Abstract

We present diode pumped SESAM supported Kerr-lens mode locked laser operation based on Yb3+:Sc2O3 and Yb3+:Lu2O3 single crystals. Pulses as short as 71 fs with an average power of 1.09 W were obtained from an Yb3+:Lu2O3 single crystal. Yb3+:Sc2O3 delivered pulses as short as 81 fs with an average power of 840 mW. The mode locked laser operation was stable for longer than 2 hours.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. F. Krupke, “Ytterbium solid-state lasers-the first decade,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1287–1296 (2000).
    [CrossRef]
  2. R. Peters, C. Kränkel, K. Petermann, and G. Huber, “Influence of the Yb-Doping Concentration on the Efficiency of Lu2O3Thin Disk Lasers,” in Advanced Solid-State Photonics, OSA Technical Digest Series (CD) (Optical Society of America, 2008), paper MF2.
  3. J. Saikawa, Y. Sato, T. Taira, and A. Ikesue, “Passive mode locking of a mixed garnet Yb:Y3ScAl4O12 ceramic laser,” Appl. Phys. Lett. 85(24), 5845 (2004).
    [CrossRef]
  4. H. Liu, J. Nees, and G. Mourou, “Diode-pumped Kerr-lens mode-locked Yb:KY(WO(4))(2) laser,” Opt. Lett. 26(21), 1723–1725 (2001).
    [CrossRef]
  5. F. Druon, D. N. Papadopoulos, J. Boudeile, M. Hanna, P. Georges, A. Benayad, P. Camy, J. L. Doualan, V. Ménard, and R. Moncorgé, “Mode-locked operation of a diode-pumped femtosecond Yb:SrF2 laser,” Opt. Lett. 34(15), 2354–2356 (2009).
    [CrossRef] [PubMed]
  6. A. A. Lagatsky, V. E. Kisel, F. Baina, C. T. A. Browna, N. V. Kuleshovb, and W. Sibbetta, “Advances in femtosecond lasers having enhanced efficiencies,” Proc. SPIE 6731, 673103 (2007).
  7. S. Rivier, A. Schmidt, C. Kränkel, R. Peters, K. Petermann, G. Huber, M. Zorn, M. Weyers, A. Klehr, G. Erbert, V. Petrov, and U. Griebner, “Ultrashort pulse Yb:LaSc(3)(BO(3))(4) mode-locked oscillator,” Opt. Express 15(23), 15539–15544 (2007).
    [CrossRef] [PubMed]
  8. F. Thibault, D. Pelenc, F. Druon, Y. Zaouter, M. Jacquemet, and P. Georges, “Efficient diode-pumped Yb3+:Y2SiO5 and Yb3+:Lu2SiO5 high-power femtosecond laser operation,” Opt. Lett. 31(10), 1555–1557 (2006).
    [CrossRef] [PubMed]
  9. Y. Zaouter, J. Didierjean, F. Balembois, G. L Leclin, F. Druon, P. Georges, J. Petit, P. Goldner, and B. Viana, “47-fs diode-pumped Yb3+:CaGdAlO4 laser,” Opt. Lett. 31(1), 119–121 (2006).
    [CrossRef] [PubMed]
  10. U. Griebner, V. Petrov, K. Petermann, and V. Peters, “Passively mode-locked Yb:Lu(2)O(3) laser,” Opt. Express 12(14), 3125–3130 (2004).
    [CrossRef] [PubMed]
  11. P. Klopp, V. Petrov, U. Griebner, K. Petermann, V. Peters, and G. Erbert, “Highly efficient mode-locked Yb:Sc2O3 laser,” Opt. Lett. 29(4), 391–393 (2004).
    [CrossRef] [PubMed]
  12. M. Tokurakawa, A. Shirakawa, K. Ueda, H. Yagi, M. Noriyuki, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped ultrashort-pulse generation based on Yb(3+):Sc(2)O(3) and Yb(3+):Y(2)O(3) ceramic multi-gain-media oscillator,” Opt. Express 17(5), 3353–3361 (2009).
    [CrossRef] [PubMed]
  13. F. Brunner, E. Innerhofer, S. V. Marchese, T. Südmeyer, R. Paschotta, T. Usami, H. Ito, S. Kurimura, K. Kitamura, G. Arisholm, and U. Keller, “Powerful red-green-blue laser source pumped with a mode-locked thin disk laser,” Opt. Lett. 29(16), 1921–1923 (2004).
    [CrossRef] [PubMed]
  14. J. Neuhaus, D. Bauer, J. Zhang, A. Killi, J. Kleinbauer, M. Kumkar, S. Weiler, M. Guina, D. H. Sutter, and T. Dekorsy, “Subpicosecond thin-disk laser oscillator with pulse energies of up to 25.9 microjoules by use of an active multipass geometry,” Opt. Express 16(25), 20530–20539 (2008).
    [CrossRef] [PubMed]
  15. A. Pugžlys, G. Andriukaitis, A. Baltuška, L. Su, J. Xu, H. Li, R. Li, W. J. Lai, P. B. Phua, A. Marcinkevičius, M. E. Fermann, L. Giniūnas, R. Danielius, and S. Ališauskas, “Multi-mJ, 200-fs, cw-pumped, cryogenically cooled, Yb,Na:CaF2 amplifier,” Opt. Lett. 34(13), 2075–2077 (2009).
    [CrossRef] [PubMed]
  16. C. R. E. Baer, C. Kränkel, C. J. Saraceno, O. H. Heckl, M. Golling, R. Peters, K. Petermann, T. Südmeyer, G. Huber, and U. Keller, “Femtosecond thin-disk laser with 141 W of average power,” Opt. Lett. 35(13), 2302–2304 (2010).
    [CrossRef] [PubMed]
  17. M. Tokurakawa, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped sub-100 fs Kerr-lens mode-locked Yb3+:Sc2O3 ceramic laser,” Opt. Lett. 32(23), 3382–3384 (2007).
    [CrossRef] [PubMed]
  18. M. Tokurakawa, A. Shirakawa, K. Ueda, H. Yagi, S. Hosokawa, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped 65 fs Kerr-lens mode-locked Yb(3+):Lu(2)O(3) and nondoped Y(2)O(3) combined ceramic laser,” Opt. Lett. 33(12), 1380–1382 (2008).
    [CrossRef] [PubMed]
  19. M. Tokurakawa, H. Kurokawa, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Continuous-wave and mode-locked lasers on the base of partially disordered crystalline Yb3+:YGd2[Sc2](Al2Ga)O12 ceramics,” Opt. Express 18(5), 4390–4395 (2010).
    [CrossRef] [PubMed]
  20. A. Schmidt, V. Petrov, U. Griebner, R. Peters, K. Petermann, G. Huber, C. Fiebig, K. Paschke, and G. Erbert, “Diode-pumped mode-locked Yb:LuScO(3) single crystal laser with 74 fs pulse duration,” Opt. Lett. 35(4), 511–513 (2010).
    [CrossRef] [PubMed]
  21. T. Brabec, Ch. Spielmann, P. F. Curley, and F. Krausz, “Kerr lens mode locking,” Opt. Lett. 17(18), 1292–1294 (1992).
    [CrossRef] [PubMed]
  22. M. Piché and F. Salin, “Self-mode locking of solid-state lasers without apertures,” Opt. Lett. 18(13), 1041–1043 (1993).
    [CrossRef] [PubMed]
  23. M. Tokurakawa, A. Shirakawa, and K. Ueda, “Estimation of Gain Bandwidth Limitation of Short Pulse Duration Based on Competition of Gain Saturation,” in Advanced Solid-State Photonics, OSA Technical Digest Series (CD) (Optical Society of America, 2010), paper AMB16.
  24. F. X. Kärtner, J. A. Au, and U. Keller, “Mode-Locking with Slow and Fast Saturable. Absorbers-What's the Difference?” IEEE J. Sel. Top. Quantum Electron. 4(2), 159–168 (1998).
    [CrossRef]
  25. M. J. Lederer, B. Luther-Davies, H. H. Tan, C. Jagadish, N. N. Akhmediev, and J. M. Soto-Crespo, “Multipulse operation of a Ti:sapphire laser mode locked by an ion-implanted semiconductor saturable-absorber mirror,” J. Opt. Soc. Am. B 16(6), 895–904 (1999).
    [CrossRef]

2010 (3)

2009 (3)

2008 (2)

2007 (3)

2006 (2)

2004 (4)

2001 (1)

2000 (1)

W. F. Krupke, “Ytterbium solid-state lasers-the first decade,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1287–1296 (2000).
[CrossRef]

1999 (1)

1998 (1)

F. X. Kärtner, J. A. Au, and U. Keller, “Mode-Locking with Slow and Fast Saturable. Absorbers-What's the Difference?” IEEE J. Sel. Top. Quantum Electron. 4(2), 159–168 (1998).
[CrossRef]

1993 (1)

1992 (1)

Leclin, G. L

Akhmediev, N. N.

Ališauskas, S.

Andriukaitis, G.

Arisholm, G.

Au, J. A.

F. X. Kärtner, J. A. Au, and U. Keller, “Mode-Locking with Slow and Fast Saturable. Absorbers-What's the Difference?” IEEE J. Sel. Top. Quantum Electron. 4(2), 159–168 (1998).
[CrossRef]

Baer, C. R. E.

Baina, F.

A. A. Lagatsky, V. E. Kisel, F. Baina, C. T. A. Browna, N. V. Kuleshovb, and W. Sibbetta, “Advances in femtosecond lasers having enhanced efficiencies,” Proc. SPIE 6731, 673103 (2007).

Balembois, F.

Baltuška, A.

Bauer, D.

Benayad, A.

Boudeile, J.

Brabec, T.

Browna, C. T. A.

A. A. Lagatsky, V. E. Kisel, F. Baina, C. T. A. Browna, N. V. Kuleshovb, and W. Sibbetta, “Advances in femtosecond lasers having enhanced efficiencies,” Proc. SPIE 6731, 673103 (2007).

Brunner, F.

Camy, P.

Curley, P. F.

Danielius, R.

Dekorsy, T.

Didierjean, J.

Doualan, J. L.

Druon, F.

Erbert, G.

Fermann, M. E.

Fiebig, C.

Georges, P.

Giniunas, L.

Goldner, P.

Golling, M.

Griebner, U.

Guina, M.

Hanna, M.

Heckl, O. H.

Hosokawa, S.

Huber, G.

Ikesue, A.

J. Saikawa, Y. Sato, T. Taira, and A. Ikesue, “Passive mode locking of a mixed garnet Yb:Y3ScAl4O12 ceramic laser,” Appl. Phys. Lett. 85(24), 5845 (2004).
[CrossRef]

Innerhofer, E.

Ito, H.

Jacquemet, M.

Jagadish, C.

Kaminskii, A. A.

Kärtner, F. X.

F. X. Kärtner, J. A. Au, and U. Keller, “Mode-Locking with Slow and Fast Saturable. Absorbers-What's the Difference?” IEEE J. Sel. Top. Quantum Electron. 4(2), 159–168 (1998).
[CrossRef]

Keller, U.

Killi, A.

Kisel, V. E.

A. A. Lagatsky, V. E. Kisel, F. Baina, C. T. A. Browna, N. V. Kuleshovb, and W. Sibbetta, “Advances in femtosecond lasers having enhanced efficiencies,” Proc. SPIE 6731, 673103 (2007).

Kitamura, K.

Klehr, A.

Kleinbauer, J.

Klopp, P.

Kränkel, C.

Krausz, F.

Krupke, W. F.

W. F. Krupke, “Ytterbium solid-state lasers-the first decade,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1287–1296 (2000).
[CrossRef]

Kuleshovb, N. V.

A. A. Lagatsky, V. E. Kisel, F. Baina, C. T. A. Browna, N. V. Kuleshovb, and W. Sibbetta, “Advances in femtosecond lasers having enhanced efficiencies,” Proc. SPIE 6731, 673103 (2007).

Kumkar, M.

Kurimura, S.

Kurokawa, H.

Lagatsky, A. A.

A. A. Lagatsky, V. E. Kisel, F. Baina, C. T. A. Browna, N. V. Kuleshovb, and W. Sibbetta, “Advances in femtosecond lasers having enhanced efficiencies,” Proc. SPIE 6731, 673103 (2007).

Lai, W. J.

Lederer, M. J.

Li, H.

Li, R.

Liu, H.

Luther-Davies, B.

Marchese, S. V.

Marcinkevicius, A.

Ménard, V.

Moncorgé, R.

Mourou, G.

Nees, J.

Neuhaus, J.

Noriyuki, M.

Papadopoulos, D. N.

Paschke, K.

Paschotta, R.

Pelenc, D.

Petermann, K.

Peters, R.

Peters, V.

Petit, J.

Petrov, V.

Phua, P. B.

Piché, M.

Pugžlys, A.

Rivier, S.

Saikawa, J.

J. Saikawa, Y. Sato, T. Taira, and A. Ikesue, “Passive mode locking of a mixed garnet Yb:Y3ScAl4O12 ceramic laser,” Appl. Phys. Lett. 85(24), 5845 (2004).
[CrossRef]

Salin, F.

Saraceno, C. J.

Sato, Y.

J. Saikawa, Y. Sato, T. Taira, and A. Ikesue, “Passive mode locking of a mixed garnet Yb:Y3ScAl4O12 ceramic laser,” Appl. Phys. Lett. 85(24), 5845 (2004).
[CrossRef]

Schmidt, A.

Shirakawa, A.

Sibbetta, W.

A. A. Lagatsky, V. E. Kisel, F. Baina, C. T. A. Browna, N. V. Kuleshovb, and W. Sibbetta, “Advances in femtosecond lasers having enhanced efficiencies,” Proc. SPIE 6731, 673103 (2007).

Soto-Crespo, J. M.

Spielmann, Ch.

Su, L.

Südmeyer, T.

Sutter, D. H.

Taira, T.

J. Saikawa, Y. Sato, T. Taira, and A. Ikesue, “Passive mode locking of a mixed garnet Yb:Y3ScAl4O12 ceramic laser,” Appl. Phys. Lett. 85(24), 5845 (2004).
[CrossRef]

Tan, H. H.

Thibault, F.

Tokurakawa, M.

Ueda, K.

Usami, T.

Viana, B.

Weiler, S.

Weyers, M.

Xu, J.

Yagi, H.

Yanagitani, T.

Zaouter, Y.

Zhang, J.

Zorn, M.

Appl. Phys. Lett. (1)

J. Saikawa, Y. Sato, T. Taira, and A. Ikesue, “Passive mode locking of a mixed garnet Yb:Y3ScAl4O12 ceramic laser,” Appl. Phys. Lett. 85(24), 5845 (2004).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

W. F. Krupke, “Ytterbium solid-state lasers-the first decade,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1287–1296 (2000).
[CrossRef]

F. X. Kärtner, J. A. Au, and U. Keller, “Mode-Locking with Slow and Fast Saturable. Absorbers-What's the Difference?” IEEE J. Sel. Top. Quantum Electron. 4(2), 159–168 (1998).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Express (5)

Opt. Lett. (13)

C. R. E. Baer, C. Kränkel, C. J. Saraceno, O. H. Heckl, M. Golling, R. Peters, K. Petermann, T. Südmeyer, G. Huber, and U. Keller, “Femtosecond thin-disk laser with 141 W of average power,” Opt. Lett. 35(13), 2302–2304 (2010).
[CrossRef] [PubMed]

A. Pugžlys, G. Andriukaitis, A. Baltuška, L. Su, J. Xu, H. Li, R. Li, W. J. Lai, P. B. Phua, A. Marcinkevičius, M. E. Fermann, L. Giniūnas, R. Danielius, and S. Ališauskas, “Multi-mJ, 200-fs, cw-pumped, cryogenically cooled, Yb,Na:CaF2 amplifier,” Opt. Lett. 34(13), 2075–2077 (2009).
[CrossRef] [PubMed]

F. Druon, D. N. Papadopoulos, J. Boudeile, M. Hanna, P. Georges, A. Benayad, P. Camy, J. L. Doualan, V. Ménard, and R. Moncorgé, “Mode-locked operation of a diode-pumped femtosecond Yb:SrF2 laser,” Opt. Lett. 34(15), 2354–2356 (2009).
[CrossRef] [PubMed]

A. Schmidt, V. Petrov, U. Griebner, R. Peters, K. Petermann, G. Huber, C. Fiebig, K. Paschke, and G. Erbert, “Diode-pumped mode-locked Yb:LuScO(3) single crystal laser with 74 fs pulse duration,” Opt. Lett. 35(4), 511–513 (2010).
[CrossRef] [PubMed]

F. Brunner, E. Innerhofer, S. V. Marchese, T. Südmeyer, R. Paschotta, T. Usami, H. Ito, S. Kurimura, K. Kitamura, G. Arisholm, and U. Keller, “Powerful red-green-blue laser source pumped with a mode-locked thin disk laser,” Opt. Lett. 29(16), 1921–1923 (2004).
[CrossRef] [PubMed]

Y. Zaouter, J. Didierjean, F. Balembois, G. L Leclin, F. Druon, P. Georges, J. Petit, P. Goldner, and B. Viana, “47-fs diode-pumped Yb3+:CaGdAlO4 laser,” Opt. Lett. 31(1), 119–121 (2006).
[CrossRef] [PubMed]

F. Thibault, D. Pelenc, F. Druon, Y. Zaouter, M. Jacquemet, and P. Georges, “Efficient diode-pumped Yb3+:Y2SiO5 and Yb3+:Lu2SiO5 high-power femtosecond laser operation,” Opt. Lett. 31(10), 1555–1557 (2006).
[CrossRef] [PubMed]

M. Tokurakawa, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped sub-100 fs Kerr-lens mode-locked Yb3+:Sc2O3 ceramic laser,” Opt. Lett. 32(23), 3382–3384 (2007).
[CrossRef] [PubMed]

M. Tokurakawa, A. Shirakawa, K. Ueda, H. Yagi, S. Hosokawa, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped 65 fs Kerr-lens mode-locked Yb(3+):Lu(2)O(3) and nondoped Y(2)O(3) combined ceramic laser,” Opt. Lett. 33(12), 1380–1382 (2008).
[CrossRef] [PubMed]

T. Brabec, Ch. Spielmann, P. F. Curley, and F. Krausz, “Kerr lens mode locking,” Opt. Lett. 17(18), 1292–1294 (1992).
[CrossRef] [PubMed]

M. Piché and F. Salin, “Self-mode locking of solid-state lasers without apertures,” Opt. Lett. 18(13), 1041–1043 (1993).
[CrossRef] [PubMed]

H. Liu, J. Nees, and G. Mourou, “Diode-pumped Kerr-lens mode-locked Yb:KY(WO(4))(2) laser,” Opt. Lett. 26(21), 1723–1725 (2001).
[CrossRef]

P. Klopp, V. Petrov, U. Griebner, K. Petermann, V. Peters, and G. Erbert, “Highly efficient mode-locked Yb:Sc2O3 laser,” Opt. Lett. 29(4), 391–393 (2004).
[CrossRef] [PubMed]

Proc. SPIE (1)

A. A. Lagatsky, V. E. Kisel, F. Baina, C. T. A. Browna, N. V. Kuleshovb, and W. Sibbetta, “Advances in femtosecond lasers having enhanced efficiencies,” Proc. SPIE 6731, 673103 (2007).

Other (2)

M. Tokurakawa, A. Shirakawa, and K. Ueda, “Estimation of Gain Bandwidth Limitation of Short Pulse Duration Based on Competition of Gain Saturation,” in Advanced Solid-State Photonics, OSA Technical Digest Series (CD) (Optical Society of America, 2010), paper AMB16.

R. Peters, C. Kränkel, K. Petermann, and G. Huber, “Influence of the Yb-Doping Concentration on the Efficiency of Lu2O3Thin Disk Lasers,” in Advanced Solid-State Photonics, OSA Technical Digest Series (CD) (Optical Society of America, 2008), paper MF2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental setup of the SESAM supported Kerr lens mode-locked laser. The PBS and half-wave plate were used in order to protect the LD from the leaking laser beam through the folding mirror M2. The inset shows the pump mode profile at the focusing point (in air).

Fig. 2
Fig. 2

Average power versus incident pump power. (a) Optimized for high average powers. The nonlinearlities in the curves were caused by the dependence of pumping wavelength on the pump power. (b) Optimized for short pulse durations (green circle). The average power shows steep decreasing after KLM stopped.

Fig. 3
Fig. 3

Autocorrelation traces and spectra are shown. (a)(b) 81 fs pulses from the Yb3+:Sc2O3 crystal with the average power of 840 mW. (c)(d) 75 fs pulses from the Yb3+:Lu2O3 crystal with the average power of 860 mW. In the autocorrelation traces, the experimental data (points) and sech2-fitting curve (solid curve) are shown.

Fig. 4
Fig. 4

Mode profiles of the laser beam outputs in case of the Yb3+:Lu2O3 single crystal laser. (a) During KLM. (b) After the KLM stopped.

Fig. 5
Fig. 5

Measured long-term mode-locking stability of the Yb3+:Sc2O3 single crystal laser with a pulse duration of 81 fs and 840mW average power. (a) With shielding the cavity and (b) without shielding the cavity.

Fig. 6
Fig. 6

(a) Autocorrelation trace and (b) spectrum of 71 fs pulses from the Yb3+:Lu2O3 crystal with an average power of 1.09 W. In the autocorrelation trace, the experimental data (points) and sech2-fitting curve (solid curve) are shown.

Metrics