Abstract

A novel ultrafast all-optical switching based on metal-insulator-metal nanoplasmonic waveguide with a Kerr nonlinear resonator is proposed and investigated numerically. With the finite-difference time-domain simulations, it is demonstrated that an obvious optical bistability of the signal light appears by varying the control-light intensity, and an excellent switching effect is achieved. This bistability originates from the intensity-dependent change induced in the dielectric constant of Kerr nonlinear material filled in the nanodisk resonator. It is found that the proposed all-optical switching exhibits femtosecond-scale feedback time.

© 2011 OSA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. M. Gibbs, Optical Bistability: Controlling Light with Light (Academic, New York, 1985).
  2. R. A. Innes and J. R. Sambles, “Optical non-linearity in liquid crystals using surface plasmon-polaritons,” J. Phys. Condens. Matter 1(35), 6231–6260 (1989).
    [CrossRef]
  3. W. Dickson, G. A. Wurtz, P. R. Evans, R. J. Pollard, and A. V. Zayats, “Electronically controlled surface plasmon dispersion and optical transmission through metallic hole arrays using liquid crystal,” Nano Lett. 8(1), 281–286 (2008).
    [CrossRef] [PubMed]
  4. G. A. Wurtz and A. V. Zayats, “Nonlinear surface plasmon polaritonic crystals,” Laser Photon. Rev. 2(3), 125–135 (2008).
    [CrossRef]
  5. M. F. Yanik, S. Fan, M. Soljacić, and J. D. Joannopoulos, “All-optical transistor action with bistable switching in a photonic crystal cross-waveguide geometry,” Opt. Lett. 28(24), 2506–2508 (2003).
    [CrossRef] [PubMed]
  6. X. Hu, P. Jiang, C. Ding, H. Yang, and Q. Gong, “Picosecond and low-power all-optical switching based on an organic photonic-bandgap microcavity,” Nat. Photonics 2(3), 185–189 (2008).
    [CrossRef]
  7. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
    [CrossRef] [PubMed]
  8. S. Enoch, R. Quidant, and G. Badenes, “Optical sensing based on plasmon coupling in nanoparticle arrays,” Opt. Express 12(15), 3422–3427 (2004).
    [CrossRef] [PubMed]
  9. M. S. Kumar, X. Piao, S. Koo, S. Yu, and N. Park, “Out of plane mode conversion and manipulation of Surface Plasmon Polariton waves,” Opt. Express 18(9), 8800–8805 (2010).
    [CrossRef] [PubMed]
  10. S. Randhawa, M. U. González, J. Renger, S. Enoch, and R. Quidant, “Design and properties of dielectric surface plasmon Bragg mirrors,” Opt. Express 18(14), 14496–14510 (2010).
    [CrossRef] [PubMed]
  11. M. K. Kim, S. H. Lee, M. Choi, B. H. Ahn, N. Park, Y. H. Lee, and B. Min, “Low-loss surface-plasmonic nanobeam cavities,” Opt. Express 18(11), 11089–11096 (2010).
    [CrossRef] [PubMed]
  12. A. V. Krasavin and A. V. Zayats, “Silicon-based plasmonic waveguides,” Opt. Express 18(11), 11791–11799 (2010).
    [CrossRef] [PubMed]
  13. V. P. Drachev, U. K. Chettiar, A. V. Kildishev, H. K. Yuan, W. Cai, and V. M. Shalaev, “The Ag dielectric function in plasmonic metamaterials,” Opt. Express 16(2), 1186–1195 (2008).
    [CrossRef] [PubMed]
  14. A. V. Krasavin and A. V. Zayats, “All-optical active components for dielectric-loaded plasmonic waveguides,” Opt. Commun. 283(8), 1581–1584 (2010).
    [CrossRef]
  15. U. K. Chettiar, P. Nyga, M. D. Thoreson, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “FDTD modeling of realistic semicontinuous metal films,” Appl. Phys. B 100(1), 159–168 (2010).
    [CrossRef]
  16. C. J. Min, P. Wang, C. C. Chen, Y. Deng, Y. H. Lu, H. Ming, T. Y. Ning, Y. L. Zhou, and G. Z. Yang, “All-optical switching in subwavelength metallic grating structure containing nonlinear optical materials,” Opt. Lett. 33(8), 869–871 (2008).
    [CrossRef] [PubMed]
  17. J. Porto, L. Martín-Moreno, and F. García-Vidal, “Optical bistability in subwavelength slit apertures containing nonlinear media,” Phys. Rev. B 70(8), 081402 (2004).
    [CrossRef]
  18. I. I. Smolyaninov, “Quantum fluctuations of the refractive index near the interface between a metal and a nonlinear dielectric,” Phys. Rev. Lett. 94(5), 057403 (2005).
    [CrossRef] [PubMed]
  19. G. A. Wurtz, R. Pollard, and A. V. Zayats, “Optical bistability in nonlinear surface-plasmon polaritonic crystals,” Phys. Rev. Lett. 97(5), 057402 (2006).
    [CrossRef] [PubMed]
  20. Z. Yu, G. Veronis, S. Fan, and M. Brongersma, “Gain-induced switching in metal-dielectric-metal plasmonic waveguides,” Appl. Phys. Lett. 92(4), 041117 (2008).
    [CrossRef]
  21. C. Min and G. Veronis, “Absorption switches in metal-dielectric-metal plasmonic waveguides,” Opt. Express 17(13), 10757–10766 (2009).
    [CrossRef] [PubMed]
  22. Y. Shen and G. P. Wang, “Optical bistability in metal gap waveguide nanocavities,” Opt. Express 16(12), 8421–8426 (2008).
    [CrossRef] [PubMed]
  23. Z. J. Zhong, Y. Xu, S. Lan, Q. F. Dai, and L. J. Wu, “Sharp and asymmetric transmission response in metal-dielectric-metal plasmonic waveguides containing Kerr nonlinear media,” Opt. Express 18(1), 79–86 (2010).
    [CrossRef] [PubMed]
  24. J. Park, H. Kim, and B. Lee, “High order plasmonic Bragg reflection in the metal-insulator-metal waveguide Bragg grating,” Opt. Express 16(1), 413–425 (2008).
    [CrossRef] [PubMed]
  25. Q. Zhang, W. Liu, Z. Xue, J. Wu, S. Wang, D. Wang, and Q. Gong, “Ultrafast optical Kerr effect of Ag-BaO composite thin films,” Appl. Phys. Lett. 82(6), 958–960 (2003).
    [CrossRef]
  26. S. S. Xiao, L. Liu, and M. Qiu, “Resonator channel drop filters in a plasmon-polaritons metal,” Opt. Express 14(7), 2932–2937 (2006).
    [CrossRef] [PubMed]
  27. H. Lu, X. Liu, D. Mao, L. Wang, and Y. Gong, “Tunable band-pass plasmonic waveguide filters with nanodisk resonators,” Opt. Express 18(17), 17922–17927 (2010).
    [CrossRef] [PubMed]
  28. S. L. Qiu and Y. P. Li, “Q-factor instability and its explanation in the staircased FDTD simulation of high-Q circular cavity,” J. Opt. Soc. Am. B 26(9), 1664–1674 (2009).
    [CrossRef]
  29. B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. Vahala, “High-Q surface-plasmon-polariton whispering-gallery microcavity,” Nature 457(7228), 455–458 (2009).
    [CrossRef] [PubMed]
  30. Q. Li, T. Wang, Y. K. Su, M. Yan, and M. Qiu, “Coupled mode theory analysis of mode-splitting in coupled cavity system,” Opt. Express 18(8), 8367–8382 (2010).
    [CrossRef] [PubMed]
  31. X. S. Lin and X. G. Huang, “Tooth-shaped plasmonic waveguide filters with nanometeric sizes,” Opt. Lett. 33(23), 2874–2876 (2008).
    [CrossRef] [PubMed]
  32. J. Tao, X. Huang, X. Lin, J. Chen, Q. Zhang, and X. Jin, “Systematical research on characteristics of double-sided teeth-shaped nanoplasmonic waveguide filters,” J. Opt. Soc. Am. B 27(2), 323–327 (2010).
    [CrossRef]
  33. A. Taflove, and S. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd ed., (Artech House, Boston, MA 2000).
  34. B. Wang and G. P. Wang, “Surface plasmon polariton propagation in nanoscale metal gap waveguides,” Opt. Lett. 29(17), 1992–1994 (2004).
    [CrossRef] [PubMed]
  35. C. Min, P. Wang, X. Jiao, Y. Deng, and H. Ming, “Optical bistability in subwavelength metallic grating coated by nonlinear material,” Opt. Express 15(19), 12368–12373 (2007).
    [CrossRef] [PubMed]

2010 (10)

A. V. Krasavin and A. V. Zayats, “All-optical active components for dielectric-loaded plasmonic waveguides,” Opt. Commun. 283(8), 1581–1584 (2010).
[CrossRef]

U. K. Chettiar, P. Nyga, M. D. Thoreson, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “FDTD modeling of realistic semicontinuous metal films,” Appl. Phys. B 100(1), 159–168 (2010).
[CrossRef]

Z. J. Zhong, Y. Xu, S. Lan, Q. F. Dai, and L. J. Wu, “Sharp and asymmetric transmission response in metal-dielectric-metal plasmonic waveguides containing Kerr nonlinear media,” Opt. Express 18(1), 79–86 (2010).
[CrossRef] [PubMed]

J. Tao, X. Huang, X. Lin, J. Chen, Q. Zhang, and X. Jin, “Systematical research on characteristics of double-sided teeth-shaped nanoplasmonic waveguide filters,” J. Opt. Soc. Am. B 27(2), 323–327 (2010).
[CrossRef]

Q. Li, T. Wang, Y. K. Su, M. Yan, and M. Qiu, “Coupled mode theory analysis of mode-splitting in coupled cavity system,” Opt. Express 18(8), 8367–8382 (2010).
[CrossRef] [PubMed]

M. S. Kumar, X. Piao, S. Koo, S. Yu, and N. Park, “Out of plane mode conversion and manipulation of Surface Plasmon Polariton waves,” Opt. Express 18(9), 8800–8805 (2010).
[CrossRef] [PubMed]

M. K. Kim, S. H. Lee, M. Choi, B. H. Ahn, N. Park, Y. H. Lee, and B. Min, “Low-loss surface-plasmonic nanobeam cavities,” Opt. Express 18(11), 11089–11096 (2010).
[CrossRef] [PubMed]

A. V. Krasavin and A. V. Zayats, “Silicon-based plasmonic waveguides,” Opt. Express 18(11), 11791–11799 (2010).
[CrossRef] [PubMed]

S. Randhawa, M. U. González, J. Renger, S. Enoch, and R. Quidant, “Design and properties of dielectric surface plasmon Bragg mirrors,” Opt. Express 18(14), 14496–14510 (2010).
[CrossRef] [PubMed]

H. Lu, X. Liu, D. Mao, L. Wang, and Y. Gong, “Tunable band-pass plasmonic waveguide filters with nanodisk resonators,” Opt. Express 18(17), 17922–17927 (2010).
[CrossRef] [PubMed]

2009 (3)

2008 (9)

Z. Yu, G. Veronis, S. Fan, and M. Brongersma, “Gain-induced switching in metal-dielectric-metal plasmonic waveguides,” Appl. Phys. Lett. 92(4), 041117 (2008).
[CrossRef]

W. Dickson, G. A. Wurtz, P. R. Evans, R. J. Pollard, and A. V. Zayats, “Electronically controlled surface plasmon dispersion and optical transmission through metallic hole arrays using liquid crystal,” Nano Lett. 8(1), 281–286 (2008).
[CrossRef] [PubMed]

G. A. Wurtz and A. V. Zayats, “Nonlinear surface plasmon polaritonic crystals,” Laser Photon. Rev. 2(3), 125–135 (2008).
[CrossRef]

X. Hu, P. Jiang, C. Ding, H. Yang, and Q. Gong, “Picosecond and low-power all-optical switching based on an organic photonic-bandgap microcavity,” Nat. Photonics 2(3), 185–189 (2008).
[CrossRef]

J. Park, H. Kim, and B. Lee, “High order plasmonic Bragg reflection in the metal-insulator-metal waveguide Bragg grating,” Opt. Express 16(1), 413–425 (2008).
[CrossRef] [PubMed]

V. P. Drachev, U. K. Chettiar, A. V. Kildishev, H. K. Yuan, W. Cai, and V. M. Shalaev, “The Ag dielectric function in plasmonic metamaterials,” Opt. Express 16(2), 1186–1195 (2008).
[CrossRef] [PubMed]

C. J. Min, P. Wang, C. C. Chen, Y. Deng, Y. H. Lu, H. Ming, T. Y. Ning, Y. L. Zhou, and G. Z. Yang, “All-optical switching in subwavelength metallic grating structure containing nonlinear optical materials,” Opt. Lett. 33(8), 869–871 (2008).
[CrossRef] [PubMed]

Y. Shen and G. P. Wang, “Optical bistability in metal gap waveguide nanocavities,” Opt. Express 16(12), 8421–8426 (2008).
[CrossRef] [PubMed]

X. S. Lin and X. G. Huang, “Tooth-shaped plasmonic waveguide filters with nanometeric sizes,” Opt. Lett. 33(23), 2874–2876 (2008).
[CrossRef] [PubMed]

2007 (1)

2006 (2)

G. A. Wurtz, R. Pollard, and A. V. Zayats, “Optical bistability in nonlinear surface-plasmon polaritonic crystals,” Phys. Rev. Lett. 97(5), 057402 (2006).
[CrossRef] [PubMed]

S. S. Xiao, L. Liu, and M. Qiu, “Resonator channel drop filters in a plasmon-polaritons metal,” Opt. Express 14(7), 2932–2937 (2006).
[CrossRef] [PubMed]

2005 (1)

I. I. Smolyaninov, “Quantum fluctuations of the refractive index near the interface between a metal and a nonlinear dielectric,” Phys. Rev. Lett. 94(5), 057403 (2005).
[CrossRef] [PubMed]

2004 (3)

2003 (3)

Q. Zhang, W. Liu, Z. Xue, J. Wu, S. Wang, D. Wang, and Q. Gong, “Ultrafast optical Kerr effect of Ag-BaO composite thin films,” Appl. Phys. Lett. 82(6), 958–960 (2003).
[CrossRef]

M. F. Yanik, S. Fan, M. Soljacić, and J. D. Joannopoulos, “All-optical transistor action with bistable switching in a photonic crystal cross-waveguide geometry,” Opt. Lett. 28(24), 2506–2508 (2003).
[CrossRef] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

1989 (1)

R. A. Innes and J. R. Sambles, “Optical non-linearity in liquid crystals using surface plasmon-polaritons,” J. Phys. Condens. Matter 1(35), 6231–6260 (1989).
[CrossRef]

Ahn, B. H.

Badenes, G.

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Brongersma, M.

Z. Yu, G. Veronis, S. Fan, and M. Brongersma, “Gain-induced switching in metal-dielectric-metal plasmonic waveguides,” Appl. Phys. Lett. 92(4), 041117 (2008).
[CrossRef]

Cai, W.

Chen, C. C.

Chen, J.

Chettiar, U. K.

U. K. Chettiar, P. Nyga, M. D. Thoreson, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “FDTD modeling of realistic semicontinuous metal films,” Appl. Phys. B 100(1), 159–168 (2010).
[CrossRef]

V. P. Drachev, U. K. Chettiar, A. V. Kildishev, H. K. Yuan, W. Cai, and V. M. Shalaev, “The Ag dielectric function in plasmonic metamaterials,” Opt. Express 16(2), 1186–1195 (2008).
[CrossRef] [PubMed]

Choi, M.

Dai, Q. F.

Deng, Y.

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Dickson, W.

W. Dickson, G. A. Wurtz, P. R. Evans, R. J. Pollard, and A. V. Zayats, “Electronically controlled surface plasmon dispersion and optical transmission through metallic hole arrays using liquid crystal,” Nano Lett. 8(1), 281–286 (2008).
[CrossRef] [PubMed]

Ding, C.

X. Hu, P. Jiang, C. Ding, H. Yang, and Q. Gong, “Picosecond and low-power all-optical switching based on an organic photonic-bandgap microcavity,” Nat. Photonics 2(3), 185–189 (2008).
[CrossRef]

Drachev, V. P.

U. K. Chettiar, P. Nyga, M. D. Thoreson, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “FDTD modeling of realistic semicontinuous metal films,” Appl. Phys. B 100(1), 159–168 (2010).
[CrossRef]

V. P. Drachev, U. K. Chettiar, A. V. Kildishev, H. K. Yuan, W. Cai, and V. M. Shalaev, “The Ag dielectric function in plasmonic metamaterials,” Opt. Express 16(2), 1186–1195 (2008).
[CrossRef] [PubMed]

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Enoch, S.

Evans, P. R.

W. Dickson, G. A. Wurtz, P. R. Evans, R. J. Pollard, and A. V. Zayats, “Electronically controlled surface plasmon dispersion and optical transmission through metallic hole arrays using liquid crystal,” Nano Lett. 8(1), 281–286 (2008).
[CrossRef] [PubMed]

Fan, S.

Z. Yu, G. Veronis, S. Fan, and M. Brongersma, “Gain-induced switching in metal-dielectric-metal plasmonic waveguides,” Appl. Phys. Lett. 92(4), 041117 (2008).
[CrossRef]

M. F. Yanik, S. Fan, M. Soljacić, and J. D. Joannopoulos, “All-optical transistor action with bistable switching in a photonic crystal cross-waveguide geometry,” Opt. Lett. 28(24), 2506–2508 (2003).
[CrossRef] [PubMed]

García-Vidal, F.

J. Porto, L. Martín-Moreno, and F. García-Vidal, “Optical bistability in subwavelength slit apertures containing nonlinear media,” Phys. Rev. B 70(8), 081402 (2004).
[CrossRef]

Gong, Q.

X. Hu, P. Jiang, C. Ding, H. Yang, and Q. Gong, “Picosecond and low-power all-optical switching based on an organic photonic-bandgap microcavity,” Nat. Photonics 2(3), 185–189 (2008).
[CrossRef]

Q. Zhang, W. Liu, Z. Xue, J. Wu, S. Wang, D. Wang, and Q. Gong, “Ultrafast optical Kerr effect of Ag-BaO composite thin films,” Appl. Phys. Lett. 82(6), 958–960 (2003).
[CrossRef]

Gong, Y.

González, M. U.

Hu, X.

X. Hu, P. Jiang, C. Ding, H. Yang, and Q. Gong, “Picosecond and low-power all-optical switching based on an organic photonic-bandgap microcavity,” Nat. Photonics 2(3), 185–189 (2008).
[CrossRef]

Huang, X.

Huang, X. G.

Innes, R. A.

R. A. Innes and J. R. Sambles, “Optical non-linearity in liquid crystals using surface plasmon-polaritons,” J. Phys. Condens. Matter 1(35), 6231–6260 (1989).
[CrossRef]

Jiang, P.

X. Hu, P. Jiang, C. Ding, H. Yang, and Q. Gong, “Picosecond and low-power all-optical switching based on an organic photonic-bandgap microcavity,” Nat. Photonics 2(3), 185–189 (2008).
[CrossRef]

Jiao, X.

Jin, X.

Joannopoulos, J. D.

Kildishev, A. V.

U. K. Chettiar, P. Nyga, M. D. Thoreson, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “FDTD modeling of realistic semicontinuous metal films,” Appl. Phys. B 100(1), 159–168 (2010).
[CrossRef]

V. P. Drachev, U. K. Chettiar, A. V. Kildishev, H. K. Yuan, W. Cai, and V. M. Shalaev, “The Ag dielectric function in plasmonic metamaterials,” Opt. Express 16(2), 1186–1195 (2008).
[CrossRef] [PubMed]

Kim, H.

Kim, M. K.

Koo, S.

Krasavin, A. V.

A. V. Krasavin and A. V. Zayats, “Silicon-based plasmonic waveguides,” Opt. Express 18(11), 11791–11799 (2010).
[CrossRef] [PubMed]

A. V. Krasavin and A. V. Zayats, “All-optical active components for dielectric-loaded plasmonic waveguides,” Opt. Commun. 283(8), 1581–1584 (2010).
[CrossRef]

Kumar, M. S.

Lan, S.

Lee, B.

Lee, S. H.

Lee, Y. H.

Li, Q.

Li, Y. P.

Lin, X.

Lin, X. S.

Liu, L.

Liu, W.

Q. Zhang, W. Liu, Z. Xue, J. Wu, S. Wang, D. Wang, and Q. Gong, “Ultrafast optical Kerr effect of Ag-BaO composite thin films,” Appl. Phys. Lett. 82(6), 958–960 (2003).
[CrossRef]

Liu, X.

Lu, H.

Lu, Y. H.

Mao, D.

Martín-Moreno, L.

J. Porto, L. Martín-Moreno, and F. García-Vidal, “Optical bistability in subwavelength slit apertures containing nonlinear media,” Phys. Rev. B 70(8), 081402 (2004).
[CrossRef]

Min, B.

M. K. Kim, S. H. Lee, M. Choi, B. H. Ahn, N. Park, Y. H. Lee, and B. Min, “Low-loss surface-plasmonic nanobeam cavities,” Opt. Express 18(11), 11089–11096 (2010).
[CrossRef] [PubMed]

B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. Vahala, “High-Q surface-plasmon-polariton whispering-gallery microcavity,” Nature 457(7228), 455–458 (2009).
[CrossRef] [PubMed]

Min, C.

Min, C. J.

Ming, H.

Ning, T. Y.

Nyga, P.

U. K. Chettiar, P. Nyga, M. D. Thoreson, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “FDTD modeling of realistic semicontinuous metal films,” Appl. Phys. B 100(1), 159–168 (2010).
[CrossRef]

Ostby, E.

B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. Vahala, “High-Q surface-plasmon-polariton whispering-gallery microcavity,” Nature 457(7228), 455–458 (2009).
[CrossRef] [PubMed]

Park, J.

Park, N.

Piao, X.

Pollard, R.

G. A. Wurtz, R. Pollard, and A. V. Zayats, “Optical bistability in nonlinear surface-plasmon polaritonic crystals,” Phys. Rev. Lett. 97(5), 057402 (2006).
[CrossRef] [PubMed]

Pollard, R. J.

W. Dickson, G. A. Wurtz, P. R. Evans, R. J. Pollard, and A. V. Zayats, “Electronically controlled surface plasmon dispersion and optical transmission through metallic hole arrays using liquid crystal,” Nano Lett. 8(1), 281–286 (2008).
[CrossRef] [PubMed]

Porto, J.

J. Porto, L. Martín-Moreno, and F. García-Vidal, “Optical bistability in subwavelength slit apertures containing nonlinear media,” Phys. Rev. B 70(8), 081402 (2004).
[CrossRef]

Qiu, M.

Qiu, S. L.

Quidant, R.

Randhawa, S.

Renger, J.

Sambles, J. R.

R. A. Innes and J. R. Sambles, “Optical non-linearity in liquid crystals using surface plasmon-polaritons,” J. Phys. Condens. Matter 1(35), 6231–6260 (1989).
[CrossRef]

Shalaev, V. M.

U. K. Chettiar, P. Nyga, M. D. Thoreson, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “FDTD modeling of realistic semicontinuous metal films,” Appl. Phys. B 100(1), 159–168 (2010).
[CrossRef]

V. P. Drachev, U. K. Chettiar, A. V. Kildishev, H. K. Yuan, W. Cai, and V. M. Shalaev, “The Ag dielectric function in plasmonic metamaterials,” Opt. Express 16(2), 1186–1195 (2008).
[CrossRef] [PubMed]

Shen, Y.

Smolyaninov, I. I.

I. I. Smolyaninov, “Quantum fluctuations of the refractive index near the interface between a metal and a nonlinear dielectric,” Phys. Rev. Lett. 94(5), 057403 (2005).
[CrossRef] [PubMed]

Soljacic, M.

Sorger, V.

B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. Vahala, “High-Q surface-plasmon-polariton whispering-gallery microcavity,” Nature 457(7228), 455–458 (2009).
[CrossRef] [PubMed]

Su, Y. K.

Tao, J.

Thoreson, M. D.

U. K. Chettiar, P. Nyga, M. D. Thoreson, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “FDTD modeling of realistic semicontinuous metal films,” Appl. Phys. B 100(1), 159–168 (2010).
[CrossRef]

Ulin-Avila, E.

B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. Vahala, “High-Q surface-plasmon-polariton whispering-gallery microcavity,” Nature 457(7228), 455–458 (2009).
[CrossRef] [PubMed]

Vahala, K.

B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. Vahala, “High-Q surface-plasmon-polariton whispering-gallery microcavity,” Nature 457(7228), 455–458 (2009).
[CrossRef] [PubMed]

Veronis, G.

C. Min and G. Veronis, “Absorption switches in metal-dielectric-metal plasmonic waveguides,” Opt. Express 17(13), 10757–10766 (2009).
[CrossRef] [PubMed]

Z. Yu, G. Veronis, S. Fan, and M. Brongersma, “Gain-induced switching in metal-dielectric-metal plasmonic waveguides,” Appl. Phys. Lett. 92(4), 041117 (2008).
[CrossRef]

Wang, B.

Wang, D.

Q. Zhang, W. Liu, Z. Xue, J. Wu, S. Wang, D. Wang, and Q. Gong, “Ultrafast optical Kerr effect of Ag-BaO composite thin films,” Appl. Phys. Lett. 82(6), 958–960 (2003).
[CrossRef]

Wang, G. P.

Wang, L.

Wang, P.

Wang, S.

Q. Zhang, W. Liu, Z. Xue, J. Wu, S. Wang, D. Wang, and Q. Gong, “Ultrafast optical Kerr effect of Ag-BaO composite thin films,” Appl. Phys. Lett. 82(6), 958–960 (2003).
[CrossRef]

Wang, T.

Wu, J.

Q. Zhang, W. Liu, Z. Xue, J. Wu, S. Wang, D. Wang, and Q. Gong, “Ultrafast optical Kerr effect of Ag-BaO composite thin films,” Appl. Phys. Lett. 82(6), 958–960 (2003).
[CrossRef]

Wu, L. J.

Wurtz, G. A.

W. Dickson, G. A. Wurtz, P. R. Evans, R. J. Pollard, and A. V. Zayats, “Electronically controlled surface plasmon dispersion and optical transmission through metallic hole arrays using liquid crystal,” Nano Lett. 8(1), 281–286 (2008).
[CrossRef] [PubMed]

G. A. Wurtz and A. V. Zayats, “Nonlinear surface plasmon polaritonic crystals,” Laser Photon. Rev. 2(3), 125–135 (2008).
[CrossRef]

G. A. Wurtz, R. Pollard, and A. V. Zayats, “Optical bistability in nonlinear surface-plasmon polaritonic crystals,” Phys. Rev. Lett. 97(5), 057402 (2006).
[CrossRef] [PubMed]

Xiao, S. S.

Xu, Y.

Xue, Z.

Q. Zhang, W. Liu, Z. Xue, J. Wu, S. Wang, D. Wang, and Q. Gong, “Ultrafast optical Kerr effect of Ag-BaO composite thin films,” Appl. Phys. Lett. 82(6), 958–960 (2003).
[CrossRef]

Yan, M.

Yang, G. Z.

Yang, H.

X. Hu, P. Jiang, C. Ding, H. Yang, and Q. Gong, “Picosecond and low-power all-optical switching based on an organic photonic-bandgap microcavity,” Nat. Photonics 2(3), 185–189 (2008).
[CrossRef]

Yang, L.

B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. Vahala, “High-Q surface-plasmon-polariton whispering-gallery microcavity,” Nature 457(7228), 455–458 (2009).
[CrossRef] [PubMed]

Yanik, M. F.

Yu, S.

Yu, Z.

Z. Yu, G. Veronis, S. Fan, and M. Brongersma, “Gain-induced switching in metal-dielectric-metal plasmonic waveguides,” Appl. Phys. Lett. 92(4), 041117 (2008).
[CrossRef]

Yuan, H. K.

Zayats, A. V.

A. V. Krasavin and A. V. Zayats, “All-optical active components for dielectric-loaded plasmonic waveguides,” Opt. Commun. 283(8), 1581–1584 (2010).
[CrossRef]

A. V. Krasavin and A. V. Zayats, “Silicon-based plasmonic waveguides,” Opt. Express 18(11), 11791–11799 (2010).
[CrossRef] [PubMed]

W. Dickson, G. A. Wurtz, P. R. Evans, R. J. Pollard, and A. V. Zayats, “Electronically controlled surface plasmon dispersion and optical transmission through metallic hole arrays using liquid crystal,” Nano Lett. 8(1), 281–286 (2008).
[CrossRef] [PubMed]

G. A. Wurtz and A. V. Zayats, “Nonlinear surface plasmon polaritonic crystals,” Laser Photon. Rev. 2(3), 125–135 (2008).
[CrossRef]

G. A. Wurtz, R. Pollard, and A. V. Zayats, “Optical bistability in nonlinear surface-plasmon polaritonic crystals,” Phys. Rev. Lett. 97(5), 057402 (2006).
[CrossRef] [PubMed]

Zhang, Q.

J. Tao, X. Huang, X. Lin, J. Chen, Q. Zhang, and X. Jin, “Systematical research on characteristics of double-sided teeth-shaped nanoplasmonic waveguide filters,” J. Opt. Soc. Am. B 27(2), 323–327 (2010).
[CrossRef]

Q. Zhang, W. Liu, Z. Xue, J. Wu, S. Wang, D. Wang, and Q. Gong, “Ultrafast optical Kerr effect of Ag-BaO composite thin films,” Appl. Phys. Lett. 82(6), 958–960 (2003).
[CrossRef]

Zhang, X.

B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. Vahala, “High-Q surface-plasmon-polariton whispering-gallery microcavity,” Nature 457(7228), 455–458 (2009).
[CrossRef] [PubMed]

Zhong, Z. J.

Zhou, Y. L.

Appl. Phys. B (1)

U. K. Chettiar, P. Nyga, M. D. Thoreson, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “FDTD modeling of realistic semicontinuous metal films,” Appl. Phys. B 100(1), 159–168 (2010).
[CrossRef]

Appl. Phys. Lett. (2)

Z. Yu, G. Veronis, S. Fan, and M. Brongersma, “Gain-induced switching in metal-dielectric-metal plasmonic waveguides,” Appl. Phys. Lett. 92(4), 041117 (2008).
[CrossRef]

Q. Zhang, W. Liu, Z. Xue, J. Wu, S. Wang, D. Wang, and Q. Gong, “Ultrafast optical Kerr effect of Ag-BaO composite thin films,” Appl. Phys. Lett. 82(6), 958–960 (2003).
[CrossRef]

J. Opt. Soc. Am. B (2)

J. Phys. Condens. Matter (1)

R. A. Innes and J. R. Sambles, “Optical non-linearity in liquid crystals using surface plasmon-polaritons,” J. Phys. Condens. Matter 1(35), 6231–6260 (1989).
[CrossRef]

Laser Photon. Rev. (1)

G. A. Wurtz and A. V. Zayats, “Nonlinear surface plasmon polaritonic crystals,” Laser Photon. Rev. 2(3), 125–135 (2008).
[CrossRef]

Nano Lett. (1)

W. Dickson, G. A. Wurtz, P. R. Evans, R. J. Pollard, and A. V. Zayats, “Electronically controlled surface plasmon dispersion and optical transmission through metallic hole arrays using liquid crystal,” Nano Lett. 8(1), 281–286 (2008).
[CrossRef] [PubMed]

Nat. Photonics (1)

X. Hu, P. Jiang, C. Ding, H. Yang, and Q. Gong, “Picosecond and low-power all-optical switching based on an organic photonic-bandgap microcavity,” Nat. Photonics 2(3), 185–189 (2008).
[CrossRef]

Nature (2)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. Vahala, “High-Q surface-plasmon-polariton whispering-gallery microcavity,” Nature 457(7228), 455–458 (2009).
[CrossRef] [PubMed]

Opt. Commun. (1)

A. V. Krasavin and A. V. Zayats, “All-optical active components for dielectric-loaded plasmonic waveguides,” Opt. Commun. 283(8), 1581–1584 (2010).
[CrossRef]

Opt. Express (14)

Z. J. Zhong, Y. Xu, S. Lan, Q. F. Dai, and L. J. Wu, “Sharp and asymmetric transmission response in metal-dielectric-metal plasmonic waveguides containing Kerr nonlinear media,” Opt. Express 18(1), 79–86 (2010).
[CrossRef] [PubMed]

C. Min and G. Veronis, “Absorption switches in metal-dielectric-metal plasmonic waveguides,” Opt. Express 17(13), 10757–10766 (2009).
[CrossRef] [PubMed]

Q. Li, T. Wang, Y. K. Su, M. Yan, and M. Qiu, “Coupled mode theory analysis of mode-splitting in coupled cavity system,” Opt. Express 18(8), 8367–8382 (2010).
[CrossRef] [PubMed]

M. S. Kumar, X. Piao, S. Koo, S. Yu, and N. Park, “Out of plane mode conversion and manipulation of Surface Plasmon Polariton waves,” Opt. Express 18(9), 8800–8805 (2010).
[CrossRef] [PubMed]

M. K. Kim, S. H. Lee, M. Choi, B. H. Ahn, N. Park, Y. H. Lee, and B. Min, “Low-loss surface-plasmonic nanobeam cavities,” Opt. Express 18(11), 11089–11096 (2010).
[CrossRef] [PubMed]

A. V. Krasavin and A. V. Zayats, “Silicon-based plasmonic waveguides,” Opt. Express 18(11), 11791–11799 (2010).
[CrossRef] [PubMed]

S. Randhawa, M. U. González, J. Renger, S. Enoch, and R. Quidant, “Design and properties of dielectric surface plasmon Bragg mirrors,” Opt. Express 18(14), 14496–14510 (2010).
[CrossRef] [PubMed]

H. Lu, X. Liu, D. Mao, L. Wang, and Y. Gong, “Tunable band-pass plasmonic waveguide filters with nanodisk resonators,” Opt. Express 18(17), 17922–17927 (2010).
[CrossRef] [PubMed]

S. S. Xiao, L. Liu, and M. Qiu, “Resonator channel drop filters in a plasmon-polaritons metal,” Opt. Express 14(7), 2932–2937 (2006).
[CrossRef] [PubMed]

C. Min, P. Wang, X. Jiao, Y. Deng, and H. Ming, “Optical bistability in subwavelength metallic grating coated by nonlinear material,” Opt. Express 15(19), 12368–12373 (2007).
[CrossRef] [PubMed]

J. Park, H. Kim, and B. Lee, “High order plasmonic Bragg reflection in the metal-insulator-metal waveguide Bragg grating,” Opt. Express 16(1), 413–425 (2008).
[CrossRef] [PubMed]

V. P. Drachev, U. K. Chettiar, A. V. Kildishev, H. K. Yuan, W. Cai, and V. M. Shalaev, “The Ag dielectric function in plasmonic metamaterials,” Opt. Express 16(2), 1186–1195 (2008).
[CrossRef] [PubMed]

S. Enoch, R. Quidant, and G. Badenes, “Optical sensing based on plasmon coupling in nanoparticle arrays,” Opt. Express 12(15), 3422–3427 (2004).
[CrossRef] [PubMed]

Y. Shen and G. P. Wang, “Optical bistability in metal gap waveguide nanocavities,” Opt. Express 16(12), 8421–8426 (2008).
[CrossRef] [PubMed]

Opt. Lett. (4)

Phys. Rev. B (1)

J. Porto, L. Martín-Moreno, and F. García-Vidal, “Optical bistability in subwavelength slit apertures containing nonlinear media,” Phys. Rev. B 70(8), 081402 (2004).
[CrossRef]

Phys. Rev. Lett. (2)

I. I. Smolyaninov, “Quantum fluctuations of the refractive index near the interface between a metal and a nonlinear dielectric,” Phys. Rev. Lett. 94(5), 057403 (2005).
[CrossRef] [PubMed]

G. A. Wurtz, R. Pollard, and A. V. Zayats, “Optical bistability in nonlinear surface-plasmon polaritonic crystals,” Phys. Rev. Lett. 97(5), 057402 (2006).
[CrossRef] [PubMed]

Other (2)

H. M. Gibbs, Optical Bistability: Controlling Light with Light (Academic, New York, 1985).

A. Taflove, and S. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd ed., (Artech House, Boston, MA 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics