. 23(2), 262–266 (1987).
[CrossRef]

J. Am. Ceram. Soc. (1)

A. Ikesue, T. Kinoshita, K. Kamata, and K. Yoshita, “Fabrication and optical properties of high-performance polycrystalline Nd:YAG ceramics for solid-state lasers,” J. Am. Ceram. Soc. 78(4), 1033–1040 (1995).
[CrossRef]

J. Appl. Phys. (2)

A. S. S. de Camargo, L.A. de O. Nunes, I.A. Santos, D.G. Arcia, and J.A. Eiras, “Structural and spectroscopic properties of rare-earth (Nd3+, Er3+, and Yb3+) doped transparent lead lanthanum zirconate titanate ceramics,” J. Appl. Phys. 95, 2135 (2004).
[CrossRef]

D. Dimos, W. L. Warren, M. B. Sinclair, B. A. Tuttle, and R. W. Schwartz, “Photoinduced hysteresis changes and optical storage in (Pb,La)(Zr,Ti)O3 thin films and ceramics,” J. Appl. Phys. 76(7), 4305 (1994).
[CrossRef]

J. Opt. Soc. Am. B (1)

T. Y. Fan, A. Cordova-Plaza, M. J. F. Digonnet, R. L. Byer, and H. J. Shaw, “Nd:MgO:LiNbO3 spectroscopy and laser devices,” J. Opt. Soc. Am. B 13(1), 140 (1986).
[CrossRef]

J. Phys. D Appl. Phys. (1)

S. Guissi, R. Bindi, P. Lacconi, D. Jeambrun, and D. Lapraz, “Theoretical model for thermally stimulated luminescence, conductivity and exoelectronic emission,” J. Phys. D Appl. Phys. 31(1), 137–145 (1998).
[CrossRef]

Nat. Photonics (1)

A. Ikesue and Y. L. Aung, “Ceramic laser materials,” Nat. Photonics 2(12), 721–727 (2008).
[CrossRef]

Opt. Lett. (1)

Photon. Spectra (1)

J. Wisdom, M. Gigonnet, and R. L. Byer, “Ceramic lasers: Ready for action,” Photon. Spectra 38, 501 (2004).

Phys. Rev. B (2)

A. C. Lewandowski and S. W. McKeever, “Generalized description of thermally stimulated process without the equilibrium approximation,” Phys. Rev. B 43(10), 8163–8178 (1991).
[CrossRef]

A. Bosacchi, S. Franchi, and B. Bosacchi, “Thermoluminescence and continous distribution of traps,” Phys. Rev. B 10(12), 5235–5238 (1974).
[CrossRef]

Proc. SPIE (1)

H. Jiang, Y. K. Zou, Q. Chen, K. K. Li, R. Zhang, and Y. Wang, “Transparent electro-optic ceramics and devices,” Proc. SPIE 5644, 380–394 (2005).
[CrossRef]

Other (1)

G. H. Haertling, “Electro-optic Ceramics and Devices”, in Electronic Ceramics, L. M. Levinson eds. (Marcel Dekker, New York,1987), pp. 371–492.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Absorption and PL properties of Nd3+:PLZT samples: a) A typical absorption spectrum in a 1.0 mol% Nd3+:PLZT plate (dot-dashed line depicts the absorption peak of a 1.0 mol% Nd3+:YVO4 sample at 808 nm for comparison); b) A typical PL spectrum obtained in a 1.0mol% Nd3+:PLZT plate (dot-dashed line shows the PL peak at 1064.8 nm in a 1.0 mol% Nd3+:YVO4 plate for comparison).

Fig. 2
Fig. 2

EO properties and Curie temperature of Nd3+:PLZT samples with various doping concentrations throughout their entire transparent window. a) EO coefficient versus Nd3+ cation concentration; b) EO coefficient versus wavelength for 1.0mol% Nd3+ doped sample.

Fig. 3
Fig. 3

(a) Single-pass gain versus seed power when the pumping power was fixed at 5.0 W and the crossing angle at 155°. The inset is a dynamic curve recorded with an HP Infinium oscilloscope for the end-pumping geometry; (b) Schematic diagram of energy levels that illustrates the continuous trap distribution [19,21]: ST-shallow trap level; TAT-thermally active level at energy Ea; TDT-thermally disconnected traps; RC-recombination center.

Fig. 4
Fig. 4

(a) A photograph of the setup of lasing action in Nd3+:PLZT ceramics: LD: a fiber-pigtailed laser diode (at 805 nm); L1 and L2: lenses; IC and OC:the input and output couplers, respectively; SL: a seed laser for alignment; (b) A typical dynamic curve of the laser output.

Metrics