Abstract

Absorption at the idler wavelength in an optical parametric oscillator (OPO) is often considered detrimental. We show through simulations that pulsed OPOs with significant idler absorption can perform better than OPOs with low idler absorption both in terms of conversion efficiency and beam quality. The main reason for this is reduced back conversion. We also show how the beam quality depends on the beam width and pump pulse length, and present scaling relations to use the example simulations for other pulsed nanosecond OPOs.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Arisholm, E. Lippert, G. Rustad, and K. Stenersen, “Efficient conversion from 1 to 2 µm by a KTP-based ring optical parametric oscillator,” Opt. Lett. 27(15), 1336–1338 (2002).
    [CrossRef]
  2. G. Arisholm, Ø. Nordseth, and G. Rustad, “Optical parametric master oscillator and power amplifier for efficient conversion of high-energy pulses with high beam quality,” Opt. Express 12(18), 4189–4197 (2004).
    [CrossRef] [PubMed]
  3. G. T. Moore and K. Koch, “Efficient high-gain two-crystal optical parametric oscillator,” IEEE J. Quantum Electron. 31(5), 761–768 (1995).
    [CrossRef]
  4. D. D. Lowenthal, “CW periodically poled LiNbO3 optical parametric oscillator model with strong idler absorption,” IEEE J. Quantum Electron. 34(8), 1356–1366 (1998).
    [CrossRef]
  5. S. C. Lyons, G. L. Oppo, W. J. Firth, and J. R. M. Barr, “Beam-quality studies of nanosecond singly resonant optical parametric oscillators,” IEEE J. Quantum Electron. 26(5), 541–549 (2000).
    [CrossRef]
  6. G. Arisholm, R. Paschotta, and T. Sudmeyer, “Limits to the power scalability of high-gain optical parametric amplifiers,” J. Opt. Soc. Am. B 21(3), 578–590 (2004).
    [CrossRef]
  7. W. Koechner, Solid-state laser engineering (Springer, New York, 1999).
  8. G. Arisholm, “General numerical methods for simulating second-order nonlinear interactions in birefringent media,” J. Opt. Soc. Am. B 14(10), 2543–2549 (1997).
    [CrossRef]
  9. G. Arisholm, “Quantum noise initiation and macroscopic fluctuations in optical parametric oscillators,” J. Opt. Soc. Am. B 16(1), 117–127 (1999).
    [CrossRef]
  10. G. Arisholm and K. Stenersen, “Optical parametric oscillator with non-ideal mirrors and single- and multi-mode pump beams,” Opt. Express 4(5), 183–192 (1999).
    [CrossRef] [PubMed]
  11. Ø. Farsund, G. Arisholm, and G. Rustad, “Improved beam quality from a high energy optical parametric oscillator using crystals with orthogonal critical planes,” Opt. Express 18(9), 9229–9235 (2010).
    [CrossRef] [PubMed]
  12. A. E. Siegman, “New developments in laser resonators,” Proc. SPIE 1224, 2–14 (1990).
    [CrossRef]
  13. G. Arisholm, G. Rustad, and K. Stenersen, “Importance of pump-beam group velocity for backconversion in optical parametric oscillators,” J. Opt. Soc. Am. B 18(12), 1882–1890 (2001).
    [CrossRef]
  14. A. V. Smith, “Bandwidth and group-velocity affects in nanosecond optical parametric amplifiers and oscillators,” J. Opt. Soc. Am. B 22(9), 1953–1965 (2005).
    [CrossRef]
  15. G. Hansson, H. Karlsson, S. Wang, and F. Laurell, “Transmission measurements in KTP and isomorphic compounds,” Appl. Opt. 39(27), 5058–5069 (2000).
    [CrossRef]
  16. W. J. Alford and A. V. Smith, “Wavelength variation of the second-order nonlinear coefficients of KNbO3, KTIOPO4, KTiOAsO4, LiNBO3, LiO3, β-BaB2O4, KH2PO4, and LiB3O5 crystals: a test of Miller wavelength scaling,” J. Opt. Soc. Am. B 18(4), 524–533 (2001).
    [CrossRef]
  17. L. E. Myers and W. R. Bosenberg, “Periodically poled lithium niobate and quasi-phase-matched optical parametric oscillators,” IEEE J. Quantum Electron. 33(10), 1663–1672 (1997).
    [CrossRef]
  18. I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, and R. Ito, “Absolute scale of second-order nonlinear-optical coefficients,” J. Opt. Soc. Am. B 14(9), 2268–2294 (1997).
    [CrossRef]
  19. R. C. Miller, “Optical second harmonic generation in piezo-electric crystals,” Appl. Phys. Lett. 5(1), 17–19 (1964).
    [CrossRef]
  20. B. C. Johnson, V. J. Newell, J. B. Clark, and E. S. McPhee, “Narrow-bandwidth low-divergence optical parametric oscillator for nonlinear frequency-conversion applications,” J. Opt. Soc. Am. B 12(11), 2122–2127 (1995).
    [CrossRef]
  21. A. V. Smith and M. S. Bowers, “Image-rotating cavity designs for improved beam quality in nanosecond optical parametric oscillators,” J. Opt. Soc. Am. B 18(5), 706–713 (2001).
    [CrossRef]
  22. R. Paschotta, “Beam quality deterioration of lasers caused by intracavity beam distortions,” Opt. Express 14(13), 6069–6074 (2006).
    [CrossRef] [PubMed]

2010 (1)

2006 (1)

2005 (1)

2004 (2)

2002 (1)

2001 (3)

2000 (2)

G. Hansson, H. Karlsson, S. Wang, and F. Laurell, “Transmission measurements in KTP and isomorphic compounds,” Appl. Opt. 39(27), 5058–5069 (2000).
[CrossRef]

S. C. Lyons, G. L. Oppo, W. J. Firth, and J. R. M. Barr, “Beam-quality studies of nanosecond singly resonant optical parametric oscillators,” IEEE J. Quantum Electron. 26(5), 541–549 (2000).
[CrossRef]

1999 (2)

1998 (1)

D. D. Lowenthal, “CW periodically poled LiNbO3 optical parametric oscillator model with strong idler absorption,” IEEE J. Quantum Electron. 34(8), 1356–1366 (1998).
[CrossRef]

1997 (3)

1995 (2)

1990 (1)

A. E. Siegman, “New developments in laser resonators,” Proc. SPIE 1224, 2–14 (1990).
[CrossRef]

1964 (1)

R. C. Miller, “Optical second harmonic generation in piezo-electric crystals,” Appl. Phys. Lett. 5(1), 17–19 (1964).
[CrossRef]

Alford, W. J.

Arisholm, G.

Ø. Farsund, G. Arisholm, and G. Rustad, “Improved beam quality from a high energy optical parametric oscillator using crystals with orthogonal critical planes,” Opt. Express 18(9), 9229–9235 (2010).
[CrossRef] [PubMed]

G. Arisholm, Ø. Nordseth, and G. Rustad, “Optical parametric master oscillator and power amplifier for efficient conversion of high-energy pulses with high beam quality,” Opt. Express 12(18), 4189–4197 (2004).
[CrossRef] [PubMed]

G. Arisholm, R. Paschotta, and T. Sudmeyer, “Limits to the power scalability of high-gain optical parametric amplifiers,” J. Opt. Soc. Am. B 21(3), 578–590 (2004).
[CrossRef]

G. Arisholm, E. Lippert, G. Rustad, and K. Stenersen, “Efficient conversion from 1 to 2 µm by a KTP-based ring optical parametric oscillator,” Opt. Lett. 27(15), 1336–1338 (2002).
[CrossRef]

G. Arisholm, G. Rustad, and K. Stenersen, “Importance of pump-beam group velocity for backconversion in optical parametric oscillators,” J. Opt. Soc. Am. B 18(12), 1882–1890 (2001).
[CrossRef]

G. Arisholm, “Quantum noise initiation and macroscopic fluctuations in optical parametric oscillators,” J. Opt. Soc. Am. B 16(1), 117–127 (1999).
[CrossRef]

G. Arisholm and K. Stenersen, “Optical parametric oscillator with non-ideal mirrors and single- and multi-mode pump beams,” Opt. Express 4(5), 183–192 (1999).
[CrossRef] [PubMed]

G. Arisholm, “General numerical methods for simulating second-order nonlinear interactions in birefringent media,” J. Opt. Soc. Am. B 14(10), 2543–2549 (1997).
[CrossRef]

Barr, J. R. M.

S. C. Lyons, G. L. Oppo, W. J. Firth, and J. R. M. Barr, “Beam-quality studies of nanosecond singly resonant optical parametric oscillators,” IEEE J. Quantum Electron. 26(5), 541–549 (2000).
[CrossRef]

Bosenberg, W. R.

L. E. Myers and W. R. Bosenberg, “Periodically poled lithium niobate and quasi-phase-matched optical parametric oscillators,” IEEE J. Quantum Electron. 33(10), 1663–1672 (1997).
[CrossRef]

Bowers, M. S.

Clark, J. B.

Farsund, Ø.

Firth, W. J.

S. C. Lyons, G. L. Oppo, W. J. Firth, and J. R. M. Barr, “Beam-quality studies of nanosecond singly resonant optical parametric oscillators,” IEEE J. Quantum Electron. 26(5), 541–549 (2000).
[CrossRef]

Hansson, G.

Ito, R.

Johnson, B. C.

Karlsson, H.

Kitamoto, A.

Koch, K.

G. T. Moore and K. Koch, “Efficient high-gain two-crystal optical parametric oscillator,” IEEE J. Quantum Electron. 31(5), 761–768 (1995).
[CrossRef]

Kondo, T.

Laurell, F.

Lippert, E.

Lowenthal, D. D.

D. D. Lowenthal, “CW periodically poled LiNbO3 optical parametric oscillator model with strong idler absorption,” IEEE J. Quantum Electron. 34(8), 1356–1366 (1998).
[CrossRef]

Lyons, S. C.

S. C. Lyons, G. L. Oppo, W. J. Firth, and J. R. M. Barr, “Beam-quality studies of nanosecond singly resonant optical parametric oscillators,” IEEE J. Quantum Electron. 26(5), 541–549 (2000).
[CrossRef]

McPhee, E. S.

Miller, R. C.

R. C. Miller, “Optical second harmonic generation in piezo-electric crystals,” Appl. Phys. Lett. 5(1), 17–19 (1964).
[CrossRef]

Moore, G. T.

G. T. Moore and K. Koch, “Efficient high-gain two-crystal optical parametric oscillator,” IEEE J. Quantum Electron. 31(5), 761–768 (1995).
[CrossRef]

Myers, L. E.

L. E. Myers and W. R. Bosenberg, “Periodically poled lithium niobate and quasi-phase-matched optical parametric oscillators,” IEEE J. Quantum Electron. 33(10), 1663–1672 (1997).
[CrossRef]

Newell, V. J.

Nordseth, Ø.

Oppo, G. L.

S. C. Lyons, G. L. Oppo, W. J. Firth, and J. R. M. Barr, “Beam-quality studies of nanosecond singly resonant optical parametric oscillators,” IEEE J. Quantum Electron. 26(5), 541–549 (2000).
[CrossRef]

Paschotta, R.

Rustad, G.

Shirane, M.

Shoji, I.

Siegman, A. E.

A. E. Siegman, “New developments in laser resonators,” Proc. SPIE 1224, 2–14 (1990).
[CrossRef]

Smith, A. V.

Stenersen, K.

Sudmeyer, T.

Wang, S.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

R. C. Miller, “Optical second harmonic generation in piezo-electric crystals,” Appl. Phys. Lett. 5(1), 17–19 (1964).
[CrossRef]

IEEE J. Quantum Electron. (4)

L. E. Myers and W. R. Bosenberg, “Periodically poled lithium niobate and quasi-phase-matched optical parametric oscillators,” IEEE J. Quantum Electron. 33(10), 1663–1672 (1997).
[CrossRef]

G. T. Moore and K. Koch, “Efficient high-gain two-crystal optical parametric oscillator,” IEEE J. Quantum Electron. 31(5), 761–768 (1995).
[CrossRef]

D. D. Lowenthal, “CW periodically poled LiNbO3 optical parametric oscillator model with strong idler absorption,” IEEE J. Quantum Electron. 34(8), 1356–1366 (1998).
[CrossRef]

S. C. Lyons, G. L. Oppo, W. J. Firth, and J. R. M. Barr, “Beam-quality studies of nanosecond singly resonant optical parametric oscillators,” IEEE J. Quantum Electron. 26(5), 541–549 (2000).
[CrossRef]

J. Opt. Soc. Am. B (9)

G. Arisholm, R. Paschotta, and T. Sudmeyer, “Limits to the power scalability of high-gain optical parametric amplifiers,” J. Opt. Soc. Am. B 21(3), 578–590 (2004).
[CrossRef]

G. Arisholm, “General numerical methods for simulating second-order nonlinear interactions in birefringent media,” J. Opt. Soc. Am. B 14(10), 2543–2549 (1997).
[CrossRef]

G. Arisholm, “Quantum noise initiation and macroscopic fluctuations in optical parametric oscillators,” J. Opt. Soc. Am. B 16(1), 117–127 (1999).
[CrossRef]

I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, and R. Ito, “Absolute scale of second-order nonlinear-optical coefficients,” J. Opt. Soc. Am. B 14(9), 2268–2294 (1997).
[CrossRef]

W. J. Alford and A. V. Smith, “Wavelength variation of the second-order nonlinear coefficients of KNbO3, KTIOPO4, KTiOAsO4, LiNBO3, LiO3, β-BaB2O4, KH2PO4, and LiB3O5 crystals: a test of Miller wavelength scaling,” J. Opt. Soc. Am. B 18(4), 524–533 (2001).
[CrossRef]

G. Arisholm, G. Rustad, and K. Stenersen, “Importance of pump-beam group velocity for backconversion in optical parametric oscillators,” J. Opt. Soc. Am. B 18(12), 1882–1890 (2001).
[CrossRef]

A. V. Smith, “Bandwidth and group-velocity affects in nanosecond optical parametric amplifiers and oscillators,” J. Opt. Soc. Am. B 22(9), 1953–1965 (2005).
[CrossRef]

B. C. Johnson, V. J. Newell, J. B. Clark, and E. S. McPhee, “Narrow-bandwidth low-divergence optical parametric oscillator for nonlinear frequency-conversion applications,” J. Opt. Soc. Am. B 12(11), 2122–2127 (1995).
[CrossRef]

A. V. Smith and M. S. Bowers, “Image-rotating cavity designs for improved beam quality in nanosecond optical parametric oscillators,” J. Opt. Soc. Am. B 18(5), 706–713 (2001).
[CrossRef]

Opt. Express (4)

Opt. Lett. (1)

Proc. SPIE (1)

A. E. Siegman, “New developments in laser resonators,” Proc. SPIE 1224, 2–14 (1990).
[CrossRef]

Other (1)

W. Koechner, Solid-state laser engineering (Springer, New York, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Sketch of OPO geometry assumed in the simulations.

Fig. 10
Fig. 10

a) Comparison of performance of OPOs with small (black curves) and large (red curves) pump group velocity mismatch for no (solid curves) and large (dashed curves) idler absorption with W = 0.5 mm and tp = 10 ns. b) Signal spectral for the same cases for η ≈ 0.35 for zero idler absorption and η ≈ 0.5 for α = 300 m−1.

Fig. 2
Fig. 2

Overview of the simulated points in the parameter space.

Fig. 3
Fig. 3

a) Signal conversion efficiency (solid curves) and beam quality (dashed curves) as functions of deff for different idler absorption levels (units m−1) for W = 0.5 mm and tp = 10 ns. b) Signal beam quality and conversion efficiency as a parametric plot with deff as parameter for different idler absorption for the same OPO as in a). The gray curve connects the points with deff = 16 pm/V. The deff -values for the other points are listed in the text.

Fig. 4
Fig. 4

Simulation results for 0.5 mm beam radius for varying pump pulse length, as indicated in the graphs. Similar results for 10 ns pulse length were shown in Fig. 3b.

Fig. 5
Fig. 5

Comparison of OPO performance for fixed idler absorption at different pump pulse lengths for 0.5 mm pump beam radius.

Fig. 6
Fig. 6

Simulation results for 10 ns pulse length varying the beam radius as indicated in the graphs. The corresponding graph for W = 0.5 mm is shown in Fig. 3b.

Fig. 7
Fig. 7

Comparison of OPO performance for fixed absorption levels for varying pump beam width for 10 ns pulse width.

Fig. 8
Fig. 8

Comparison of OPO performance in the case of 2 ns pump pulse length and varying beam width. Solid curves are for zero idler absorption and dashed curves are for α=300 m−1.

Fig. 9
Fig. 9

Simulation results for 0.5 mm beam radius and 10 ns pulse length with a) 30% and b) 80% signal reflectivity on the output mirror in the OPO. The curves can be compared to Fig. 3b for 50% output coupling.

Fig. 11
Fig. 11

Fractional heat load as function of signal conversion efficiency.

Fig. 12
Fig. 12

Comparison of OPOs simulated with and without transient thermal lensing. W = 1 mm, α = 300 m−1 and tp = 20 ns. K = 5×10−12 J/m3 in the case of transient lensing. a) Comparison of performance. b-c) Comparison of temporal evolution of the near-field intensity profile through the beam center for deff = 12 pm/V.

Fig. 13
Fig. 13

Calculated performance from OPOs with idler absorption as function of pulse repetition frequency when thermal lensing is accounted for. a) W = 0.5 mm tp = 10 ns, η(prf = 0) ~0.4. b) W = 1 mm tp = 20 ns, η(prf = 0) ~0.4. For illustration, we have taken the values from single shot simulations and plotted them as 0.1 Hz in b).

Tables (2)

Tables Icon

Table 1 List of parameters used in the simulations

Tables Icon

Table 2 Original and scaled parameters for two realistic example OPOs. The columns labeled OPO 1 and OPO 2 show the physical parameters, and the columns labeled “scaled” show the parameters for the equivalent OPOs in our simulations. The shaded cells show the values we use to look up the expected efficiency and beam quality in our graphs

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

d a 1 d z = i ω 1 γ a 3 a 2 * exp ( i Δ k × z ) α 1 a 1 2 d a 2 d z = i ω 2 γ a 3 a 1 * exp ( i Δ k × z ) α 2 a 2 2 ,
γ = 2 d e f f / 2 n 3 n 2 n 1 c 3 ε 0 ,
g = 1 2 ( α 2 2 α 1 2 + i Δ k + 4 ( γ ω ¯ a 3 ) 2 + ( α 2 2 α 1 2 + i Δ k ) 2 ) ,
g = 1 2 ( α 1 2 + 4 ( γ ω ¯ a 3 ) 2 + α 1 2 4 ) { γ ω ¯ a 3 α 1 / 4 for high gain ( γ ω ¯ a 3 > > α 1 ) 2 ( γ ω ¯ a 3 ) 2 / α 1 for high gain ( γ ω ¯ a 3 < < α 1 )
a 1 z = i 2 k 1 T 2 a 1 + i ω 1 γ a 3 a 2 * α 1 2 a 1 a 2 z = i 2 k 2 T 2 a 2 + i ω 2 γ a 3 a 1 * a 3 z = i 2 k 3 T 2 a 3 + i ω 3 γ a 1 a 2 ,
L d = k 3 W 2 ,
σ = a 0 , 3 ω 3 γ
1 L c A 1 z ' = i 2 β L d T 2 A 1 + i β σ A 3 A 2 * α 1 2 A 1 L c A 2 z ' = i 2 β L d T 2 A 2 + i ( 1 β ) σ A 3 A 1 * 1 L c A 3 z ' = i 2 β L d T 2 A 3 + i σ A 1 A 2 .
α 1 = α 1 ' s σ = σ ' s L d = L d ' / s ,
t r = 2 L c n / c N r t = t p / t r .
I 0 , 3 = I 0 ( t p / t 0 ) 1 / 2 ,
f T = 2 κ Q L c d n / d T ,
F max κ λ π W 2 q L c d n / d T .

Metrics