Abstract

Dual-layer metallic wire-hole structures were fabricated and their terahertz transmission properties were measured. They exhibit polarization-dependent transmittance with large extinction ratios. Simulation and experimental results on structures with different wire-to-hole orientations provide strong evidence that the resonance peaks are caused by plasmonic coupling between the two metallic layers. A simplified LC-circuit model is proposed to explain the coupling mechanism and to estimate the peak frequencies. Our results suggest that specific electromagnetic response can be achieved by appropriate design of the geometrical patterns on the two metallic layers and a suitable polarization of the incident wave.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
    [CrossRef] [PubMed]
  2. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
    [CrossRef]
  3. V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1(1), 41–48 (2007).
    [CrossRef]
  4. S. A. Maier, Plasmonics: Fundamentals and Applications, (Springer, New York, 2007).
  5. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, (Springer-Verlag, 1986).
  6. T. Matsui, A. Agrawal, A. Nahata, and Z. V. Vardeny, “Transmission resonances through aperiodic arrays of subwavelength apertures,” Nature 446(7135), 517–521 (2007).
    [CrossRef] [PubMed]
  7. K. J. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett. 92(18), 183901 (2004).
    [CrossRef] [PubMed]
  8. M. Babinet, “Memoires d'optique méteorologique,” Acad. Sci., Paris, C. R. 4, 638–648 (1837).
  9. R. W. Wood, “Anomalous Diffraction Gratings,” Phys. Rev. 48(12), 928–936 (1935).
    [CrossRef]
  10. J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
    [CrossRef] [PubMed]
  11. C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
    [CrossRef]
  12. N. Liu, H. Liu, S. Zhu, and H. Giessen, “Stereometamaterials,” Nat. Photonics 3(3), 157–162 (2009).
    [CrossRef]
  13. Z. Zhang, K. T. Chan, Y. Cui, S. He, C. Wang, Q. Xing, and Q. Wang, “Multimode transmission in complementary plasmonic structures at terahertz frequencies,” Appl. Phys. Lett. 96(7), 073506 (2010).
    [CrossRef]
  14. M. Iwanaga, “Polarization-selective transmission in stacked two-dimensional complementary plasmonic crystal slabs,” Appl. Phys. Lett. 96(8), 083106 (2010).
    [CrossRef]
  15. M. Iwanaga, “Subwavelength electromagnetic dynamics in stacked complementary plasmonic crystal slabs,” Opt. Express 18(15), 15389–15398 (2010).
    [CrossRef] [PubMed]
  16. L. B. Whitbourn and R. C. Compton, “Equivalent-circuit formulas for metal grid reflectors at a dielectric boundary,” Appl. Opt. 24(2), 217–220 (1985).
    [CrossRef] [PubMed]
  17. K. D. Möller, O. Sternberg, H. Grebel, and K. P. Stewart, “Inductive cross-shaped metal meshes and dielectrics,” Appl. Opt. 41(19), 3919–3926 (2002).
    [CrossRef] [PubMed]

2010 (3)

Z. Zhang, K. T. Chan, Y. Cui, S. He, C. Wang, Q. Xing, and Q. Wang, “Multimode transmission in complementary plasmonic structures at terahertz frequencies,” Appl. Phys. Lett. 96(7), 073506 (2010).
[CrossRef]

M. Iwanaga, “Polarization-selective transmission in stacked two-dimensional complementary plasmonic crystal slabs,” Appl. Phys. Lett. 96(8), 083106 (2010).
[CrossRef]

M. Iwanaga, “Subwavelength electromagnetic dynamics in stacked complementary plasmonic crystal slabs,” Opt. Express 18(15), 15389–15398 (2010).
[CrossRef] [PubMed]

2009 (1)

N. Liu, H. Liu, S. Zhu, and H. Giessen, “Stereometamaterials,” Nat. Photonics 3(3), 157–162 (2009).
[CrossRef]

2008 (1)

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
[CrossRef]

2007 (3)

V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1(1), 41–48 (2007).
[CrossRef]

T. Matsui, A. Agrawal, A. Nahata, and Z. V. Vardeny, “Transmission resonances through aperiodic arrays of subwavelength apertures,” Nature 446(7135), 517–521 (2007).
[CrossRef] [PubMed]

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[CrossRef] [PubMed]

2004 (2)

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[CrossRef] [PubMed]

K. J. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett. 92(18), 183901 (2004).
[CrossRef] [PubMed]

2002 (1)

1998 (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

1985 (1)

1935 (1)

R. W. Wood, “Anomalous Diffraction Gratings,” Phys. Rev. 48(12), 928–936 (1935).
[CrossRef]

1837 (1)

M. Babinet, “Memoires d'optique méteorologique,” Acad. Sci., Paris, C. R. 4, 638–648 (1837).

Agrawal, A.

T. Matsui, A. Agrawal, A. Nahata, and Z. V. Vardeny, “Transmission resonances through aperiodic arrays of subwavelength apertures,” Nature 446(7135), 517–521 (2007).
[CrossRef] [PubMed]

Andrews, S. R.

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
[CrossRef]

Babinet, M.

M. Babinet, “Memoires d'optique méteorologique,” Acad. Sci., Paris, C. R. 4, 638–648 (1837).

Chan, K. T.

Z. Zhang, K. T. Chan, Y. Cui, S. He, C. Wang, Q. Xing, and Q. Wang, “Multimode transmission in complementary plasmonic structures at terahertz frequencies,” Appl. Phys. Lett. 96(7), 073506 (2010).
[CrossRef]

Compton, R. C.

Cui, Y.

Z. Zhang, K. T. Chan, Y. Cui, S. He, C. Wang, Q. Xing, and Q. Wang, “Multimode transmission in complementary plasmonic structures at terahertz frequencies,” Appl. Phys. Lett. 96(7), 073506 (2010).
[CrossRef]

Ebbesen, T. W.

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[CrossRef] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Enoch, S.

K. J. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett. 92(18), 183901 (2004).
[CrossRef] [PubMed]

Fernández-Domínguez, A. I.

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
[CrossRef]

Garcia-Vidal, F. J.

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[CrossRef] [PubMed]

García-Vidal, F. J.

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
[CrossRef]

Genet, C.

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[CrossRef] [PubMed]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Giessen, H.

N. Liu, H. Liu, S. Zhu, and H. Giessen, “Stereometamaterials,” Nat. Photonics 3(3), 157–162 (2009).
[CrossRef]

Grebel, H.

He, S.

Z. Zhang, K. T. Chan, Y. Cui, S. He, C. Wang, Q. Xing, and Q. Wang, “Multimode transmission in complementary plasmonic structures at terahertz frequencies,” Appl. Phys. Lett. 96(7), 073506 (2010).
[CrossRef]

Iwanaga, M.

M. Iwanaga, “Polarization-selective transmission in stacked two-dimensional complementary plasmonic crystal slabs,” Appl. Phys. Lett. 96(8), 083106 (2010).
[CrossRef]

M. Iwanaga, “Subwavelength electromagnetic dynamics in stacked complementary plasmonic crystal slabs,” Opt. Express 18(15), 15389–15398 (2010).
[CrossRef] [PubMed]

Koerkamp, K. J.

K. J. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett. 92(18), 183901 (2004).
[CrossRef] [PubMed]

Kuipers, L.

K. J. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett. 92(18), 183901 (2004).
[CrossRef] [PubMed]

Lezec, H. J.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Liu, H.

N. Liu, H. Liu, S. Zhu, and H. Giessen, “Stereometamaterials,” Nat. Photonics 3(3), 157–162 (2009).
[CrossRef]

Liu, N.

N. Liu, H. Liu, S. Zhu, and H. Giessen, “Stereometamaterials,” Nat. Photonics 3(3), 157–162 (2009).
[CrossRef]

Maier, S. A.

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
[CrossRef]

Martín-Moreno, L.

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
[CrossRef]

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[CrossRef] [PubMed]

Matsui, T.

T. Matsui, A. Agrawal, A. Nahata, and Z. V. Vardeny, “Transmission resonances through aperiodic arrays of subwavelength apertures,” Nature 446(7135), 517–521 (2007).
[CrossRef] [PubMed]

Möller, K. D.

Nahata, A.

T. Matsui, A. Agrawal, A. Nahata, and Z. V. Vardeny, “Transmission resonances through aperiodic arrays of subwavelength apertures,” Nature 446(7135), 517–521 (2007).
[CrossRef] [PubMed]

Pendry, J. B.

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[CrossRef] [PubMed]

Segerink, F. B.

K. J. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett. 92(18), 183901 (2004).
[CrossRef] [PubMed]

Shalaev, V. M.

V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1(1), 41–48 (2007).
[CrossRef]

Sternberg, O.

Stewart, K. P.

Thio, T.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

van Hulst, N. F.

K. J. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett. 92(18), 183901 (2004).
[CrossRef] [PubMed]

Vardeny, Z. V.

T. Matsui, A. Agrawal, A. Nahata, and Z. V. Vardeny, “Transmission resonances through aperiodic arrays of subwavelength apertures,” Nature 446(7135), 517–521 (2007).
[CrossRef] [PubMed]

Wang, C.

Z. Zhang, K. T. Chan, Y. Cui, S. He, C. Wang, Q. Xing, and Q. Wang, “Multimode transmission in complementary plasmonic structures at terahertz frequencies,” Appl. Phys. Lett. 96(7), 073506 (2010).
[CrossRef]

Wang, Q.

Z. Zhang, K. T. Chan, Y. Cui, S. He, C. Wang, Q. Xing, and Q. Wang, “Multimode transmission in complementary plasmonic structures at terahertz frequencies,” Appl. Phys. Lett. 96(7), 073506 (2010).
[CrossRef]

Whitbourn, L. B.

Williams, C. R.

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
[CrossRef]

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Wood, R. W.

R. W. Wood, “Anomalous Diffraction Gratings,” Phys. Rev. 48(12), 928–936 (1935).
[CrossRef]

Xing, Q.

Z. Zhang, K. T. Chan, Y. Cui, S. He, C. Wang, Q. Xing, and Q. Wang, “Multimode transmission in complementary plasmonic structures at terahertz frequencies,” Appl. Phys. Lett. 96(7), 073506 (2010).
[CrossRef]

Zhang, Z.

Z. Zhang, K. T. Chan, Y. Cui, S. He, C. Wang, Q. Xing, and Q. Wang, “Multimode transmission in complementary plasmonic structures at terahertz frequencies,” Appl. Phys. Lett. 96(7), 073506 (2010).
[CrossRef]

Zhu, S.

N. Liu, H. Liu, S. Zhu, and H. Giessen, “Stereometamaterials,” Nat. Photonics 3(3), 157–162 (2009).
[CrossRef]

Acad. Sci., Paris, C. R. (1)

M. Babinet, “Memoires d'optique méteorologique,” Acad. Sci., Paris, C. R. 4, 638–648 (1837).

Appl. Opt. (2)

Appl. Phys. Lett. (2)

Z. Zhang, K. T. Chan, Y. Cui, S. He, C. Wang, Q. Xing, and Q. Wang, “Multimode transmission in complementary plasmonic structures at terahertz frequencies,” Appl. Phys. Lett. 96(7), 073506 (2010).
[CrossRef]

M. Iwanaga, “Polarization-selective transmission in stacked two-dimensional complementary plasmonic crystal slabs,” Appl. Phys. Lett. 96(8), 083106 (2010).
[CrossRef]

Nat. Photonics (3)

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
[CrossRef]

N. Liu, H. Liu, S. Zhu, and H. Giessen, “Stereometamaterials,” Nat. Photonics 3(3), 157–162 (2009).
[CrossRef]

V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1(1), 41–48 (2007).
[CrossRef]

Nature (3)

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[CrossRef] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

T. Matsui, A. Agrawal, A. Nahata, and Z. V. Vardeny, “Transmission resonances through aperiodic arrays of subwavelength apertures,” Nature 446(7135), 517–521 (2007).
[CrossRef] [PubMed]

Opt. Express (1)

Phys. Rev. (1)

R. W. Wood, “Anomalous Diffraction Gratings,” Phys. Rev. 48(12), 928–936 (1935).
[CrossRef]

Phys. Rev. Lett. (1)

K. J. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett. 92(18), 183901 (2004).
[CrossRef] [PubMed]

Science (1)

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[CrossRef] [PubMed]

Other (2)

S. A. Maier, Plasmonics: Fundamentals and Applications, (Springer, New York, 2007).

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, (Springer-Verlag, 1986).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of the wire-hole structure. (a) 3-dimensional view; (b) x-y plane view; and (c) y-z plane view.

Fig. 2
Fig. 2

Experimental and simulation result for (a) β = 0 , E //wire; (b) β = 60 , E //wire; (c) β = 90 , E //wire; (d) β = 0 , E ⊥wire; (e) β = 60 , E ⊥wire; and (f) β = 90 , E ⊥wire. The blue curves in (a)-(c) show the transmittance obtained by using LC-circuit model.

Fig. 3
Fig. 3

(a) Inductively coupled LC-circuit for the structure; (b) Equivalent circuit with additive magnetic coupling; (c) Equivalent circuit with subtractive magnetic coupling; (d) Magnetic field distribution for (b); and (e) Magnetic field distribution for (c).

Fig. 4
Fig. 4

State transition by changingβfor (a) E // wire and (b) E ⊥wire.

Tables (1)

Tables Icon

Table 1 Parameters in LC-circuit model

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

L 1 q ¨ 1 M q ¨ 2 + q 1 / C 1 = 0
L 2 q ¨ 2 M q ¨ 1 + q 2 / C 2 = 0
ω = ω 0 1 ± M / L 1 * L 2

Metrics