Abstract

Hydrogenated amorphous silicon (a-Si:H) has been already considered for the objective of passive optical elements, like waveguides and ring resonators, within photonic integrated circuits at λ = 1.55 μm. However the study of its electro-optical properties is still at an early stage, therefore this semiconductor in practice is not considered for light modulation as yet. We demonstrated, for the first time, effective electro-optical modulation in a reverse biased a-Si:H p-i-n waveguiding structure. In particular, phase modulation was studied in a waveguide integrated Fabry-Perot resonator in which the Vπ⋅Lπ product was determined to be 63 V⋅cm. Characteristic switch-on and switch-off times of 14 ns were measured. The device employed a wider gap amorphous silicon carbide (a-SiC:H) film for the lower cladding layer instead of silicon oxide. In this way the highest temperature involved in the fabrication process was 170°C, which ensured the desired technological compatibility with CMOS processes.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. C. Kimerling, D. Ahn, M. Beals, C.-Y. Hong, J. Liu, J. Michel, D. Pan, and D. K. Sparacin, “Electronic-photonic integrated circuits on the CMOS platform,” Proc. SPIE 6125, 612502, 612502-10 (2006).
    [CrossRef]
  2. T. Pinguet, B. Analui, E. Balmater, D. Guckenberger, M. Harrison, R. Koumans, D. Kucharski, Y. Liang, G. Masini, A. Mekis, S. Mirsaidi, A. Narasimha, M. Peterson, D. Rines, V. Sadagopan, S. Sahni, T. J. Sleboda, D. Song, Y. Wang, B. Welch, J. Witzens, J. Yao, S. Abdalla, S. Gloeckner, and P. De Dobbelaer, “Monolithically Integrated High-Speed CMOS Photonic Transceivers,” in Proceedings of IEEE Conference on Group IV Photonics, 5th International Conference (2008).
  3. J. M. Fedeli, L. Di Cioccio, D. Marris-Morini, L. Vivien, R. Orobtchouk, P. Rojo-Romeo, C. Seassal, and F. Mandorlo, “Development of silicon photonics devices using microelectronic tools for the integration on top of a CMOS wafer,” Adv. Opt. Tech. 2008, 1–16 (2008).
    [CrossRef]
  4. J. M. Fedeli, M. Migette, L. Di Cioccio, L. El Melhaoui, R. Orobtchouk, and C. Seassal, P. RojoRomeo, F. Mandorlo, D. Marris-Morini, and L. Vivien, “Incorporation of a photonic layer at the metallization levels of a CMOS circuit,” in Proceedings of IEEE Conference on Group IV Photonics, 3rd International Conference (2006).
  5. G. Roelkens, J. Brouckaert, D. Van Thourhout, R. Baets, R. Nötzel, and M. Smit, “Adhesive bonding of InP/InGaAsP dies to processed silicon-on-insulator wafers using DVS-bis-benzocyclobutene,” J. Electrochem. Soc. 153(12), G1015–G1019 (2006).
    [CrossRef]
  6. M. A. Green, “Thin-film solar cells: review of materials, technologies and commercial status,” J. Mater. Sci. Mater. Electron. 18(S1), 15–19 (2007).
    [CrossRef]
  7. G. Cocorullo, F. G. Della Corte, R. de Rosa, I. Rendina, A. Rubino, and E. Terzini, “Amorphous silicon-based guided-wave passive and active devices for silicon integrated optoelectronics,” IEEE J. Sel. Top. Quantum Electron. 4(6), 997–1002 (1998).
    [CrossRef]
  8. A. Harke, M. Krause, and J. Mueller, “Low-loss single mode amorphous silicon waveguides,” Electron. Lett. 41(25), 1377–1378 (2005).
    [CrossRef]
  9. D. K. Sparacin, R. Sun, A. Agarwal, M. Beals, J. Michel, L. C. Kimerling, T. Conway, A. Pomerene, D. Carothers, M. Grove, D. M. Gill, M. S. Rasras, S. S. Patel, and A. E. White, “Low loss amorphous silicon channel waveguides for integrated photonics,” in Proceedings of IEEE Conference on Group IV Photonics, 3rd International Conference 255–257 (2006).
  10. S. K. Selvaraja, E. Sleeckx, M. Schaekers, W. Bogaerts, D. V. Thourhout, P. Dumon, and R. Baets, “Low-loss amorphous silicon-on-insulator technology for photonic integrated circuitry,” Opt. Commun. 282(9), 1767–1770 (2009).
    [CrossRef]
  11. A. Khanna, M. Mulot, A. Säynätjoki, S. Honkanen, H. Lipsanen, S. Arpiainen, and J. Ahopelto, “Amorphous silicon optical waveguides and Bragg mirrors,” Proc. SPIE 6996, (2008).
  12. C. Summonte, F. G. Della Corte, M. A. Nigro, and A. Desalvo, “Photoinduced absorption in B-doped hydrogenated amorphous silicon alloys applied to all-optical modulators,” J. Appl. Phys. 103(2), 023107 (2008).
    [CrossRef]
  13. M. Iodice, G. Mazzi, and L. Sirleto, “Thermo-optical static and dynamic analysis of a digital optical switch based on amorphous silicon waveguide,” Opt. Express 14(12), 5266–5278 (2006).
    [CrossRef] [PubMed]
  14. F. Cantore and F. G. Della Corte, “1.55-μm silicon-based reflection-type waveguide integrated thermo-optic switch,” Opt. Eng. 42(10), 2835–2840 (2003).
    [CrossRef]
  15. F. G. Della Corte, S. Rao, M. A. Nigro, F. Suriano, and C. Summonte, “Electro-optically induced absorption in α-Si:H/α-SiCN waveguiding multistacks,” Opt. Express 16(10), 7540–7550 (2008).
    [CrossRef] [PubMed]
  16. S. Rao, F. G. Della Corte, C. Summonte, and F. Suriano, “Electro-optical modulating device based on a CMOS-compatible a-Si:H/a-SiCN multistack waveguide,” IEEE J. Sel. Top. Quantum Electron. 16(1), 173–178 (2010).
    [CrossRef]
  17. K. Preston, P. Dong, B. Schmidt, and M. Lipson, “High-speed all-optical modulation using polycrystalline silicon microring resonators,” Appl. Phys. Lett. 92(15), 151104 (2008).
    [CrossRef]
  18. K. Preston, S. Manipatruni, A. Gondarenko, C. B. Poitras, and M. Lipson, “Deposited silicon high-speed integrated electro-optic modulator,” Opt. Express 17(7), 5118–5124 (2009).
    [CrossRef] [PubMed]
  19. K. Narayanan, A. W. Elshaari, and S. F. Preble, “Broadband all-optical modulation in hydrogenated-amorphous silicon waveguides,” Opt. Express 18(10), 9809–9814 (2010).
    [CrossRef] [PubMed]
  20. RSoft Photonics CAD Layout User Guide, Rsoft Design Group, Inc. Physical Layer Division, 200 Executive Blvd. Ossining, NY 10562.
  21. E. Centurioni, “Generalized matrix method for calculation of internal light energy flux in mixed coherent and incoherent multilayers,” Appl. Opt. 44(35), 7532–7539 (2005).
    [CrossRef] [PubMed]
  22. W. B. Jackson, N. M. Amer, A. C. Boccara, and D. Fournier, “Photothermal deflection spectroscopy and detection,” Appl. Opt. 20(8), 1333–1344 (1981).
    [CrossRef] [PubMed]
  23. L. Vivien, S. Laval, B. Dumont, S. Lardenois, A. Koster, and E. Cassan, “Polarization-independent single-mode rib waveguides on silicon-on-insulator for telecommunication wavelengths,” Opt. Commun. 210(1–2), 43–49 (2002).
    [CrossRef]
  24. R. A. Soref, J. Schmidtchen, and K. Petermann, “Large single-mode rib waveguides in Ge-Si and Si-on-Si02,” IEEE J. Quantum Electron. 27(8), 1971–1974 (1991).
    [CrossRef]
  25. W. E. Spear and P. G. Le Comber, “Substitutional doping of amorphous silicon,” Solid State Commun. 17(9), 1193–1196 (1975).
    [CrossRef]
  26. S. Rao, F. G. Della Corte, and C. Summonte, “Amorphous silicon waveguides grown by PECVD on an Indium Tin Oxide buried contact,” in Proceedings of the 15th IEEE Mediterranean Electrotechnical Conference (2010).
  27. Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, “12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators,” Opt. Express 15(2), 430–436 (2007).
    [CrossRef] [PubMed]
  28. D. Marris-Morini, L. Vivien, J. M. Fédéli, E. Cassan, P. Lyan, and S. Laval, “Low loss and high speed silicon optical modulator based on a lateral carrier depletion structure,” Opt. Express 16(1), 334–339 (2008).
    [CrossRef] [PubMed]
  29. G. Ganguly, D. E. Carlson, S. S. Hegedus, D. Ryan, R. G. Gordon, D. Pang, and R. C. Reedy, “Improved fill factors in amorphous silicon solar cells on zinc oxide by insertion of a germanium layer to block impurity incorporation,” Appl. Phys. Lett. 85(3), 479–481 (2004).
    [CrossRef]
  30. F. Blecher, B. Schneider, J. Sterzel, M. Hillebrand, S. Benthien, and M. Böhma, “Noise analysis of imagers with a-Si:H pin diode pixels,” J. Non-Cryst. Solids 266–269, 1188–1192 (2000).
    [CrossRef]

2010 (2)

S. Rao, F. G. Della Corte, C. Summonte, and F. Suriano, “Electro-optical modulating device based on a CMOS-compatible a-Si:H/a-SiCN multistack waveguide,” IEEE J. Sel. Top. Quantum Electron. 16(1), 173–178 (2010).
[CrossRef]

K. Narayanan, A. W. Elshaari, and S. F. Preble, “Broadband all-optical modulation in hydrogenated-amorphous silicon waveguides,” Opt. Express 18(10), 9809–9814 (2010).
[CrossRef] [PubMed]

2009 (2)

K. Preston, S. Manipatruni, A. Gondarenko, C. B. Poitras, and M. Lipson, “Deposited silicon high-speed integrated electro-optic modulator,” Opt. Express 17(7), 5118–5124 (2009).
[CrossRef] [PubMed]

S. K. Selvaraja, E. Sleeckx, M. Schaekers, W. Bogaerts, D. V. Thourhout, P. Dumon, and R. Baets, “Low-loss amorphous silicon-on-insulator technology for photonic integrated circuitry,” Opt. Commun. 282(9), 1767–1770 (2009).
[CrossRef]

2008 (5)

C. Summonte, F. G. Della Corte, M. A. Nigro, and A. Desalvo, “Photoinduced absorption in B-doped hydrogenated amorphous silicon alloys applied to all-optical modulators,” J. Appl. Phys. 103(2), 023107 (2008).
[CrossRef]

J. M. Fedeli, L. Di Cioccio, D. Marris-Morini, L. Vivien, R. Orobtchouk, P. Rojo-Romeo, C. Seassal, and F. Mandorlo, “Development of silicon photonics devices using microelectronic tools for the integration on top of a CMOS wafer,” Adv. Opt. Tech. 2008, 1–16 (2008).
[CrossRef]

K. Preston, P. Dong, B. Schmidt, and M. Lipson, “High-speed all-optical modulation using polycrystalline silicon microring resonators,” Appl. Phys. Lett. 92(15), 151104 (2008).
[CrossRef]

D. Marris-Morini, L. Vivien, J. M. Fédéli, E. Cassan, P. Lyan, and S. Laval, “Low loss and high speed silicon optical modulator based on a lateral carrier depletion structure,” Opt. Express 16(1), 334–339 (2008).
[CrossRef] [PubMed]

F. G. Della Corte, S. Rao, M. A. Nigro, F. Suriano, and C. Summonte, “Electro-optically induced absorption in α-Si:H/α-SiCN waveguiding multistacks,” Opt. Express 16(10), 7540–7550 (2008).
[CrossRef] [PubMed]

2007 (2)

Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, “12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators,” Opt. Express 15(2), 430–436 (2007).
[CrossRef] [PubMed]

M. A. Green, “Thin-film solar cells: review of materials, technologies and commercial status,” J. Mater. Sci. Mater. Electron. 18(S1), 15–19 (2007).
[CrossRef]

2006 (3)

G. Roelkens, J. Brouckaert, D. Van Thourhout, R. Baets, R. Nötzel, and M. Smit, “Adhesive bonding of InP/InGaAsP dies to processed silicon-on-insulator wafers using DVS-bis-benzocyclobutene,” J. Electrochem. Soc. 153(12), G1015–G1019 (2006).
[CrossRef]

L. C. Kimerling, D. Ahn, M. Beals, C.-Y. Hong, J. Liu, J. Michel, D. Pan, and D. K. Sparacin, “Electronic-photonic integrated circuits on the CMOS platform,” Proc. SPIE 6125, 612502, 612502-10 (2006).
[CrossRef]

M. Iodice, G. Mazzi, and L. Sirleto, “Thermo-optical static and dynamic analysis of a digital optical switch based on amorphous silicon waveguide,” Opt. Express 14(12), 5266–5278 (2006).
[CrossRef] [PubMed]

2005 (2)

E. Centurioni, “Generalized matrix method for calculation of internal light energy flux in mixed coherent and incoherent multilayers,” Appl. Opt. 44(35), 7532–7539 (2005).
[CrossRef] [PubMed]

A. Harke, M. Krause, and J. Mueller, “Low-loss single mode amorphous silicon waveguides,” Electron. Lett. 41(25), 1377–1378 (2005).
[CrossRef]

2004 (1)

G. Ganguly, D. E. Carlson, S. S. Hegedus, D. Ryan, R. G. Gordon, D. Pang, and R. C. Reedy, “Improved fill factors in amorphous silicon solar cells on zinc oxide by insertion of a germanium layer to block impurity incorporation,” Appl. Phys. Lett. 85(3), 479–481 (2004).
[CrossRef]

2003 (1)

F. Cantore and F. G. Della Corte, “1.55-μm silicon-based reflection-type waveguide integrated thermo-optic switch,” Opt. Eng. 42(10), 2835–2840 (2003).
[CrossRef]

2002 (1)

L. Vivien, S. Laval, B. Dumont, S. Lardenois, A. Koster, and E. Cassan, “Polarization-independent single-mode rib waveguides on silicon-on-insulator for telecommunication wavelengths,” Opt. Commun. 210(1–2), 43–49 (2002).
[CrossRef]

2000 (1)

F. Blecher, B. Schneider, J. Sterzel, M. Hillebrand, S. Benthien, and M. Böhma, “Noise analysis of imagers with a-Si:H pin diode pixels,” J. Non-Cryst. Solids 266–269, 1188–1192 (2000).
[CrossRef]

1998 (1)

G. Cocorullo, F. G. Della Corte, R. de Rosa, I. Rendina, A. Rubino, and E. Terzini, “Amorphous silicon-based guided-wave passive and active devices for silicon integrated optoelectronics,” IEEE J. Sel. Top. Quantum Electron. 4(6), 997–1002 (1998).
[CrossRef]

1991 (1)

R. A. Soref, J. Schmidtchen, and K. Petermann, “Large single-mode rib waveguides in Ge-Si and Si-on-Si02,” IEEE J. Quantum Electron. 27(8), 1971–1974 (1991).
[CrossRef]

1981 (1)

1975 (1)

W. E. Spear and P. G. Le Comber, “Substitutional doping of amorphous silicon,” Solid State Commun. 17(9), 1193–1196 (1975).
[CrossRef]

Ahn, D.

L. C. Kimerling, D. Ahn, M. Beals, C.-Y. Hong, J. Liu, J. Michel, D. Pan, and D. K. Sparacin, “Electronic-photonic integrated circuits on the CMOS platform,” Proc. SPIE 6125, 612502, 612502-10 (2006).
[CrossRef]

Amer, N. M.

Baets, R.

S. K. Selvaraja, E. Sleeckx, M. Schaekers, W. Bogaerts, D. V. Thourhout, P. Dumon, and R. Baets, “Low-loss amorphous silicon-on-insulator technology for photonic integrated circuitry,” Opt. Commun. 282(9), 1767–1770 (2009).
[CrossRef]

G. Roelkens, J. Brouckaert, D. Van Thourhout, R. Baets, R. Nötzel, and M. Smit, “Adhesive bonding of InP/InGaAsP dies to processed silicon-on-insulator wafers using DVS-bis-benzocyclobutene,” J. Electrochem. Soc. 153(12), G1015–G1019 (2006).
[CrossRef]

Beals, M.

L. C. Kimerling, D. Ahn, M. Beals, C.-Y. Hong, J. Liu, J. Michel, D. Pan, and D. K. Sparacin, “Electronic-photonic integrated circuits on the CMOS platform,” Proc. SPIE 6125, 612502, 612502-10 (2006).
[CrossRef]

Benthien, S.

F. Blecher, B. Schneider, J. Sterzel, M. Hillebrand, S. Benthien, and M. Böhma, “Noise analysis of imagers with a-Si:H pin diode pixels,” J. Non-Cryst. Solids 266–269, 1188–1192 (2000).
[CrossRef]

Blecher, F.

F. Blecher, B. Schneider, J. Sterzel, M. Hillebrand, S. Benthien, and M. Böhma, “Noise analysis of imagers with a-Si:H pin diode pixels,” J. Non-Cryst. Solids 266–269, 1188–1192 (2000).
[CrossRef]

Boccara, A. C.

Bogaerts, W.

S. K. Selvaraja, E. Sleeckx, M. Schaekers, W. Bogaerts, D. V. Thourhout, P. Dumon, and R. Baets, “Low-loss amorphous silicon-on-insulator technology for photonic integrated circuitry,” Opt. Commun. 282(9), 1767–1770 (2009).
[CrossRef]

Böhma, M.

F. Blecher, B. Schneider, J. Sterzel, M. Hillebrand, S. Benthien, and M. Böhma, “Noise analysis of imagers with a-Si:H pin diode pixels,” J. Non-Cryst. Solids 266–269, 1188–1192 (2000).
[CrossRef]

Brouckaert, J.

G. Roelkens, J. Brouckaert, D. Van Thourhout, R. Baets, R. Nötzel, and M. Smit, “Adhesive bonding of InP/InGaAsP dies to processed silicon-on-insulator wafers using DVS-bis-benzocyclobutene,” J. Electrochem. Soc. 153(12), G1015–G1019 (2006).
[CrossRef]

Cantore, F.

F. Cantore and F. G. Della Corte, “1.55-μm silicon-based reflection-type waveguide integrated thermo-optic switch,” Opt. Eng. 42(10), 2835–2840 (2003).
[CrossRef]

Carlson, D. E.

G. Ganguly, D. E. Carlson, S. S. Hegedus, D. Ryan, R. G. Gordon, D. Pang, and R. C. Reedy, “Improved fill factors in amorphous silicon solar cells on zinc oxide by insertion of a germanium layer to block impurity incorporation,” Appl. Phys. Lett. 85(3), 479–481 (2004).
[CrossRef]

Cassan, E.

D. Marris-Morini, L. Vivien, J. M. Fédéli, E. Cassan, P. Lyan, and S. Laval, “Low loss and high speed silicon optical modulator based on a lateral carrier depletion structure,” Opt. Express 16(1), 334–339 (2008).
[CrossRef] [PubMed]

L. Vivien, S. Laval, B. Dumont, S. Lardenois, A. Koster, and E. Cassan, “Polarization-independent single-mode rib waveguides on silicon-on-insulator for telecommunication wavelengths,” Opt. Commun. 210(1–2), 43–49 (2002).
[CrossRef]

Centurioni, E.

Cocorullo, G.

G. Cocorullo, F. G. Della Corte, R. de Rosa, I. Rendina, A. Rubino, and E. Terzini, “Amorphous silicon-based guided-wave passive and active devices for silicon integrated optoelectronics,” IEEE J. Sel. Top. Quantum Electron. 4(6), 997–1002 (1998).
[CrossRef]

de Rosa, R.

G. Cocorullo, F. G. Della Corte, R. de Rosa, I. Rendina, A. Rubino, and E. Terzini, “Amorphous silicon-based guided-wave passive and active devices for silicon integrated optoelectronics,” IEEE J. Sel. Top. Quantum Electron. 4(6), 997–1002 (1998).
[CrossRef]

Della Corte, F. G.

S. Rao, F. G. Della Corte, C. Summonte, and F. Suriano, “Electro-optical modulating device based on a CMOS-compatible a-Si:H/a-SiCN multistack waveguide,” IEEE J. Sel. Top. Quantum Electron. 16(1), 173–178 (2010).
[CrossRef]

C. Summonte, F. G. Della Corte, M. A. Nigro, and A. Desalvo, “Photoinduced absorption in B-doped hydrogenated amorphous silicon alloys applied to all-optical modulators,” J. Appl. Phys. 103(2), 023107 (2008).
[CrossRef]

F. G. Della Corte, S. Rao, M. A. Nigro, F. Suriano, and C. Summonte, “Electro-optically induced absorption in α-Si:H/α-SiCN waveguiding multistacks,” Opt. Express 16(10), 7540–7550 (2008).
[CrossRef] [PubMed]

F. Cantore and F. G. Della Corte, “1.55-μm silicon-based reflection-type waveguide integrated thermo-optic switch,” Opt. Eng. 42(10), 2835–2840 (2003).
[CrossRef]

G. Cocorullo, F. G. Della Corte, R. de Rosa, I. Rendina, A. Rubino, and E. Terzini, “Amorphous silicon-based guided-wave passive and active devices for silicon integrated optoelectronics,” IEEE J. Sel. Top. Quantum Electron. 4(6), 997–1002 (1998).
[CrossRef]

Desalvo, A.

C. Summonte, F. G. Della Corte, M. A. Nigro, and A. Desalvo, “Photoinduced absorption in B-doped hydrogenated amorphous silicon alloys applied to all-optical modulators,” J. Appl. Phys. 103(2), 023107 (2008).
[CrossRef]

Di Cioccio, L.

J. M. Fedeli, L. Di Cioccio, D. Marris-Morini, L. Vivien, R. Orobtchouk, P. Rojo-Romeo, C. Seassal, and F. Mandorlo, “Development of silicon photonics devices using microelectronic tools for the integration on top of a CMOS wafer,” Adv. Opt. Tech. 2008, 1–16 (2008).
[CrossRef]

Dong, P.

K. Preston, P. Dong, B. Schmidt, and M. Lipson, “High-speed all-optical modulation using polycrystalline silicon microring resonators,” Appl. Phys. Lett. 92(15), 151104 (2008).
[CrossRef]

Dumon, P.

S. K. Selvaraja, E. Sleeckx, M. Schaekers, W. Bogaerts, D. V. Thourhout, P. Dumon, and R. Baets, “Low-loss amorphous silicon-on-insulator technology for photonic integrated circuitry,” Opt. Commun. 282(9), 1767–1770 (2009).
[CrossRef]

Dumont, B.

L. Vivien, S. Laval, B. Dumont, S. Lardenois, A. Koster, and E. Cassan, “Polarization-independent single-mode rib waveguides on silicon-on-insulator for telecommunication wavelengths,” Opt. Commun. 210(1–2), 43–49 (2002).
[CrossRef]

Elshaari, A. W.

Fedeli, J. M.

J. M. Fedeli, L. Di Cioccio, D. Marris-Morini, L. Vivien, R. Orobtchouk, P. Rojo-Romeo, C. Seassal, and F. Mandorlo, “Development of silicon photonics devices using microelectronic tools for the integration on top of a CMOS wafer,” Adv. Opt. Tech. 2008, 1–16 (2008).
[CrossRef]

Fédéli, J. M.

Fournier, D.

Ganguly, G.

G. Ganguly, D. E. Carlson, S. S. Hegedus, D. Ryan, R. G. Gordon, D. Pang, and R. C. Reedy, “Improved fill factors in amorphous silicon solar cells on zinc oxide by insertion of a germanium layer to block impurity incorporation,” Appl. Phys. Lett. 85(3), 479–481 (2004).
[CrossRef]

Gondarenko, A.

Gordon, R. G.

G. Ganguly, D. E. Carlson, S. S. Hegedus, D. Ryan, R. G. Gordon, D. Pang, and R. C. Reedy, “Improved fill factors in amorphous silicon solar cells on zinc oxide by insertion of a germanium layer to block impurity incorporation,” Appl. Phys. Lett. 85(3), 479–481 (2004).
[CrossRef]

Green, M. A.

M. A. Green, “Thin-film solar cells: review of materials, technologies and commercial status,” J. Mater. Sci. Mater. Electron. 18(S1), 15–19 (2007).
[CrossRef]

Harke, A.

A. Harke, M. Krause, and J. Mueller, “Low-loss single mode amorphous silicon waveguides,” Electron. Lett. 41(25), 1377–1378 (2005).
[CrossRef]

Hegedus, S. S.

G. Ganguly, D. E. Carlson, S. S. Hegedus, D. Ryan, R. G. Gordon, D. Pang, and R. C. Reedy, “Improved fill factors in amorphous silicon solar cells on zinc oxide by insertion of a germanium layer to block impurity incorporation,” Appl. Phys. Lett. 85(3), 479–481 (2004).
[CrossRef]

Hillebrand, M.

F. Blecher, B. Schneider, J. Sterzel, M. Hillebrand, S. Benthien, and M. Böhma, “Noise analysis of imagers with a-Si:H pin diode pixels,” J. Non-Cryst. Solids 266–269, 1188–1192 (2000).
[CrossRef]

Hong, C.-Y.

L. C. Kimerling, D. Ahn, M. Beals, C.-Y. Hong, J. Liu, J. Michel, D. Pan, and D. K. Sparacin, “Electronic-photonic integrated circuits on the CMOS platform,” Proc. SPIE 6125, 612502, 612502-10 (2006).
[CrossRef]

Iodice, M.

Jackson, W. B.

Kimerling, L. C.

L. C. Kimerling, D. Ahn, M. Beals, C.-Y. Hong, J. Liu, J. Michel, D. Pan, and D. K. Sparacin, “Electronic-photonic integrated circuits on the CMOS platform,” Proc. SPIE 6125, 612502, 612502-10 (2006).
[CrossRef]

Koster, A.

L. Vivien, S. Laval, B. Dumont, S. Lardenois, A. Koster, and E. Cassan, “Polarization-independent single-mode rib waveguides on silicon-on-insulator for telecommunication wavelengths,” Opt. Commun. 210(1–2), 43–49 (2002).
[CrossRef]

Krause, M.

A. Harke, M. Krause, and J. Mueller, “Low-loss single mode amorphous silicon waveguides,” Electron. Lett. 41(25), 1377–1378 (2005).
[CrossRef]

Lardenois, S.

L. Vivien, S. Laval, B. Dumont, S. Lardenois, A. Koster, and E. Cassan, “Polarization-independent single-mode rib waveguides on silicon-on-insulator for telecommunication wavelengths,” Opt. Commun. 210(1–2), 43–49 (2002).
[CrossRef]

Laval, S.

D. Marris-Morini, L. Vivien, J. M. Fédéli, E. Cassan, P. Lyan, and S. Laval, “Low loss and high speed silicon optical modulator based on a lateral carrier depletion structure,” Opt. Express 16(1), 334–339 (2008).
[CrossRef] [PubMed]

L. Vivien, S. Laval, B. Dumont, S. Lardenois, A. Koster, and E. Cassan, “Polarization-independent single-mode rib waveguides on silicon-on-insulator for telecommunication wavelengths,” Opt. Commun. 210(1–2), 43–49 (2002).
[CrossRef]

Le Comber, P. G.

W. E. Spear and P. G. Le Comber, “Substitutional doping of amorphous silicon,” Solid State Commun. 17(9), 1193–1196 (1975).
[CrossRef]

Lipson, M.

Liu, J.

L. C. Kimerling, D. Ahn, M. Beals, C.-Y. Hong, J. Liu, J. Michel, D. Pan, and D. K. Sparacin, “Electronic-photonic integrated circuits on the CMOS platform,” Proc. SPIE 6125, 612502, 612502-10 (2006).
[CrossRef]

Lyan, P.

Mandorlo, F.

J. M. Fedeli, L. Di Cioccio, D. Marris-Morini, L. Vivien, R. Orobtchouk, P. Rojo-Romeo, C. Seassal, and F. Mandorlo, “Development of silicon photonics devices using microelectronic tools for the integration on top of a CMOS wafer,” Adv. Opt. Tech. 2008, 1–16 (2008).
[CrossRef]

Manipatruni, S.

Marris-Morini, D.

D. Marris-Morini, L. Vivien, J. M. Fédéli, E. Cassan, P. Lyan, and S. Laval, “Low loss and high speed silicon optical modulator based on a lateral carrier depletion structure,” Opt. Express 16(1), 334–339 (2008).
[CrossRef] [PubMed]

J. M. Fedeli, L. Di Cioccio, D. Marris-Morini, L. Vivien, R. Orobtchouk, P. Rojo-Romeo, C. Seassal, and F. Mandorlo, “Development of silicon photonics devices using microelectronic tools for the integration on top of a CMOS wafer,” Adv. Opt. Tech. 2008, 1–16 (2008).
[CrossRef]

Mazzi, G.

Michel, J.

L. C. Kimerling, D. Ahn, M. Beals, C.-Y. Hong, J. Liu, J. Michel, D. Pan, and D. K. Sparacin, “Electronic-photonic integrated circuits on the CMOS platform,” Proc. SPIE 6125, 612502, 612502-10 (2006).
[CrossRef]

Mueller, J.

A. Harke, M. Krause, and J. Mueller, “Low-loss single mode amorphous silicon waveguides,” Electron. Lett. 41(25), 1377–1378 (2005).
[CrossRef]

Narayanan, K.

Nigro, M. A.

F. G. Della Corte, S. Rao, M. A. Nigro, F. Suriano, and C. Summonte, “Electro-optically induced absorption in α-Si:H/α-SiCN waveguiding multistacks,” Opt. Express 16(10), 7540–7550 (2008).
[CrossRef] [PubMed]

C. Summonte, F. G. Della Corte, M. A. Nigro, and A. Desalvo, “Photoinduced absorption in B-doped hydrogenated amorphous silicon alloys applied to all-optical modulators,” J. Appl. Phys. 103(2), 023107 (2008).
[CrossRef]

Nötzel, R.

G. Roelkens, J. Brouckaert, D. Van Thourhout, R. Baets, R. Nötzel, and M. Smit, “Adhesive bonding of InP/InGaAsP dies to processed silicon-on-insulator wafers using DVS-bis-benzocyclobutene,” J. Electrochem. Soc. 153(12), G1015–G1019 (2006).
[CrossRef]

Orobtchouk, R.

J. M. Fedeli, L. Di Cioccio, D. Marris-Morini, L. Vivien, R. Orobtchouk, P. Rojo-Romeo, C. Seassal, and F. Mandorlo, “Development of silicon photonics devices using microelectronic tools for the integration on top of a CMOS wafer,” Adv. Opt. Tech. 2008, 1–16 (2008).
[CrossRef]

Pan, D.

L. C. Kimerling, D. Ahn, M. Beals, C.-Y. Hong, J. Liu, J. Michel, D. Pan, and D. K. Sparacin, “Electronic-photonic integrated circuits on the CMOS platform,” Proc. SPIE 6125, 612502, 612502-10 (2006).
[CrossRef]

Pang, D.

G. Ganguly, D. E. Carlson, S. S. Hegedus, D. Ryan, R. G. Gordon, D. Pang, and R. C. Reedy, “Improved fill factors in amorphous silicon solar cells on zinc oxide by insertion of a germanium layer to block impurity incorporation,” Appl. Phys. Lett. 85(3), 479–481 (2004).
[CrossRef]

Petermann, K.

R. A. Soref, J. Schmidtchen, and K. Petermann, “Large single-mode rib waveguides in Ge-Si and Si-on-Si02,” IEEE J. Quantum Electron. 27(8), 1971–1974 (1991).
[CrossRef]

Poitras, C. B.

Preble, S. F.

Preston, K.

K. Preston, S. Manipatruni, A. Gondarenko, C. B. Poitras, and M. Lipson, “Deposited silicon high-speed integrated electro-optic modulator,” Opt. Express 17(7), 5118–5124 (2009).
[CrossRef] [PubMed]

K. Preston, P. Dong, B. Schmidt, and M. Lipson, “High-speed all-optical modulation using polycrystalline silicon microring resonators,” Appl. Phys. Lett. 92(15), 151104 (2008).
[CrossRef]

Rao, S.

S. Rao, F. G. Della Corte, C. Summonte, and F. Suriano, “Electro-optical modulating device based on a CMOS-compatible a-Si:H/a-SiCN multistack waveguide,” IEEE J. Sel. Top. Quantum Electron. 16(1), 173–178 (2010).
[CrossRef]

F. G. Della Corte, S. Rao, M. A. Nigro, F. Suriano, and C. Summonte, “Electro-optically induced absorption in α-Si:H/α-SiCN waveguiding multistacks,” Opt. Express 16(10), 7540–7550 (2008).
[CrossRef] [PubMed]

Reedy, R. C.

G. Ganguly, D. E. Carlson, S. S. Hegedus, D. Ryan, R. G. Gordon, D. Pang, and R. C. Reedy, “Improved fill factors in amorphous silicon solar cells on zinc oxide by insertion of a germanium layer to block impurity incorporation,” Appl. Phys. Lett. 85(3), 479–481 (2004).
[CrossRef]

Rendina, I.

G. Cocorullo, F. G. Della Corte, R. de Rosa, I. Rendina, A. Rubino, and E. Terzini, “Amorphous silicon-based guided-wave passive and active devices for silicon integrated optoelectronics,” IEEE J. Sel. Top. Quantum Electron. 4(6), 997–1002 (1998).
[CrossRef]

Roelkens, G.

G. Roelkens, J. Brouckaert, D. Van Thourhout, R. Baets, R. Nötzel, and M. Smit, “Adhesive bonding of InP/InGaAsP dies to processed silicon-on-insulator wafers using DVS-bis-benzocyclobutene,” J. Electrochem. Soc. 153(12), G1015–G1019 (2006).
[CrossRef]

Rojo-Romeo, P.

J. M. Fedeli, L. Di Cioccio, D. Marris-Morini, L. Vivien, R. Orobtchouk, P. Rojo-Romeo, C. Seassal, and F. Mandorlo, “Development of silicon photonics devices using microelectronic tools for the integration on top of a CMOS wafer,” Adv. Opt. Tech. 2008, 1–16 (2008).
[CrossRef]

Rubino, A.

G. Cocorullo, F. G. Della Corte, R. de Rosa, I. Rendina, A. Rubino, and E. Terzini, “Amorphous silicon-based guided-wave passive and active devices for silicon integrated optoelectronics,” IEEE J. Sel. Top. Quantum Electron. 4(6), 997–1002 (1998).
[CrossRef]

Ryan, D.

G. Ganguly, D. E. Carlson, S. S. Hegedus, D. Ryan, R. G. Gordon, D. Pang, and R. C. Reedy, “Improved fill factors in amorphous silicon solar cells on zinc oxide by insertion of a germanium layer to block impurity incorporation,” Appl. Phys. Lett. 85(3), 479–481 (2004).
[CrossRef]

Schaekers, M.

S. K. Selvaraja, E. Sleeckx, M. Schaekers, W. Bogaerts, D. V. Thourhout, P. Dumon, and R. Baets, “Low-loss amorphous silicon-on-insulator technology for photonic integrated circuitry,” Opt. Commun. 282(9), 1767–1770 (2009).
[CrossRef]

Schmidt, B.

K. Preston, P. Dong, B. Schmidt, and M. Lipson, “High-speed all-optical modulation using polycrystalline silicon microring resonators,” Appl. Phys. Lett. 92(15), 151104 (2008).
[CrossRef]

Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, “12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators,” Opt. Express 15(2), 430–436 (2007).
[CrossRef] [PubMed]

Schmidtchen, J.

R. A. Soref, J. Schmidtchen, and K. Petermann, “Large single-mode rib waveguides in Ge-Si and Si-on-Si02,” IEEE J. Quantum Electron. 27(8), 1971–1974 (1991).
[CrossRef]

Schneider, B.

F. Blecher, B. Schneider, J. Sterzel, M. Hillebrand, S. Benthien, and M. Böhma, “Noise analysis of imagers with a-Si:H pin diode pixels,” J. Non-Cryst. Solids 266–269, 1188–1192 (2000).
[CrossRef]

Seassal, C.

J. M. Fedeli, L. Di Cioccio, D. Marris-Morini, L. Vivien, R. Orobtchouk, P. Rojo-Romeo, C. Seassal, and F. Mandorlo, “Development of silicon photonics devices using microelectronic tools for the integration on top of a CMOS wafer,” Adv. Opt. Tech. 2008, 1–16 (2008).
[CrossRef]

Selvaraja, S. K.

S. K. Selvaraja, E. Sleeckx, M. Schaekers, W. Bogaerts, D. V. Thourhout, P. Dumon, and R. Baets, “Low-loss amorphous silicon-on-insulator technology for photonic integrated circuitry,” Opt. Commun. 282(9), 1767–1770 (2009).
[CrossRef]

Shakya, J.

Sirleto, L.

Sleeckx, E.

S. K. Selvaraja, E. Sleeckx, M. Schaekers, W. Bogaerts, D. V. Thourhout, P. Dumon, and R. Baets, “Low-loss amorphous silicon-on-insulator technology for photonic integrated circuitry,” Opt. Commun. 282(9), 1767–1770 (2009).
[CrossRef]

Smit, M.

G. Roelkens, J. Brouckaert, D. Van Thourhout, R. Baets, R. Nötzel, and M. Smit, “Adhesive bonding of InP/InGaAsP dies to processed silicon-on-insulator wafers using DVS-bis-benzocyclobutene,” J. Electrochem. Soc. 153(12), G1015–G1019 (2006).
[CrossRef]

Soref, R. A.

R. A. Soref, J. Schmidtchen, and K. Petermann, “Large single-mode rib waveguides in Ge-Si and Si-on-Si02,” IEEE J. Quantum Electron. 27(8), 1971–1974 (1991).
[CrossRef]

Sparacin, D. K.

L. C. Kimerling, D. Ahn, M. Beals, C.-Y. Hong, J. Liu, J. Michel, D. Pan, and D. K. Sparacin, “Electronic-photonic integrated circuits on the CMOS platform,” Proc. SPIE 6125, 612502, 612502-10 (2006).
[CrossRef]

Spear, W. E.

W. E. Spear and P. G. Le Comber, “Substitutional doping of amorphous silicon,” Solid State Commun. 17(9), 1193–1196 (1975).
[CrossRef]

Sterzel, J.

F. Blecher, B. Schneider, J. Sterzel, M. Hillebrand, S. Benthien, and M. Böhma, “Noise analysis of imagers with a-Si:H pin diode pixels,” J. Non-Cryst. Solids 266–269, 1188–1192 (2000).
[CrossRef]

Summonte, C.

S. Rao, F. G. Della Corte, C. Summonte, and F. Suriano, “Electro-optical modulating device based on a CMOS-compatible a-Si:H/a-SiCN multistack waveguide,” IEEE J. Sel. Top. Quantum Electron. 16(1), 173–178 (2010).
[CrossRef]

C. Summonte, F. G. Della Corte, M. A. Nigro, and A. Desalvo, “Photoinduced absorption in B-doped hydrogenated amorphous silicon alloys applied to all-optical modulators,” J. Appl. Phys. 103(2), 023107 (2008).
[CrossRef]

F. G. Della Corte, S. Rao, M. A. Nigro, F. Suriano, and C. Summonte, “Electro-optically induced absorption in α-Si:H/α-SiCN waveguiding multistacks,” Opt. Express 16(10), 7540–7550 (2008).
[CrossRef] [PubMed]

Suriano, F.

S. Rao, F. G. Della Corte, C. Summonte, and F. Suriano, “Electro-optical modulating device based on a CMOS-compatible a-Si:H/a-SiCN multistack waveguide,” IEEE J. Sel. Top. Quantum Electron. 16(1), 173–178 (2010).
[CrossRef]

F. G. Della Corte, S. Rao, M. A. Nigro, F. Suriano, and C. Summonte, “Electro-optically induced absorption in α-Si:H/α-SiCN waveguiding multistacks,” Opt. Express 16(10), 7540–7550 (2008).
[CrossRef] [PubMed]

Terzini, E.

G. Cocorullo, F. G. Della Corte, R. de Rosa, I. Rendina, A. Rubino, and E. Terzini, “Amorphous silicon-based guided-wave passive and active devices for silicon integrated optoelectronics,” IEEE J. Sel. Top. Quantum Electron. 4(6), 997–1002 (1998).
[CrossRef]

Thourhout, D. V.

S. K. Selvaraja, E. Sleeckx, M. Schaekers, W. Bogaerts, D. V. Thourhout, P. Dumon, and R. Baets, “Low-loss amorphous silicon-on-insulator technology for photonic integrated circuitry,” Opt. Commun. 282(9), 1767–1770 (2009).
[CrossRef]

Van Thourhout, D.

G. Roelkens, J. Brouckaert, D. Van Thourhout, R. Baets, R. Nötzel, and M. Smit, “Adhesive bonding of InP/InGaAsP dies to processed silicon-on-insulator wafers using DVS-bis-benzocyclobutene,” J. Electrochem. Soc. 153(12), G1015–G1019 (2006).
[CrossRef]

Vivien, L.

J. M. Fedeli, L. Di Cioccio, D. Marris-Morini, L. Vivien, R. Orobtchouk, P. Rojo-Romeo, C. Seassal, and F. Mandorlo, “Development of silicon photonics devices using microelectronic tools for the integration on top of a CMOS wafer,” Adv. Opt. Tech. 2008, 1–16 (2008).
[CrossRef]

D. Marris-Morini, L. Vivien, J. M. Fédéli, E. Cassan, P. Lyan, and S. Laval, “Low loss and high speed silicon optical modulator based on a lateral carrier depletion structure,” Opt. Express 16(1), 334–339 (2008).
[CrossRef] [PubMed]

L. Vivien, S. Laval, B. Dumont, S. Lardenois, A. Koster, and E. Cassan, “Polarization-independent single-mode rib waveguides on silicon-on-insulator for telecommunication wavelengths,” Opt. Commun. 210(1–2), 43–49 (2002).
[CrossRef]

Xu, Q.

Adv. Opt. Tech. (1)

J. M. Fedeli, L. Di Cioccio, D. Marris-Morini, L. Vivien, R. Orobtchouk, P. Rojo-Romeo, C. Seassal, and F. Mandorlo, “Development of silicon photonics devices using microelectronic tools for the integration on top of a CMOS wafer,” Adv. Opt. Tech. 2008, 1–16 (2008).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (2)

G. Ganguly, D. E. Carlson, S. S. Hegedus, D. Ryan, R. G. Gordon, D. Pang, and R. C. Reedy, “Improved fill factors in amorphous silicon solar cells on zinc oxide by insertion of a germanium layer to block impurity incorporation,” Appl. Phys. Lett. 85(3), 479–481 (2004).
[CrossRef]

K. Preston, P. Dong, B. Schmidt, and M. Lipson, “High-speed all-optical modulation using polycrystalline silicon microring resonators,” Appl. Phys. Lett. 92(15), 151104 (2008).
[CrossRef]

Electron. Lett. (1)

A. Harke, M. Krause, and J. Mueller, “Low-loss single mode amorphous silicon waveguides,” Electron. Lett. 41(25), 1377–1378 (2005).
[CrossRef]

IEEE J. Quantum Electron. (1)

R. A. Soref, J. Schmidtchen, and K. Petermann, “Large single-mode rib waveguides in Ge-Si and Si-on-Si02,” IEEE J. Quantum Electron. 27(8), 1971–1974 (1991).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

S. Rao, F. G. Della Corte, C. Summonte, and F. Suriano, “Electro-optical modulating device based on a CMOS-compatible a-Si:H/a-SiCN multistack waveguide,” IEEE J. Sel. Top. Quantum Electron. 16(1), 173–178 (2010).
[CrossRef]

G. Cocorullo, F. G. Della Corte, R. de Rosa, I. Rendina, A. Rubino, and E. Terzini, “Amorphous silicon-based guided-wave passive and active devices for silicon integrated optoelectronics,” IEEE J. Sel. Top. Quantum Electron. 4(6), 997–1002 (1998).
[CrossRef]

J. Appl. Phys. (1)

C. Summonte, F. G. Della Corte, M. A. Nigro, and A. Desalvo, “Photoinduced absorption in B-doped hydrogenated amorphous silicon alloys applied to all-optical modulators,” J. Appl. Phys. 103(2), 023107 (2008).
[CrossRef]

J. Electrochem. Soc. (1)

G. Roelkens, J. Brouckaert, D. Van Thourhout, R. Baets, R. Nötzel, and M. Smit, “Adhesive bonding of InP/InGaAsP dies to processed silicon-on-insulator wafers using DVS-bis-benzocyclobutene,” J. Electrochem. Soc. 153(12), G1015–G1019 (2006).
[CrossRef]

J. Mater. Sci. Mater. Electron. (1)

M. A. Green, “Thin-film solar cells: review of materials, technologies and commercial status,” J. Mater. Sci. Mater. Electron. 18(S1), 15–19 (2007).
[CrossRef]

J. Non-Cryst. Solids (1)

F. Blecher, B. Schneider, J. Sterzel, M. Hillebrand, S. Benthien, and M. Böhma, “Noise analysis of imagers with a-Si:H pin diode pixels,” J. Non-Cryst. Solids 266–269, 1188–1192 (2000).
[CrossRef]

Opt. Commun. (2)

S. K. Selvaraja, E. Sleeckx, M. Schaekers, W. Bogaerts, D. V. Thourhout, P. Dumon, and R. Baets, “Low-loss amorphous silicon-on-insulator technology for photonic integrated circuitry,” Opt. Commun. 282(9), 1767–1770 (2009).
[CrossRef]

L. Vivien, S. Laval, B. Dumont, S. Lardenois, A. Koster, and E. Cassan, “Polarization-independent single-mode rib waveguides on silicon-on-insulator for telecommunication wavelengths,” Opt. Commun. 210(1–2), 43–49 (2002).
[CrossRef]

Opt. Eng. (1)

F. Cantore and F. G. Della Corte, “1.55-μm silicon-based reflection-type waveguide integrated thermo-optic switch,” Opt. Eng. 42(10), 2835–2840 (2003).
[CrossRef]

Opt. Express (6)

Proc. SPIE (1)

L. C. Kimerling, D. Ahn, M. Beals, C.-Y. Hong, J. Liu, J. Michel, D. Pan, and D. K. Sparacin, “Electronic-photonic integrated circuits on the CMOS platform,” Proc. SPIE 6125, 612502, 612502-10 (2006).
[CrossRef]

Solid State Commun. (1)

W. E. Spear and P. G. Le Comber, “Substitutional doping of amorphous silicon,” Solid State Commun. 17(9), 1193–1196 (1975).
[CrossRef]

Other (6)

S. Rao, F. G. Della Corte, and C. Summonte, “Amorphous silicon waveguides grown by PECVD on an Indium Tin Oxide buried contact,” in Proceedings of the 15th IEEE Mediterranean Electrotechnical Conference (2010).

T. Pinguet, B. Analui, E. Balmater, D. Guckenberger, M. Harrison, R. Koumans, D. Kucharski, Y. Liang, G. Masini, A. Mekis, S. Mirsaidi, A. Narasimha, M. Peterson, D. Rines, V. Sadagopan, S. Sahni, T. J. Sleboda, D. Song, Y. Wang, B. Welch, J. Witzens, J. Yao, S. Abdalla, S. Gloeckner, and P. De Dobbelaer, “Monolithically Integrated High-Speed CMOS Photonic Transceivers,” in Proceedings of IEEE Conference on Group IV Photonics, 5th International Conference (2008).

J. M. Fedeli, M. Migette, L. Di Cioccio, L. El Melhaoui, R. Orobtchouk, and C. Seassal, P. RojoRomeo, F. Mandorlo, D. Marris-Morini, and L. Vivien, “Incorporation of a photonic layer at the metallization levels of a CMOS circuit,” in Proceedings of IEEE Conference on Group IV Photonics, 3rd International Conference (2006).

D. K. Sparacin, R. Sun, A. Agarwal, M. Beals, J. Michel, L. C. Kimerling, T. Conway, A. Pomerene, D. Carothers, M. Grove, D. M. Gill, M. S. Rasras, S. S. Patel, and A. E. White, “Low loss amorphous silicon channel waveguides for integrated photonics,” in Proceedings of IEEE Conference on Group IV Photonics, 3rd International Conference 255–257 (2006).

RSoft Photonics CAD Layout User Guide, Rsoft Design Group, Inc. Physical Layer Division, 200 Executive Blvd. Ossining, NY 10562.

A. Khanna, M. Mulot, A. Säynätjoki, S. Honkanen, H. Lipsanen, S. Arpiainen, and J. Ahopelto, “Amorphous silicon optical waveguides and Bragg mirrors,” Proc. SPIE 6996, (2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic cross section of the p-i-n rib-waveguide (a) and material refractive index profile at x = 0 (b). The cross section (a) illustrates the birefringence-free waveguide designed for testing the electro-optical modulation in the a-SiC:H/a-Si:H/a-SiC:H p-i-n structure. From top to bottom we find in sequence a 200 nm-thick ZnO/Al layer, a 100-nm thick a-SiC:H (n-doped) upper cladding, a 2000 nm-thick a-Si:H (undoped) core, and a 2000 nm-thick a-SiC:H (p-doped) bottom cladding. The substrate is a heavily p-doped silicon wafer (300 µm). The refractive index depth profile (b) is based on data measured on separate material samples deposited on Corning glass.

Fig. 2
Fig. 2

TE (a) and TM (b) simulated fundamental optical mode-field profiles. Parametric beam propagation method (BPM) simulations allowed to design the single-mode, birefringence-free, device shown. The calculated effective refractive indexes n eff for the fundamental TE (a) and TM (b) modes are in fact coincident, and at the same time the higher order modes are all vanishing modes.

Fig. 3
Fig. 3

Scanning electron microphotograph of the realized rib waveguide. From top to bottom we find in sequence a 200 nm-thick ZnO/Al layer, a 100-nm thick a-SiC:H (n-doped) upper cladding, a 2000 nm-thick a-Si:H (undoped) core, and a 2000 nm-thick a-SiC:H (p-doped) bottom cladding. The rib cross section is shown in the inset.

Fig. 4
Fig. 4

Forward (a) and reverse (b) bias J-V characteristics of the p-i-n device. The ideality factor n of the diode in forward bias is higher than 10, showing that the current is dominated by carrier recombination, at least up to 2 × 10−3 A/cm2 current density. At higher current regimes the characteristic bends as an effect of the high series resistance due to the neutral region of the undoped layer and to the relatively low doped anode and cathode regions.

Fig. 5
Fig. 5

Experimental transmission spectra of a 750 μm-long unbiased and reverse biased (70 V) p-i-n device. The calculated index variation is 4.05 × 10−5.

Fig. 6
Fig. 6

Experimental effective index variation versus p-i-n reverse bias voltage ranging from 0 to 90V.

Fig. 7
Fig. 7

Amplitude of the optical signal transmitted by a 1.53 mm Fabry-Perot modulator. The vertical p-i-n diode is reverse biased by 90 V amplitude pulses at a repetition rate of 100 kHz. The measured rise and fall times are 14 ns. Ringings are due to the non ideal impedance matching between the pulse generator and the microprobes. A slow thermo-optical modulation component can be noticed in the signal between two pulses. The oscilloscope timescale is 2 μs/div.

Fig. 8
Fig. 8

Calculated full depletion bias (V FD) of a p-i-n waveguide as a function the i-layer doping. The three curves refer to different i-layer thicknesses.

Tables (1)

Tables Icon

Table 1 PECVD process parameters and main optical and electrical parameters. RF frequency and power during deposition, substrate temperature, deposition rate and final layer thickness. Process gas flows are measured in standard cubic centimetres per minute (sccm). Refractive index, n, and extinction coefficient, κ, are measured at 1550 nm. (*0.5% diluted in H2)

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

α = 1 L ln ( 1 R I max / I min 1 I max / I min + 1 )
Δ n e f f ( λ ) = Δ λ λ n g ( λ )
n g = λ 2 2 L F S R
W max = ( 2 ε S i V F D q N i ) 1 2 = t a S i
E p b = A ( q N i ) 2 4 ε S i t a S i

Metrics